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INTRODUCTION 
 

In 2020, liver cancer ranked as the sixth most frequently 

identified cancer and stood as the third primary 

contributor to global cancer-related fatalities [1]. The 

survival rate for HCC patients is significantly 

compromised due to late disease presentation, which 

limits the possibility of curative surgical intervention 

for the majority of patients at intermediate or advanced 

stages. Chemotherapy plays a crucial role in the 

treatment of advanced HCC; however, the effectiveness 

of this therapeutic approach is often hampered by the 

development of drug resistance in a considerable 

number of patients [2, 3]. Despite advancements  

in therapeutic management, the prognosis for patients 

with HCC remains unfavorable, posing substantial 
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ABSTRACT 
 

Hepatocellular carcinoma (HCC) stands out as the most prevalent type of liver cancer and a significant 
contributor to cancer-related fatalities globally. Metabolic reprogramming, particularly in glucose, lipid, and 
amino acid metabolism, plays a crucial role in HCC progression. However, the functions of β-alanine metabolism-
related genes (βAMRGs) in HCC remain understudied. Therefore, a comprehensive evaluation of βAMRGs is 
required, specifically in HCC. Initially, we explored the pan-cancer landscape of βAMRGs, integrating expression 
profiles, prognostic values, mutations, and methylation levels. Subsequently, scRNA sequencing results indicated 
that hepatocytes had the highest scores of β-alanine metabolism. In the process of hepatocyte carcinogenesis, 
metabolic pathways were further activated. Using βAMRGs scores and expression profiles, we classified HCC 
patients into three subtypes and examined their prognosis and immune microenvironments. Cluster 3, 
characterized by the highest βAMRGs scores, displayed the best prognosis, reinforcing β-alanine’s significant 
contribution to HCC pathophysiology. Notably, immune microenvironment, metabolism, and cell death modes 
significantly varied among the β-alanine subtypes. We developed and validated a novel prognostic panel based 
on βAMRGs and constructed a nomogram incorporating risk degree and clinicopathological characteristics. 
Among the model genes, EHHADH has been identified as a protective protein in HCC. Its expression was notably 
downregulated in tumors and exhibited a close correlation with factors such as tumor staging, grading, and 
prognosis. Immunohistochemical experiments, conducted using HCC tissue microarrays, substantiated the 
validation of its expression levels. In conclusion, this study uncovers β-alanine’s significant role in HCC for the 
first time, suggesting new research targets and directions for diagnosis and treatment. 
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challenges for clinical practitioners [4]. Therefore, the 

identification of predictive new targets associated with 

tumor and gaining a comprehensive understanding of 

the molecular genetic mechanisms underlying HCC 

tumor would greatly contribute to the overall clinical 

management of HCC patients. 

 

The development of HCC is a multifactorial, multistage, 

and multigene process involving viral infections, 

oncogene activation, tumor suppressor gene in-

activation, alterations in the tumor microenvironment, 

and metabolic reprogramming [5]. Among these factors, 

metabolic reprogramming, such as glucose metabolism, 

lipid metabolism, amino acid metabolism and so on, 

emerges as a noteworthy mechanism garnering sub-

stantial attention in the context of HCC proliferation, 

migration, and microenvironmental changes [5, 6]. 

Reports showed that lowered alanine levels have been 

found to promote non-adherent growth of tumor cells, 

while the modulation of metabolic processes can 

enhance their growth and survival [7]. The alanine has 

two isomers of α-alanine and β-alanine. β-alanine is a 

non-essential amino acid metabolized by carnosine, 

which plays an important role in cell metabolism, 

providing energy, regulating acid-base balance, and 

regulating protein synthesis [8]. Research has revealed 

that β-alanine possesses various anti-tumor effects, 

primarily achieved by diminishing cell migration and 

proliferation [9]. The formation of carnosine involves β-

alanine and histidine binding together, resulting in the 

creation of an intracellular buffer with significant 

functionality [10]. In cancer, the formation of carnosine 

is considered an underdeveloped drug with potential 

therapeutic effects [8]. In particular, the buildup of 

carnosine has demonstrated the ability to inhibit the 

growth and proliferation of tumor cells cultured in the 

laboratory, as well as to suppress tumor growth in living 

organisms [11, 12].  

 

Furthermore, to the best of our understanding, there is a 

notable scarcity of research exploring the relationship 

between β-alanine and HCC, particularly at the 

molecular level. Additionally, the identification of β-

alanine-metabolism-related genes (βAMRGs) that could 

predict clinical outcomes and guide chemotherapeutic 

strategies in HCC patients remains unexplored. Hence, 

the potential development of an HCC risk stratification 

tool utilizing βAMRGs holds promise and warrants 

further investigation. 

 

In our study, we undertook a comprehensive assessment 

of 22 βAMRGs in various cancer types, examining their 

expression levels and genomic variations. Leveraging 
the βAMRGs scores and expressions, we classified 

patients with HCC into three distinct subtypes, 

exploring their correlations with prognosis and immune 

microenvironments. Additionally, we devised and 

validated a novel, independent prognostic panel based 

on βAMRGs. To enhance the accuracy of HCC patients 

prognosis evaluation, we constructed a nomogram 

incorporating both the risk degree of the model and 

clinicopathological characteristics. These findings have 

significantly deepened our understanding of the patho-

physiological mechanisms underlying HCC, providing 

valuable insights for clinical decision-making and 

fostering personalized treatment strategies. Moreover, 

our research highlights, for the first time, the crucial 

role of β-alanine in HCC, offering novel research 

targets and directions for the diagnosis and treatment of 

this condition. The findings of this study are anticipated 

to have a positive impact on the field, fostering 

advancements in our understanding and facilitating  

the development of enhanced strategies for managing 

HCC. 

 

MATERIALS AND METHODS 
 

Data collection and processing 
 

To conduct this study, we obtained gene expression data 

and clinical annotations from two well-known databases: 

GEO and TCGA. To ensure the reliability of our 

analysis, we excluded patients without survival 

information or with survival times less than 30 days. 

Additionally, we used the ComBat method from the 

“SVA” package to address any batch effects caused by 

nonbiological technical biases [13]. The dataset for our 

study consisted of 569 HCC patients, incorporating 

information from TCGA-LIHC, GSE76427, GSE116174, 

and GSE144269 datasets. This comprehensive collection 

of expression profiles and clinical data enabled us to 

conduct a thorough and in-depth investigation of HCC. 

From the KEGG_BETA_ALANINE_METABOLISM 

dataset in the MsigDb platform, we extracted 22 classic 

βAMRGs. 
 

The single-cell RNA (scRNA) sequencing data for HCC 

was sourced from the GSE166635 dataset [14], which 

included two HCC single-cell samples (GSM5076749 

and GSM5076750). The Read10X function was 

employed to read the single-cell data, with the following 

filtering criteria set: min.cells = 3, min.features = 200, 

nCount_RNA ≥ 1000, nFeature_RNA ≥ 200, 

nFeature_RNA ≤ 9000, percent.mt ≤ 20. 

