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ABSTRACT 
 

Background: Stomach cancer is a leading cause of cancer-related deaths globally due to its high grade and poor 
response to treatment. Understanding the molecular network driving the rapid progression of stomach cancer 
is crucial for improving patient outcomes. 
Methods: This study aimed to investigate the role of unfolded protein response (UPR) related genes in stomach 
cancer and their potential as prognostic biomarkers. RNA expression data and clinical follow-up information 
were obtained from the TCGA and GEO databases. An unsupervised clustering algorithm was used to identify 
UPR genomic subtypes in stomach cancer. Functional enrichment analysis, immune landscape analysis, and 
chemotherapy benefit prediction were conducted for each subtype. A prognostic model based on UPR-related 
genes was developed and validated using LASSO-Cox regression, and a multivariate nomogram was created. 
Key gene expression analyses in pan-cancer and in vitro experiments were performed to further investigate the 
role of the identified genes in cancer progression. 
Results: A total of 375 stomach cancer patients were included in this study. Analysis of 113 UPR-related genes 
revealed their close functional correlation and significant enrichment in protein modification, transport, and 
RNA degradation pathways. Unsupervised clustering identified two molecular subtypes with significant 
differences in prognosis and gene expression profiles. Immune landscape analysis showed that UPR may 
influence the composition of the tumor immune microenvironment. Chemotherapy sensitivity analysis 
indicated that patients in the C2 molecular subtype were more responsive to chemotherapy compared to those 
in the C1 molecular subtype. A prognostic signature consisting of seven UPR-related genes was constructed and 
validated, and an independent prognostic nomogram was developed. The gene IGFBP1, which had the highest 
weight coefficient in the prognostic signature, was found to promote the malignant phenotype of stomach 
cancer cells, suggesting its potential as a therapeutic target. 
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INTRODUCTION 
 

Stomach cancer poses a significant health burden,  

with low survival rates, especially among patients  

with metastatic disease [1]. The efficacy of current 

treatment options, including surgery, chemotherapy, 

and targeted therapies, is hindered by the intricate 

nature of cancer and the dynamic immune landscape 

[2, 3]. Enhancing patient prognosis requires the 

development of innovative prognostic models and 

exploration of new therapeutic approaches to aid 

clinical decision-making and improve outcomes. 

 

The unfolded protein response (UPR) is a cellular 

stress response activated by unfolded or misfolded 

proteins accumulated in the endoplasmic reticulum 

(ER) that overwhelm ER’s coping ability [4, 5].  

The unfolded protein response (UPR) is known to 

induce cell cycle arrest, activate transcription of UPR-

related stress genes, inhibit protein translation, and 

facilitate the degradation of misfolded proteins through 

the activation of specific kinases. In cases where 

unresolved endoplasmic reticulum (ER) stress persists, 

the UPR may shift towards promoting apoptosis [6–8]. 

As the UPR maintains ER homeostasis and regulates 

autophagy, glucose metabolism, redox balance and  

so on, the impact of UPR on malignant tumor is 

complicated. Accumulating studies indicated the 

prognostic value of UPR [9, 10]. In X-box binding 

protein 1 (XBP1)-luciferase transgenic mice, variations 

in UPR reflected different metabolic and hypoxic 

microenvironment and predicted tumor growth [11].  

In cutaneous melanoma, hepatocellular carcinoma, 

bladder cancer, breast cancer and glioma, UPR related 

signature has been constructed to predict survival  

or therapeutic effect [12–16]. As tumor cells often 

grow under stressful conditions, UPR activation 

affects cell fate decisions and is reasonably believed to 

be a prognostic marker. 

 

In this study, UPR-related gene expression was utilized 

to stratify patients with stomach cancer into two 

molecular subtypes, which demonstrated contrasting 

survival rates, immune characteristics, chemotherapy 

responses, and stemness scores. A prognostic signature 

based on UPR-associated genes was developed to 

predict patient outcomes, and a nomogram was created 

to assess the risk level. These findings underscore the 

potential of UPR-related genes in identifying high-risk 

patients, facilitating personalized treatment approaches, 

and pinpoint IGFBP1 as a promising target for 

therapeutic intervention. 