 

Pan-cancer analysis 

 

To gain insights into the molecular features of βAMRGs 

in different human cancers, we conducted a thorough 
pan-cancer analysis, integrating genomic, transcriptomic, 

and clinical data [15, 16]. Our initial step involved 

gathering and consolidating raw data and clinical 
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information from pan-cancer cohorts via the Xena 

website. The CNV and SNV data from the TCGA 

database were then processed and visualized as heatmaps, 

offering a comprehensive overview of variations in 

βAMRGs across various cancers. Furthermore, we 

conducted pan-cancer analyses on methylation levels and 

differential mRNA expressions. 

 

To evaluate the prognostic significance of βAMRGs in 

diverse malignancies, we performed univariate COX 

regression analysis on their expression in relation to OS. 

By applying these extensive methodologies, our objective 

was to uncover the possible functions and importance of 

β-alanine metabolism-related genes in various cancer 

types, thus providing new perspectives and potential 

therapeutic avenues in the realm of cancer research. 

 

scRNA sequencing analysis 

 

After single-cell quality control, we initially employed 

the FeatureScatter function to visualize the quality 

control results. The LogNormalize method was applied 

for data standardization [17], the FindVariableFeatures 

function for downstream dimensionality reduction 

analysis, the ScaleData function for data normalization, 

and the RunHarmony function for batch correction and 

dimensionality reduction analysis. The JackStraw 

function was utilized to determine the appropriate PC 

values, while the singleR function facilitated automated 

cell annotation. The AUCell, Add, singscore, ssGSEA, 

and UCell algorithms were employed to assess the 

metabolic states of each cell, and the cumulative results 

of all algorithm scores were referred to as ‘total scoring’ 

in this study, abbreviated as Scoring. 

 

Violin plots were used to illustrate the differences in 

metabolic activity between each cell type. Finally, the 

CopyKat algorithm was employed to predict the benign 

or malignant nature of each cell. The Wilcoxon test 

function was used to compare metabolic differences 

between benign and malignant cells. 

 

Clustering analysis 

 

Due to significant variations in gene expression profiles 

across the collected datasets, we devised a β-alanine 

metabolism score model to emphasize the distinct 

expression levels among samples. Initially, we 

employed the ssGSEA algorithm to calculate β-alanine 

metabolism enrichment scores for all 569 patients, thus 

assigning each patient a specific β-alanine metabolism 

score indicative of pathway activity. 

 

Next, we conducted differential analysis, enabling us to 

explore expression pattern differences among the 

samples. These results were visually represented in a 

heatmap, generated using the “pheatmap” package, 

providing a comprehensive illustration of the clustering 

analysis outcomes. 

 

By comparing mRNA expression levels of genes in 

tumor tissues with those in normal tissues, we 

successfully categorized mRNA expression statuses in 

tumor tissues into three distinct groups. This approach 

provided valuable insights into the dynamic nature of β-

alanine metabolism across various cancer types, 

potentially revealing implications for cancer research 

and therapeutic strategies. 

 

Prognostic performances and molecular 

characteristics of β-alanine metabolism subtypes 

 

To delve deeper into the connections between gene 

expression levels within these three clusters, we 

skillfully created violin plots using the “ggpubr” 

package to illustrate the enrichment scores among them. 

To examine prognostic differences among these 

clusters, we employed the “survival” and “survminer” 

packages in R. 

 

By leveraging the resources of the MsigDb platform and 

drawing insights from previous research, we pinpointed 

42 conventional metabolic pathways, 24 immune-

related pathways, and 10 cell death pathways. To gauge 

the activity of these pathways within each subtype of β-

alanine metabolism, we employed the GSVA program 

to calculate the metabolic score, immunological score, 

and cell death score for each liver cancer sample. 

 

To assess variations in pathway activity among the three 

subtypes, we carried out the Kruskal-Wallis test. 

Furthermore, a comprehensive investigation was 

conducted to explore alterations in immune cell 

infiltration and expression of immune checkpoint genes 

(ICGs), providing detailed insights into the changes 

within the immune environment across diverse 

subtypes. For this analysis, we utilized various 

immunological algorithms available on the TIMER2.0 

platform, including TIMER, CIBERSOFT, 

QUANTISEQ, EPIC, and others [18, 19]. Moreover, we 

applied the Kruskal-Wallis test to investigate variations 

in immune cell infiltration and expression of ICGs 

across the subtypes. We exclusively showcased the 

outcomes that demonstrated statistical significance with 

a P-value lower than 0.05. 

 

β-alanine metabolism is an auxiliary clinical 

indicator to predict the prognosis of HCC patients 

 

The TCGA dataset contained 343 HCC samples, which 

were randomly divided into two groups: the training 
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cohort, comprising 60% of the individuals, and the test1 

cohort, including 40% of the participants. Moreover, all 

samples from the TCGA dataset were assigned to the 

test2 cohort (n=343), while the test3 cohort (n=226) 

exclusively comprised samples from the GEO platform. 

 

To address collinearity and prevent overfitting in the 

model, Least Absolute Shrinkage and Selection 

Operator (LASSO) regression analysis was conducted 

on the 22 variables. Following that, multivariate Cox 

proportional hazards regression analysis was applied to 

compute risk scores for β-alanine metabolism using the 

“predict” function in R. Subsequently, the samples were 

divided into high-risk and low-risk subgroups based on 

the median risk score of the train cohort. Survival 

analysis using the Kaplan-Meier method was then 

employed on the train, test1, test2, and test3 cohorts to 

assess the predictive capacity of the risk scores. 

 

To ascertain the independent prognostic value of the 

risk score, both univariate and multivariate Cox 

regression analyses were executed. Only indicators that 

demonstrated statistical significance (p<0.05) in both 

analyses were considered as independent prognostic 

factors. Given the variations in clinical information 

between the TCGA and GEO databases, independent 

prognostic analyses were solely conducted in the TCGA 

cohort. To provide a quantitative approach for 

predicting the survival probability of HCC patients in 

clinical practice, we employed the “rms” package in R 

to construct a nomogram plot. This plot integrated 

independent prognostic indicators based on the TCGA 

cohort. Furthermore, we conducted a calibration plot to 

assess the alignment between actual and nomogram-

estimated survival probabilities. Additionally, ROC 

curves were utilized to verify the diagnostic 

performance in predicting 1-, 3-, and 5-year survival 

rates. 

 

Clinical significance and expression experimental 

verification of the EHHADH gene 

 

The EHHADH gene constitutes a vital component of 

our HCC prognosis model. We have identified a 

significant correlation between this gene and various 

clinical-pathological indicators associated with HCC. 

As a result, our study exclusively delved into a thorough 

and comprehensive analysis, coupled with experimental 

validation of EHHADH. The findings presented in this 

study are predominantly derived from the BEST online 

platform, an open and encompassing multi-omics data 

visualization platform for diverse cancer types. Through 

queries involving HCC and EHHADH, we uncovered 
correlations between the gene and several key clinical 

indicators, including expression levels, age, grade, 

stage, BMI index, sorafenib sensitivity, microvascular 

invasion, among others. Furthermore, we conducted 

Kaplain-Meier survival analysis on multiple publicly 

available datasets to underscore the prognostic 

significance of EHHADH. 
 

Utilizing the liver cancer tissue microarray (ZL-

LivHcc962) procured from Shanghai Zhuoli Biotech 

Co., Ltd. (Zhuoli Biotech Co., Ltd., Shanghai, China), 

we conducted an analysis of EHHADH expression in 

both tumor tissues and their corresponding non-tumor 

counterparts. The tissue microarray underwent a 60-

minute incubation in a constant temperature oven set at 

59° C, followed by dewaxing and hydration using 

xylene and ethanol. Antigen retrieval was achieved 

through high-temperature and high-pressure treatment 

with EDTA. A 5% BSA blocking solution was 

administered dropwise and allowed to incubate at room 

temperature for 35 minutes. Subsequently, an optimal 

quantity of EHHADH antibody (Affinity Biosciences, 

DF4280, USA, 1:50) was introduced dropwise and 

incubated overnight at 4° C. The tissue microarray was 

then extracted, subjected to PBS washing, and exposed 

to a dropwise addition of the secondary antibody for a 

35-minute incubation at 37° C. Diaminoaniline staining 

was employed for observation, followed by 

counterstaining with hematoxylin. The histochemistry 

score was computed based on the total area percentage 

and staining intensity, represented by the H-Score = 

∑(pi×i) = (percentage of weak intensity×1) + 

(percentage of moderate intensity×2) + (percentage of 

strong intensity×3). Here, pi denotes the positive signal 

pixel area/cell count percentage, and i signifies the 

staining intensity. The H-score, ranging from 0 to 300, 

reflects a higher value corresponding to an augmented 

overall positive intensity of EHHADH. 
 

Availability of data and materials 
 

The datasets examined in this study are available in the 

Supplementary Materials or can be obtained by 

contacting the corresponding author. 

 

RESULTS 
 

Pan-cancer analysis of 22 βAMRGs  
 

In order to explore the molecular characteristics of the 22 

βAMRGs in diverse human cancers, comprehensive pan-

cancer analyses were conducted, utilizing genomics, 

transcriptomics, and clinical data. Initially, we examined 

the mutational patterns of the 22 βAMRGs in human 

cancers and studied the prevalence of copy number 

variations (CNV). The results demonstrated that CNV 

occurred at a high frequency (ranging from 

approximately 10% to 80%) in various cancer types 

(Figure 1A). We also found the CNDP1 has a lower 
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Figure 1. Pan-cancer analysis of 22 βAMRGs. (A) The frequency of CNV gains and losses was analyzed for the 22 βAMRGs across 20 

different types of human cancers. The length of the line represents the variation frequency of the βAMRGs in pan-cancers. (B) The expression 
characteristics of the 22 βAMRGs were examined in 20 different types of human cancers, showing statistical significance (P < 0.05). (C, D) 
Heatmap and waterfall diagram were utilized to depict the SNV data of the 22 βAMRGs in pan-cancers. (E) Survival landscape analysis was 
conducted for the 22 βAMRGs across 20 different types of human cancers. Genes with P > 0.05 are represented by the white color, while red 
and blue colors indicate risk and protective genes, respectively. (F) The DNA methylation patterns of the 22 βAMRGs were examined in 20 
different types of human cancers. The color gradient from orange to green signifies high to low methylation levels. 
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CNV frequency than other genes in human tumors. Then 

we researched the expression level of 22 βAMRGs in 

human tumors (Figure 1B). A significant number of the 

22 βAMRGs exhibited differential expression between 

tumor tissues and adjacent normal samples in various 

human cancers. Furthermore, in nearly all human tumor 

tissues, the majority of βAMRGs were upregulated when 

compared to their expression levels in paired normal 

samples, particularly in cases of BRCA. We also found 

the SRM, GAD1 and SMS were significantly elevated in 

contrast with those in paired normal samples in human 

cancers. Next, we delved into the analysis of SNV within 

βAMRGs. Notably, BLCA, COAD, LUAD, LUSC, 

SKCM, STAD, and UCEC displayed a higher frequency 

of SNV, particularly in SKCM and UCEC (Figure 1C, 

1D). Conversely, SNV frequency in other human tumors 

was relatively low, including ACC, CHOL, KICH, 

MESO, PCPG, TGCT, THYM, and UVM (Figure 1C, 

1D). Remarkably, we observed that DPYD exhibited 

significantly higher SNV frequencies in human cancers, 

especially in SKCM, compared to other βAMRGs. These 

observations were visually illustrated through the 

heatmap and waterfall diagram of SNV (Figure 1C, 1D).  

 

Subsequently, we explored the relationship of 22 

βAMRGs expression with patient survival time (Figure 

1E). By conducting a univariate Cox regression analysis, 

we identified βAMRGs that functioned as risk factors 

and those with a protective role (HR<1 and p<0.05). For 

instance, the most of the βAMRGs were the protective 

factors in the KIRC. It was worthy noticed that the 

ABAT βAMRG was the protective factors for human 

cancer. Methylation is a significant modification of 

proteins and nucleic acids, regulating gene expression 

and gene silencing. This epigenetic process plays a 

crucial role in various diseases, including cancer, aging, 

and Alzheimer’s disease, making it a vital focus of 

research in the field of epigenetics. DNA methylation is 

responsible for silencing specific genes, whereas 

demethylation leads to the reactivation and expression of 

these genes [20]. Hence, we researched that methylation 

patterns of βAMRGs in human cancer. According to the 

result (Figure 1F), the βAMRGs had complicated 

methylation patterns. For instance, the GAD2, AOC2 and 

DPYS had the hypermethylation in more than most of 

human cancers; on the contrary, most of βAMRGs 

showed the hypomethylation in more than most of human 

cancers. Interestingly, for LIHC, all the 22 βAMRGs 

showed the hypomethylation in human tumors. 

 

Single-cell analysis of two HCC patients 

 

According to the pre-established data quality control 
parameters, the single-cell quality control results for 

these two HCC patients were illustrated in 

Supplementary Figure 1A. The robust correlation 

between ncount_RNA and nfeature_RNA attested to the 

high quality of this batch of single-cell data 

(Supplementary Figure 1B). Notably, IGKC and IGHG1 

genes emerged as significantly variable genes in this 

dataset (Supplementary Figure 1C). The single-cell 

atlas, both before and after batch correction using 

harmony, was presented in Supplementary Figure  

1D, 1E. Overall, this study identified 31 cellular clusters 

(Figure 2A). Through automated annotation using 

singleR, seven distinct cell subgroups were conclusively 

recognized, encompassing T cells, B cells, monocytes, 

hepatocytes, smooth muscle cells, epithelial cells, and 

endothelial cells (Figure 2B, 2C). 