 

MATERIALS AND METHODS 
 

The acquisition of clinical and gene expression data 

 

The latest RNA expression data and clinical  

follow-up information were downloaded from The 

Cancer Genome Atlas (TCGA) and Gene Expression 

Omnibus (GEO) database. To eliminate batch effects 

between datasets, data correction was performed 

through the combat algorithm. Then, the HALLMARK 

UNFOLDED PROTEIN RESPONSE related genes 

were acquired from the Molecular Signatures Database 

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). 

These genes have been found to have an important role 

during the unfolded protein response process in 

previous studies. 

 

Genotyping of unfolded protein response in stomach 

cancer 

 

Clustering unsupervised analysis was used to identify 

genotyping from the expression of UPR-related genes. 

Then, patients in each genotyping were performed to 

survival analysis. The number of clusters and stability 

of clusters were determined by consensus clustering 

algorithm. Using R package “ConsensuClusterPlus”, 

100 iterations were performed to ensure classification 

stability with the above steps. 

 

Analysis of functional enrichment 

 

The UPR genomic subtype of stomach cancer was 

identified through unsupervised clustering analysis. 

Differential gene analysis was subsequently conducted 

using the “limma” package, comparing cluster 1 

molecular subtype and cluster 2 molecular subtype 

with the criteria of log2 fold change (FC) > 1 or  

< -1, and a false discovery rate (FDR) p-value below 

0.05. Concurrently, Gene Ontology (GO) functional 

analysis and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway enrichment analysis were 

performed based on the differentially expressed genes 

(DEGs). The “clusterProfiler” R package (v3.0.0) was 

employed for KEGG pathway analysis and Gene 

Ontology (GO) analysis. 

Conclusions: The study developed a UPR-related gene classifier and risk signature for predicting survival in 
stomach cancer, identifying IGFBP1 as a key factor promoting the disease’s malignancy and a potential 
therapeutic target. IGFBP1’s role in enhancing cancer cell adaptation to endoplasmic reticulum stress suggests 
its importance in stomach cancer prognosis and treatment. 

7819

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp


www.aging-us.com 3 AGING 

The immune landscape analysis 

 

The Extended Polydimensional Immunome 

Characterization (EPIC), quanTIseq (a method for 

quantifying tumor immune contexture), xCell, and 

MCPcount were employed to evaluate cellular 

components and immune responses between clusters 

based on UPR-related genes. The purpose of this 

comparison was to thoroughly assess the stomach 

cancer immune microenvironment, as a comprehensive 

understanding of the immune landscape can provide 

valuable insights into tumor progression, prognosis, and 

response to therapy. By examining the immune cell 

composition and interactions, researchers can identify 

potential therapeutic targets and develop more effective 

strategies to improve patient outcomes. 

 

Chemotherapy benefit predicted by clusters 

 

In this study, we predicted the responsiveness of each 

sample to chemotherapeutic drugs, a process that 

utilized the largest publicly available drug genome 

database, Genomics of Drug Sensitivity in Cancer 

(GDSC, http://www.cancerrxgene.org/). To facilitate 

the prediction process, we used the R language package 

pRRophetic. This toolkit enables researchers to predict 

drug responsiveness in tumor samples based on the 

genomic features of drugs by integrating a large amount 

of drug sensitivity data and related gene expression 

information from the GDSC database. 

 

During the prediction process, we first normalized the 

gene expression data in the GDSC database to eliminate 

the differences between the data under different 

experimental conditions and ensure the accuracy of the 

prediction. Subsequently, pRRophetic estimated the half-

maximal inhibitory concentration (IC50) of each sample 

by a ridge regression (Ridge Regression) algorithm. 

Ridge regression is an improved linear regression method 

that deals with the problem of multicollinearity among 

variables by introducing a regularization term to enhance 

the predictive stability and accuracy of the model. 

 

Developing and validating prognostic models of 

UPR-related signature 

 

The number of UPR-related genes was reduced using 

LASSO-Cox regression. Individual normalized gene 

expression levels, weighted by their corresponding 

multiple-Cox coefficients, were utilized to develop a 

UPR-related score formula. The external validation 

cohort was then employed to verify the stability of this 

prognostic formula. The log-rank test was used to assess 
survival differences between two groups. The AUC of 

ROC was calculated to evaluate the prediction model 

performance. The Area Under the Curve (AUC) of the 

Receiver Operating Characteristic (ROC) curve was 

computed to assess the efficacy of the prediction model 

in utilizing risk scores for predicting breast cancer 

survival rates over 1-year, 3-year, and 5-year survival 

[17]. The ROC analysis, conducted with the ‘timeROC’ 

package in R, was specifically employed for constructing 

the ROC curves to evaluate the predictive performance of 

the model. 

 

Develop a multivariate nomogram 

 

Univariate Cox regression analysis was performed to 

screen the overall survival (OS) associated UPR-related 

genes involved in score formula. Next, the multivariate 

Cox regression analysis of the same genes with clinical 

characteristics identified independent factors associated 

with stomach cancer prognosis. Following a multivariate 

Cox analysis, genes or clinical characteristics with p-

values less than 0.05 were considered as independent 

prognostic factors. Using the nomogram function 

provided in the ‘rms’ library, a nomogram was created in 

R software. 

 

Key gene expression analyses in pan-cancer 

 

Pan-cancer analyses were performed on the gene with the 

highest correlation coefficient which was considered as 

the key gene. The differential expression of this gene  

in other pan-cancer tissues and the adjacent normal 

tissue, and the association of expression of this gene with 

ESTIMATE score and Stemness genes in tumors were 

analyzed for investigation of this gene’s role in cancer. 

 

Cells culture 

 

The immortalized gastric epithelial cell line (GES-1) and 

three GC cell lines (MKN45, AGS and HGC-27) were 

obtained from Sun Yat-sen Memorial Hospital, Sun Yat-

sen University. GES-1, MKN45 and HGC-27 cells were 

cultured in RPMI-1640 medium with 10% fetal bovine 

serum (FBS) and 1% penicillin/streptomycin, while AGS 

cells were cultured in F12K medium with 10% FBS and 

1% penicillin/streptomycin. The culture atmosphere is 

37° C, 90% humidity, and 5% CO2. 

 

Cell transfection 

 

Before transfection, two stomach cancer cell lines, 

MKN45 and AGS, were transferred into 6-well plates.  

A combination of small interfering RNA (siRNA) 

(Ribobio, Guangzhou, China) mixed with Lipofectamine 

2000 transfection reagent (Invitrogen, CA, USA) was 

used to transfect the tumor cells after they had reached a 
sufficient confluency. In the experiment, siRNAs that are 

validated were transfected into the cells, while nontarget 

control siRNAs were transfected into the control cells. 
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The complete medium was added to the transfected cells 

after 6h of incubation with the siRNAs, and the cells 

were cultured for 48 h before being used for further 

experiments. For the construction of shRNA expression 

vector targeting IGFBP1, a small hairpin RNA (shRNA) 

containing specific sequences targeting the human 

IGFBP1 (sequence: 5’-GATCTGGTACTGCTCCTGCT 

GACTGCTCGAGCAGTCAGCAGGAGCAGTACCAT

TTTTG-3’) was cloned into the pSilencer 3.1-H1  

puro (Thermo Fisher Scientific, MA, USA), followed  

by transfection into E. coli DH5α for propagation. 

Transfection of this vector into GC cell lines MKN45 

established the knockdown group (shIGFBP1), with cells 

harboring control sequences forming the mock group 

(shNC). Then, for overexpression of IGFBP1, the open 

reading frame (ORF) of human IGFBP1 was cloned into 

a pcDNA3.1 vector, which was followed by transfection 

with Lipofectamine 3000 (Invitrogen, MA, USA). 

 

RNA isolation and RT-qPCR analysis 

 

To extract total RNA, TRIzol reagent (Vazyme Biotech 

Co., Ltd., Nanjing, China) was utilized. According to the 

manufacturer’s instructions, 1 µg cDNA was generated 

using the HiScript III first Strand cDNA Synthesis  

Kit (Vazyme Biotech Co., Ltd., Nanjing, China). Then,  

we used the Quant Studio TMDx from Applied 

Biosystems (MA, USA) as well as the ChamQ Universal 

SYBR qPCR Master Mix kit from Vazyme Biotech 

(Vazyme Biotech Co., Ltd., Nanjing, China). Activation 

of the polymerase was performed at 95° C for 30 

seconds, followed by 35 cycles at 95° C for 5 seconds 

and 60° C for 30 seconds. The 2–ΔΔCt method was used  

to determine the relative expression of mRNA. Gene 

expression levels were normalized using β-actin. 