 

Regardless of the prediction algorithm employed, 

consistently obtained results indicate that beta-alanine 

metabolism was predominantly active in hepatocytes 

and epithelial cells (Figure 3A, 3B). The dimensionality 

reduction maps of beta-alanine metabolism features for 

each cell were depicted in Figure 3C, highlighting that 

the region housing hepatocyte clusters exhibited higher 

beta-alanine metabolism scores. To assess differences in 

beta-alanine metabolism between benign and malignant 

cells, the CopyKat algorithm was utilized for prediction 

(Supplementary Figure 2). As depicted in Figure 4A, 

the majority of hepatocytes were classified as malignant 

cells, while other cell types were identified as benign 

cells. This alignment with actual data suggests relatively 

accurate and credible predictions. Quantitative analysis 

results indicated elevated levels of beta-alanine 

metabolism in malignant cells (Figure 4B). The t-SNE 

dimensionality reduction map further elucidated that the 

region housing malignant cells exhibited heightened 

beta-alanine metabolism activity (Figure 4C). In 

conclusion, all findings consistently supported the 

study’s conclusions. 

 

Cluster analysis for 343 HCC patients according to 

the βAMRGs scores 

 

Taking into account the impacts of βAMRGs in HCC, 

we initially assessed the enrichment scores of βAMRGs 

using ssGSEA for a total of 343 patients. These HCC 

samples were then categorized into three distinct 

clusters (Cluster1, Cluster C2, and Cluster C3) based on 

the mRNA expression levels of βAMRGs (Figure 5A). 

Specifically, the clusters named C1, C2, and C3 

comprised patients with inactive, normal, and active 

βAMRGs, respectively. The violin plot illustrated that 

C3 exhibited the highest enrichment score, while  

C1 had the lowest, followed by C2 (Figure 5B). 

Subsequently, we investigated the relationship between 

the three clusters and overall survival by plotting the 
survival curves. Among the clusters, C3 displayed the 

highest overall survival rates, whereas C1 exhibited the 

lowest (Figure 5C). Additionally, the overall survival 
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rates for HCC patients in C2 were found to lie between 

those of C1 and C3, indicating that high βAMRGs 

scores acted as a protective indicator. The β-alanine 

metabolism played an essential role in the outcome of 

HCC, particularly in cases of high activity of β-alanine 

metabolism. In summary, based on these results, we 

conclude that the classification technique for HCC is 

accurate, reliable, and scientifically sound. 

 

 
 

Figure 2. Single-cell atlas of 2 HCC patients. (A) t-SNE dimensionality reduction subtypes; (B) t-SNE dimensionality reduction cell 

annotations; (C) singleR automated annotation results. 

7079



www.aging-us.com 8 AGING 

Correlations of the βAMRGs scores with tumor 

related metabolic, immune and cell death pathways 

in the 3 clusters 

 

An analysis using a heatmap was conducted to examine 

the activity of 42 conventional metabolic pathways 

within the three clusters of βAMRGs (Figure 6A). 

Significantly different activity levels were observed 

across most of the 42 pathways in the three clusters. 

Notably, the C3 cluster exhibited the highest activities of 

various metabolism pathways, including alanine aspartate 

and glutamate metabolism, beta alanine metabolism, and 

glycolysis/gluconeogenesis metabolism. Conversely, a 

few metabolic pathways such as ether lipid metabolism, 

riboflavin metabolism, and inositol phosphate 

metabolism exhibited the lowest activity in the C3 

cluster. These findings aligned with our expectations, as 

β-alanine metabolism plays both positive and negative 

roles in tumor-related metabolic pathways. Additionally, 

the activity of 24 immune-related pathways across the 

three clusters was explored (Figure 6B). Interestingly, 

nearly all immune-associated pathways displayed greater 

activity in the C1 cluster compared to C2 and C3 clusters, 

including pathways such as B cell receptor signaling 

pathway, natural killer cell mediated cytotoxicity, and T 

cell receptor signaling pathway. This observation 

suggests that HCC malignancy is highest in the C1 

cluster, or that patients within C1 exhibit immune escape, 

resulting in a poorer prognosis. Next, the activity of 10 

cell death pathways was examined in the three clusters 

(Figure 6C). Significant differences were observed in 

nine out of the ten cell death pathways, with the 

exception of the PANoptosis cell death pathway. 

Notably, a positive correlation was observed between 

curroptosis and β-alanine activity. 

 

Correlations between the βAMRGs scores and the 

immune cell infiltration in the 3 clusters 

 

The tumor microenvironment (TME) encompasses a 

complex interplay among cells, extracellular matrix, and 

signaling molecules in the vicinity of tumor cells [21]. 

In the context of hepatocellular carcinoma (HCC), the 

TME assumes a critical role as an intrinsic factor 

contributing to the initiation, progression, invasion, and 

metastasis of the disease [22]. Particularly relevant to 

the pathogenesis of HCC, the TME serves as a pivotal 

regulator by delivering, inhibiting, or promoting growth 

signals. Consequently, it represents a valuable resource 

for identifying potential therapeutic targets, particularly 

pertaining to tumor-infiltrating immune cells (TIICs) 

[23]. And our comprehensive review of the existing 

literature did not reveal any prior investigations on  

the association between β-alanine and TIICs. In order to 

 

 
 

Figure 3. Assessing beta-alanine metabolism at the single-cell level. (A) Evaluation of the activation level of beta-alanine metabolism 

in each cell using six prediction algorithms; (B) Violin plots illustrating the variation in cellular activity levels of beta-alanine metabolism;  
(C) t-SNE plots depicting the dimensional distribution characteristics of beta-alanine metabolism. 
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depict variations in immune cell infiltration levels 

among the C1, C2, and C3 subgroups, a heatmap was 

generated using TIMER, CIBERSORT, CIBERSORT− 

ABS, QUANTISEQ, MCPCOUNTER, XCELL, and 

EPIC algorithms (Figure 7A). The heatmap illustrating 

immune cell infiltration demonstrated that most immune 

cells exhibited the highest infiltration levels in the C1 

cluster and the lowest levels in the C3 cluster. These 

results suggest that βAMRGs scores play a crucial role 

in modifying immune cell infiltration in HCC. Immune 

checkpoints are a molecular signaling pathway that 

regulates the immune response to maintain the balance 

of the immune system and prevent excessive activation. 

However, tumor cells can use these immune checkpoints 

 

 
 

Figure 4. Analysis of beta-alanine metabolism activity between benign and malignant cells. (A) t-SNE dimensional distribution 

characteristics of benign and malignant cells; (B) Differences in the activity of beta-alanine metabolism between benign and malignant cells; 
(C) t-SNE plots illustrating the distribution characteristics of beta-alanine metabolism between benign and malignant cells. 
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Figure 5. Cluster analysis for 343 HCC patients according to the βAMRGs scores. (A) The clustering of gene data reveals three 

distinct clusters, as depicted by the heatmap: Cluster 1(C1), Cluster 2 (C2), and Cluster 3 (C3), based on the levels of mRNA expression of 
βAMRGs. Cluster 2 (C2) comprises tumor patients with normal βAMRG expression, Cluster 3 (C3) includes those with active βAMRGs, while 
Cluster 1(C1) consists of individuals with inactive βAMRGs. (B) The violin plot illustrates the enrichment scores for the three clusters, arranged 
in the order of C3 > C2 > C1. The corresponding p-values are indicated above the respective clusters. (C) A survival curve represents the three 
distinct clusters. Cluster 3 exhibits the highest survival rate, while Cluster 1 demonstrates the lowest survival rate when compared among the 
three clusters. The x-coordinate represents survival time, while the y-coordinate represents survival rate. 

7082



www.aging-us.com 11 AGING 

to evade attack by the immune system, thereby 

promoting tumor growth and spread [24]. Hence, we 

studied the expression level of immune checkpoints 

related genes (ICGs) in different expression of βAMRGs 

clusters (Figure 7B). Our findings revealed a correlation 

between the βAMRGs-inactive cluster and the over-

expression of immune checkpoint genes (ICGs), 

indicating that patients in the βAMRGs-inactive group 

exhibited the weakest anti-tumor immunity and poor 

prognostic outcomes. 

 

Our study also endeavors to elucidate the  

relationship between βAMRGs’s levels and immune 

microenvironment (Figure 7C). We observed a 

predominantly negative correlation between the majority 

of βAMRGs (e.g., UPB1, EHHADH, ALDH9A1, 

ALDH7A1) and immunocyte infiltration, as well as 

immune-related functions. Conversely, βAMRGs such as 

SRM, SMS, GAD1, DPYD, and AOC3 exhibited a 

positive association with the levels of immune cell 

infiltration. And with the exception of SRM, SMS, 

GAD2, and GAD1, all βAMRGs exerted a positive 

influence on the Type II IFN Response. Finally, we 

evaluated the relationship between βAMRGs scores and 

immune cell infiltration (Figure 7D–7H). Notably, mast 

cells, neutrophils, NK cells, Type I IFN Response, and 

 

 
 

Figure 6. Correlations of the scores of βAMRGs with tumor-related metabolic, immune, and cell death pathways in the three 
clusters were examined. (A) The activity levels of 42 conventional metabolic pathways were analyzed across the three clusters. (B) The 
activity levels of 24 immune-related pathways were assessed across the three clusters. (C) The activity levels of 10 cell death pathways were 
investigated across the three clusters. (* indicates p <0.05; ** indicates p < 0.01; *** indicates p < 0.001; **** indicates p < 0.0001). 
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Figure 7. The correlation between βAMRGs scores and immune cell infiltration within the three clusters was investigated. (A) 
The heatmap displays variations in immune cell infiltration levels across the three subgroups based on βAMRGs scores. (B) The box plot 
demonstrates discrepancies in immune checkpoint expression among the three subgroups. (C) The heatmap depicts the relationship 
between βAMRGs-associated genes and immune cell infiltration levels. (D) The plot shows the link between βAMRGs scores and immune cell 
infiltration levels. The size of the sphere on the right side represents the correlation strength (abs) and the color represents the 
corresponding p-value. (E–H) The scatter plot depicts the relationship of βAMRGs scores with 4 immune-infiltration-related substances. The 
βAMRGs scores were shown to have a positive link to the infiltration levels of Type I IFN Response and Type II IFN Response. The βAMRGs 
scores were shown to have a negative link to the infiltration levels of aDCs and Treg. (* indicates p <0.05; ** indicates p < 0.01; *** indicates 
p < 0.001; **** indicates p < 0.0001). 
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Type II IFN Response demonstrated a positive 

correlation with βAMRGs scores, while the remaining 

infiltrating immune cells exhibited a negative correlation, 

especially for aDCs and Treg. 

 

Construction and verification of a novel βAMRGs 

related prognostic signature(βAMRGs-RPS) for 

predicting the clinical outcomes of patients with 

HCC 

 

A total of 22 βAMRGs from previous studies were 

utilized for the LASSO-Cox regression analysis. 

Subsequently, seven out of the 22 βAMRGs were selected 

for further multivariate Cox regression analysis 

(Supplementary Figure 3A, 3B). Finally, a multivariate 

Cox proportional hazards regression analysis was 

conducted, integrating six central hub βAMRGs (i.e., 

SMS, HIBCH, GAD1, GAD2, CNDP1, EHHADH), to 

construct the βAMRGs-RPS (Supplementary Figure 3C). 

In cohort 1, which comprised 343 TCGA samples, the 

three GEO cohorts were merged to form cohort 2. Cohort 

1 samples were randomly divided in a 6:4 ratio, with 60% 

assigned to the training group, 40% to the test1 group, and 

all samples of TCGA assigned to the test2 group. The 

cohort 2 samples constituted the test3 group. Based on the 

median risk score, the patients in the training set were 

categorized into high- and low-risk groups. The 

expression levels of the six genes were visualized using a 

heatmap, depicting the differences between the high- and 

low-risk score groups (Figure 8A). The survival curve 

analysis revealed that the high-risk group had a poorer 

overall survival compared to the low-risk group (Figure 

8B). Furthermore, the HCC patients were stratified into 

low- and high-risk subgroups based on the median risk 

score (Figure 8C). The high-risk subgroup exhibited a 

significantly higher mortality rate compared to the low-

risk subgroup, as indicated by the risk score distributions 

and survival status (Figure 8D). These findings indicate 

that the βAMRGs-RPS can accurately distinguish HCC 

patients with a favorable or unfavorable prognosis. 

 

To validate the reliability and stability of the 

βAMRGs-RPS, heatmaps were generated for the test1, 

test2, and test3 cohorts, demonstrating a similar 

expression pattern of the six βAMRGs as observed in 

the training cohort (Supplementary Figures 4A, 5A, 

6A). Notably, both internal and external validation of 

the survival data demonstrated that HCC patients with 

 

 
 

Figure 8. Establishment of a novel βAMRGs-RPS in the train cohort. (A) Heatmap illustrating the expression levels of six genes 
between subgroups with high and low risk scores. (B) Prognostic prediction depicted by the Kaplan-Meier survival curve comparing 
subgroups with high and low risk scores. (C) Risk score curve plot exhibiting the distribution of individual risk scores, with the patients 
categorized into low-risk (green) and high-risk (red) groups. (D) Risk score scatter plot, where red dots indicate deceased patients and green 
dots indicate surviving patients. 
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low-risk scores exhibited significantly higher overall 

survival rates (p < 0.05) (Supplementary Figures 4B, 

5B, 6B). Additionally, the HCC samples in the test1, 

test2, and test3 cohorts were also classified into low- 

and high-risk populations using the same bioinformatics 

methodology (Supplementary Figures 4C, 5C, 6C). It is 

important to note that the median risk score from the 

training cohort served as a consistent benchmark for 

separating HCC samples. The risk score distributions 

and survival status in the internal validation cohorts 

(test1 and test2) as well as the external validation cohort 

(test3) showed similar trends to those observed in the 

training cohort (Supplementary Figure 4D, 5D, 6D). 

These results highlight the reliability and accuracy of 

the βAMRGs-RPS. 

 

Constructing a nomogram plot by integrating 

independent prognostic indicators based on the 

TCGA cohort 

 

To further investigate the precision of this signature, a 

comprehensive analysis was undertaken to evaluate its 

potential as an independent prognostic factor for overall 

survival (OS) within the TCGA cohort. Both univariate 

and multivariate analyses were conducted, incorporating 

the risk score and clinical traits as variables. The results 

of the univariable Cox regression analysis revealed 

significant correlations between OS and cancer status, 

stage, and the risk score (p < 0.05) (Figure 9A). 

Subsequently, the multivariate analysis confirmed 

cancer status, stage, and the risk score as independent 

predictors for OS (p < 0.05) (Figure 9B). Based on these 

three variables, a nomogram for OS was constructed 

(Figure 9C). The calibration curves demonstrated a high 

degree of concordance between the actual proportions 

of 1-, 3-, and 5-year OS and the predicted probabilities 

derived from the nomogram (Figure 9D). Furthermore, 

to assess the accuracy and stability of the nomogram, a 

receiver operating characteristic (ROC) curve analysis 

was performed. The AUC values for the 1-, 3-, and 5-

year ROC curves were found to be 0.740, 0.718, and 

0.751, respectively (Figure 9E). The ROC curve further 

substantiates the novelty, reliability, and practicality of 

our findings. 

 

Clinical significance and expression experimental 

verification of the EHHADH gene 

 

The EHHADH gene played a pivotal role in our 

prognostic model, and we have identified it as a potential 

protective protein in HCC. Our findings reveal a 

significant decrease in EHHADH gene expression in 

tumor tissues compared to adjacent non-cancerous tissues 
(Figure 10A–10C). Moreover, patients with a younger 

age and lower BMI index exhibit reduced levels of 

EHHADH gene expression (Figure 10D, 10E). As 

histological and pathological stages progress, the 

expression of the EHHADH gene further diminishes, 

strongly indicating its potential as a protective factor in 

HCC (Figure 10F–10I). Additionally, patients with 

microvascular invasion and those with a poor response to 

sorafenib treatment also exhibit lower levels of 

EHHADH gene expression (Figure 10F–10I). Decreased 

levels of EHHADH gene expression often correlate with 

a poorer prognosis for HCC patients (Figure 10J–10O), 

and targeting the activation of EHHADH may represent a 

viable strategy to prolong patients’ survival. Finally, we 

complemented the immunohistochemical experiments of 

EHHADH with a tissue microarray of liver cancer 

(Figure 11). The results illustrated a clear trend of 

downregulation in the protein levels of EHHADH in the 

majority of liver cancer samples. 

 

DISCUSSION 
 

Beta-alanine, a non-essential amino acid, is endo-

genously synthesized through the degradation of 

carnosine, anserine, acrolein, and dihydropyrimidine. It 

constitutes a vital component of carnosine and is widely 

recognized as a key constituent in various sports 

supplements. Within the human body, carnosine, 

composed of beta-alanine and histidine, assumes the 

role of a natural antioxidant primarily in skeletal 

muscles [10]. We posit that the antioxidant properties of 

carnosine may not only enhance athletic performance 

but also contribute to anti-aging processes and fortify 

the immune system response by counteracting free 

radicals and mitigating oxidative stress. The inhibitory 

effect of beta-alanine on cancer cell proliferation and 

growth is attributed to the formation of L-carnosine [12, 

25]. Previous investigations have documented that the 

synthesis of carnosine from beta-alanine and histidine 

effectively impedes cancer cell proliferation [25]. 

Furthermore, research has demonstrated the inhibitory 

impact of carnosine on human cervical tumor cells [26, 

27]. Muthuraman Pandurangan1 proposes that beta-

alanine could potentially serve as an antineoplastic 

agent, exhibiting diverse anticancer effects in renal and 

cervical tumor cells [28]. Additionally, earlier studies 

have established that beta-alanine-mediated inhibition 

of PTHR1 reduces the proliferation, invasion, 

migration, and tumorigenesis of osteosarcoma cells 

[29]. Nonetheless, investigations on the role of beta-

alanine in tumor biology remain in the preliminary 

stage, with limited scientific literature available. The 

precise mechanisms and efficacy of beta-alanine in 

tumor treatment, particularly in HCC, as well as its 

contribution to the initiation and progression of HCC, 

have yet to be conclusively determined. Consequently, a 

promising and innovative approach for prognostic 

evaluation and personalized therapy in HCC involves 

the stratification of HCC risk based on beta-alanine. 

7086



www.aging-us.com 15 AGING 

Firstly, we conducted a comprehensive pan-cancer 

analysis of the 22 βAMRGs using bioinformatics-

related methods, marking the first exploration of their 

involvement in various human tumors. Specifically, 

scRNA analysis revealed that beta-alanine metabolism 

was mainly activated in malignant hepatocytes. 

Furthermore, we examined mutation profiles, expression 

levels, prognostic implications, and methylation patterns 

of βAMRGs. Our results demonstrated that upregulation 

of βAMRGs can effectively impede cancer progression, 

corroborating earlier research findings [3, 9, 28, 29]. 

Moreover, our findings indicated that appropriate 

clinical treatment of HCC. However, HADHA, one of 

the βAMRGs, has been previously implicated in the 

upregulation of βAMRGs could potentially enhance 

prognoses in patients with HCC, thereby offering novel

 

 
 

Figure 9. Establishment of nomogram. (A) Univariate analyses were conducted to assess the relationship between risk scores and 
relevant clinical parameters and OS in the TCGA cohort. (B) Multivariate analyses were performed to evaluate the relationship between risk 
scores, relevant clinical parameters, and OS in the TCGA cohort. (C) Development of a signature-based prognostic nomogram was undertaken 
to predict OS in HCC. (D) Calibration curves of the nomogram prediction of 1-year, 3-year, and 5-year OS of patients in TCGA cohort. (E) ROC 
curve of the risk score. The AUC values for the 1-, 3-, and 5-year ROC curves were found to be 0.740, 0.718, and 0.751, respectively. 
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insights and avenues for investigating the mechanistic 

actions of βAMRGs in fundamental research and 

detrimental effects observed in HCC [30]. Furthermore, 

the HADHA has been implicated in fostering ovarian 

cancer progression through the up-regulation of CDK1 

and is identified as a potential risk factor for malignant 

lymphoma [31, 32]. Moreover, the expression level of 

HADHA has been shown to intricately correlate with 

tumor advancement and prognosis in humans, with 

varying effects [31]. The aforementioned studies have 

elucidated that various βAMRGs exert distinct roles in 

human tumors, collectively influencing tumor prognosis 

and clinical outcomes. This phenomenon may stem from 

the inherent heterogeneity and individual variances 

within human tumors. In this thesis, our focus will be on 

elucidating the significant role of βAMRGs in HCC. 

 

We then classified HCC patients into three clusters 

according to their βAMRGs expression. Our findings 

demonstrate the accurate and significant 

categorization of HCC patients into C1, C2, and C3 

groups, each displaying distinct prognostic 

implications. Patients with HCC who belonged to the 

βAMRGs active cluster had a best survival rate 

compared to those belonging to the βAMRGs inactive 

cluster. Similar to the results of pan-cancer analysis, 

we provided further evidence of the significant role 

played by βAMRGs in the occurrence and progression 

of tumors. Thus, our stratification approach  

holds crucial value and significance in terms of 

prognostic evaluation and clinical guidance for 

patients with HCC. 

 

As widely recognized, tumor-related metabolic and 

immune pathways play a crucial role in the prognosis 

and progression of human cancer [33, 34]. In recent 

years, the apoptotic pathway, specifically cell apoptosis, 

has emerged as a significant target for tumor drug 

 

 
 

Figure 10. Association of EHHADH expression with clinical traits. The expression traits of EHHADH in (A) GSE144269, (B) GSE54236, 

(C) TCGA cohorts. Association of EHHADH expression with (D) age, (E) BMI, (F) grade, (G) microvascular invasion, (H) stage, and (I) sorafenib 
response. Prognostic performances of EHHADH in (J–O) multiple HCC cohorts. 
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development. However, due to tumor cells evading 

apoptosis, leading to treatment resistance and recurrence, 

extensive research has focused on alternative forms of 

tumor cell death, including necroptosis, pyroptosis, 

ferroptosis, and autophagy. These regulated cell  

death (RCD) mechanisms have been extensively studied 

and demonstrated to be essential for effective  

cancer treatment [35]. Consequently, in this study, we 

investigated the correlations between the scores of 

βAMRGs and tumor-related metabolic, immune, and ten 

cell death pathways within the C1, C2, and C3 clusters. 

As anticipated, significant differences were observed in 

the aforementioned pathways among the three clusters. 

Tumor-associated metabolic pathways exhibited higher 

activity in C3 compared to C1 and C2, whereas immune-

associated pathways displayed decreased activity in C3 

relative to C1 and C2. Interestingly, contrary to 

conventional belief associating active tumor-associated 

metabolism and inactive immune-associated pathways 

with poor prognosis, our findings revealed that HCC in 

C3 exhibited the most favorable prognosis. These 

contrasting results might be attributed to undiscovered 

 

 
 

Figure 11. Immunohistochemical experiment and statistical analysis of the EHHADH gene based on HCC tissue microarray. 
(A–H) merely represent the rows of liver cancer tissue chips, without any special significance that needs to be reflected in the paper. 
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pathways or potential regulation of the tumor 

microenvironment (TME) and immune checkpoint 

expression by βAMRGs, among other unknown 

mechanisms. Furthermore, we observed that βAMRGs 

were associated with nine cell death pathways, with 

cuproptosis significantly more active in C3 than in C1 

and C2. High expression of cuproptosis-related genes, 

such as FDX and SLC31A1, has been reported to 

indicate a favorable prognosis in HCC [36]. Therefore, 

the regulation of cell death pathways by βAMRGs may 

have implications for the prognosis and development of 

HCC, providing a foundation and novel perspective for 

investigating the mechanisms underlying the action of 

βAMRGs in HCC. 

 

The TME encompasses the intricate interplay of 

immune cells, tumor cells, stromal cells, and 

extracellular matrix surrounding the tumor. It exerts a 

significant regulatory influence on tumor growth, 

invasion, and metastasis. The infiltration of immune 

cells assumes a crucial role in shaping the tumor 

immune microenvironment, thereby influencing the 

prognosis of HCC and the response to immune 

checkpoints [37, 38]. Consequently, we investigated the 

relationship between immune cell infiltration factors 

and βAMRGs in our study. Our findings underscore the 

indispensable role of βAMRGs in immune cell 

infiltration, suggesting that the βAMRGs-inactive 

subgroup of HCC may exhibit a higher degree of 

malignancy or harbor immunosuppressive cells or 

immune escape and other phenomena. Notably, the 

elevated expression of certain immune checkpoints, 

including CTLA-4 and PDCD1, signifies a poor 

prognosis for HCC [37]. Our results confirm that most 

immune checkpoints (such as CTLA-4 and PDCD1) in 

the C3 subtype (βAMRGs-active) exhibit low 

expression levels, implying an augmented anti-tumor 

immune response. These observations substantiate the 

superior clinical outcomes observed in patients 

belonging to the C3 group, aligning with the 

conclusions drawn from our study. Moreover, 

immunosuppressive cells are known to exert their 

functions through various mechanisms, including 

regulatory T cells (Tregs), tolerogenic dendritic cells, 

and M2 macrophages, thereby suppressing the immune 

system. These cells have been associated with a dismal 

prognosis in HCC [38–40]. On the other hand, cancer-

inhibiting cells such as Type I IFN Response and Type 

II IFN Response showed a positive correlation with 

βAMRGs scores [41]. In conclusion, our findings 

support the hypothesis that βAMRGs scores are 

associated with Tregs, tolerogenic dendritic cells, M2 

macrophages, Type I IFN Response, and Type II IFN 
Response. The abundance of cancer-promoting immune 

cells mentioned above showed a negative correlation 

with βAMRGs scores, whereas cancer-inhibiting 

immune cells displayed a positive correlation. These 

observations may explain the poorer prognosis in the 

C1 and C2 subtypes compared to the C3 subtype in 

HCC. 

 

Taking into account the aforementioned results, it is 

evident that βAMRGs play a significant role in the 

development of HCC. However, due to the molecular 

heterogeneity and complex functions of each βAMRG, 

the classification may not accurately predict the clinical 

outcome of each patient. As a result, we have developed 

a molecular prognostic signature that has the ability to 

accurately predict clinical outcomes in patients with 

HCC. To formulate this prognostic signature, we 

employed LASSO-Cox regression analysis, resulting in 

a set of six βAMRGs (SMS, GAD1, HIBCH, GAD2, 

CNDP1, and EHHADH). Previous studies have already 

reported on the expression levels and functions of these 

six hub genes in human tumors and HCC. Specifically, 

SMS (spermine synthase) has been identified as up-

regulated in HCC, serving as a potential biomarker for 

poor prognosis in HCC patients. Additionally, the 

involvement of SMS in the tumor immune micro-

environment suggests its potential as a target for HCC 

immunotherapy [42]. GAD1 (glutamate decarboxylase 

1), on the other hand, performs the catalysis of the 

inhibitory neurotransmitter gamma-aminobutyric acid 

synthesis, utilizing pyridoxal 5’-phosphate as a cofactor. 

Studies have reported that GAD1 upregulation alters 

local glutamate metabolism in the brain metastasis 

microenvironment, promoting metabolic adaptation and 

facilitating brain metastasis growth. However, research 

on the function and mechanisms of GAD1 in HCC 

remains scarce, necessitating further investigation [43]. 

While there is a lack of research on the molecular 

characteristics of HIBCH (3-hydroxyisobutyryl-CoA 

hydrolase) in HCC, high expression of HIBCH has been 

linked to poor survival in colorectal cancer patients, as 

well as increased cell growth, resistance to apoptosis, 

and reduced autophagy in colorectal cancer cells. 

Targeted reprogramming of HIBCH is employed in the 

treatment of colorectal cancer valine metabolism [44]. 

Only one study has reported that CNDP1 may serve as a 

potential biomarker for diagnosing and evaluating the 

prognosis of HCC, exhibiting some complementarity 

with serum AFP [45]. Furthermore, EHHADH is 

associated with improved survival outcomes through the 

activation of immune checkpoints and exhibits 

significant downregulation in HCC tissues [46]. 

However, the role of GAD2 (glutamate decarboxylase 

2) in HCC has not been explored. In summary, these 6 

βAMRGs utilized in the establishment of the βAMRGs-

RPS hold considerable significance in HCC. 
Additionally, our study lays the foundation for further 

investigations and offers new avenues for exploring the 

functions of these 6 βAMRGs. 
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Finally, the construction of a cancer prognosis 

nomogram carries significant value and importance  

in the field of bioinformatics analysis. Such a 

nomogram serves as an essential tool that provides 

predictive information concerning the prognosis of 

patients with HCC, thus aiding in the guidance of 

treatment decisions. Accordingly, we constructed a 

nomogram plot by integrating the cancer status,  

stage, and the risk score, based on data from the 

TCGA cohort. The ROC curve demonstrates that  

the nomogram can function independently as a 

prognostic marker for HCC, offering guidance  

for clinical decision-making and providing robust 

support for selecting appropriate treatment options for 

patients. 

 

The study possesses several limitations that merit 

acknowledgement. Firstly, the precise mechanism 

through which the identified βAMRGs in our 

prognostic signature modulate the processes involved 

in HCC remains unclear. Therefore, it is imperative to 

conduct well-designed experiments to further explore 

and elucidate their biological function. Secondly, the 

development and validation of our model relied solely 

on retrospective data acquired from public databases. 

This reliance underscores the necessity for additional 

prospective studies to confirm the clinical utility of our 

findings. Finally, a comprehensive investigation into 

the biological function and expression levels of 

βAMRGs necessitates further exploration through 

meticulously designed experiments. Notwithstanding 

these limitations, it is essential to acknowledge the 

advantages and clinical significance of our findings. 

Our study sheds light on the critical role of βAMRGs 

in HCC and offers valuable insights for both basic 

research and clinical treatment pertaining to βAMRGs 

within the context of HCC. The nomogram model 

contributes to the understanding and management of 

HCC. However, it is imperative to address the 

aforementioned limitations through further studies and 

investigations in order to advance our knowledge in 

this field. 

 

CONCLUSIONS 
 

In conclusion, this study thoroughly examined the 

molecular properties of βAMRGs and their prognostic 

potential in HCC. A prognostic signature was developed 

using six βAMRGs. By incorporating the risk scores, 

cancer status, and stage, we constructed a nomogram 

capable of predicting patients’ OS. Moreover, these 

findings suggest that the identified βAMRGs may serve 

as promising therapeutic targets in HCC. Yet, to unveil 

the underlying mechanisms by which these βAMRGs 

contribute to HCC progression, further experimental 

studies are essential. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. Single-cell data processing steps. (A) By controlling the sequencing depth, number of genes, mitochondrial 
content and ribosome content, the unqualified cells are filtered out; (B) Correlation between above indicators; (C) Identification of highly 
variable genes; Batch correction and dimensionality reduction using Harmony before (D) and after (E) analysis. 
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Supplementary Figure 2. The results of CopyKat algorithms. 
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Supplementary Figure 3. Screening of the hub genes of βAMRGs-RPS. (A) LASSO coefficient profiles of βAMRGs mRNA in HCC.  

(B) Cross-validation results of the model construction. A total of six genes were selected using LASSO Cox regression analysis. (C) Analysis of 
multivariate Cox regression of βAMRGs mRNA. 
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Supplementary Figure 4. Internal validation of the robust βAMRGs-RPS in the test1 cohort. (A) Heatmap illustrating the 
expression levels of six genes between subgroups with high and low risk scores. (B) Prognostic prediction depicted by the Kaplan-Meier 
survival curve comparing subgroups with high and low risk scores. (C) Risk score curve plot exhibiting the distribution of individual risk scores, 
with the patients categorized into low-risk (green) and high-risk (red) groups. (D) Risk score scatter plot, where red dots indicate deceased 
patients and green dots indicate surviving patients.  
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Supplementary Figure 5. Internal validation of the robust βAMRGs-RPS in the test2 cohort. (A) Heatmap illustrating the 
expression levels of six genes between subgroups with high and low risk scores. (B) Prognostic prediction depicted by the Kaplan-Meier 
survival curve comparing subgroups with high and low risk scores. (C) Risk score curve plot exhibiting the distribution of individual risk scores, 
with the patients categorized into low-risk (green) and high-risk (red) groups. (D) Risk score scatter plot, where red dots indicate deceased 
patients and green dots indicate surviving patients.  
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Supplementary Figure 6. External validation of the robust βAMRGs-RPS in the test3 cohort. (A) Heatmap illustrating the 
expression levels of six genes between subgroups with high and low risk scores. (B) Prognostic prediction depicted by the Kaplan-Meier 
survival curve comparing subgroups with high and low risk scores. (C) Risk score curve plot exhibiting the distribution of individual risk scores, 
with the patients categorized into low-risk (green) and high-risk (red) groups. (D) Risk score scatter plot, where red dots indicate deceased 
patients and green dots indicate surviving patients.  
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