 

Cell proliferation assay 

 

96-well culture plates with 1.0 × 103 cells per well were 

seeded with cells and cultured for 3 days. CCK8 reagent 

(Dojindo Laboratories, Kumamoto, Japan) was added  

to each well every 24 hours and incubated for 1 hour at 

37° C to determine the viable cells. The microplate reader 

(Molecular Devices, CA, USA) was used to measure the 

absorbance at 450 nm. In addition, approximately 700 

cancer cells were plated into six-well plates, and the cells 

were allowed to grow for approximately two weeks. The 

mixture of 4% paraformaldehyde and 0.5% crystal violet 

staining was performed for 15 minutes after two washes 

with phosphate-buffered saline (PBS). Cell clones were 

calculated for different groups. 

 

Flow cytometry assay 

 

The Annexin V-FITC/PI Cell Apoptosis Detection Kit 

(Beyotime Biotechnology, Shanghai, China) was used 

for flow cytometry. (FITC)-Annexin V and propidium 

iodide (PI) were used to stain the collected cells. BD 

FACSCalibur (BD, CA, USA) was used to measure and 

analyze the apoptosis rate of cells. 

 

Transwell migration and invasion assay 

 

To assess cell invasion and migration, we utilized  

a Boyden chamber with Transwell membrane filter 

inserts (Corning, NY, USA). For the invasion assays 

[18, 19], Corning™ BioCoat™ Matrigel™ Invasion 

Chambers with Corning™ Matrigel Matrix (Thermo 

Fisher Scientific, MA, USA) were employed. AGS cells 

were suspended in 100 μL of serum-free F12K medium 

and added to the upper chamber, while MKN45 cells 

were treated similarly using serum-free RPMI-1640 

medium. For both cell lines, 5×10^4 cells were used. 

The lower chambers were filled with 600 μL of medium 

containing 10% fetal bovine serum. After 24 hours for 

migration assays and 48 hours for invasion assays, non-

migrating/non-invading cells were gently removed with 

a cotton swab. Cells that migrated or invaded through 

the membrane were fixed with 4% paraformaldehyde 

for 10 minutes and stained with 0.5% crystal violet  

for another 10 minutes. The membranes were then 

photographed under an inverted microscope at 200x 

magnification after sealing with neutral gum. Cell 

counting was performed using Image Pro Plus Version 

6 software. In each experiment, three wells were used 

per group, and within each well, five random fields of 

view were selected for calculating the average number 

of cells. 

 

Statistical analysis 

 

Comparing gene expression between different clusters 

was done using Wilcoxon rank-sum test. Kaplan-Meier 

analysis was used to compare survival rates among 

groups using the log-rank test. Cox regression analyses 

of univariate and multivariate models were conducted to 

identify independent predictor. A statistically significant 

P-value was less than 0.05. All statistical analyses were 

performed with R software (Version 4.0.3). 

 

Availability of data and materials 

 

The data of this study will be made available by the 

corresponding authors. 

 

RESULTS 
 

Clinical characteristics of stomach cancer patients 

 
A total of 375 stomach cancer patients from the TCGA 

cohort, 60 patients from the GSE13861 cohort, and 40 

patients from the GSE28541 cohort were included in 
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our study. The clinical characteristics of these patients 

are detailed in Supplementary Table 1. Additionally,  

we gathered 113 unfolded protein response genes. The 

study’s flow chart is illustrated in Figure 1. 

 

Expression characteristics of UPR genes in stomach 

cancer 

 

The expression and functional connections of 113 UPR 

related genes were displayed with protein-protein 

interaction (PPI) network, and according to the 

correlation expression network, there is a positive 

correlation between the expression of UPR-related 

genes, demonstrating the close correlation between  

their functions (Figure 2A, 2B).The distribution of 

mutations of 133 UPR related genes in stomach cancer 

were exhibited in waterfall plot, it is estimated that 

EIF4G1, DDX10, and EIF2AK3, which have the 

highest mutation rate, have a mutation rate of 4%,  

and the mutation type is predominantly missense 

mutations (Figure 2C). Among all types of mutations, 

the missense mutation was the one with the highest 

frequency. Meanwhile, C>T substitution obtained the 

highest proportion in single nucleotide polymorphism 

(SNP) in stomach cancer patients. Copy number 

variations (CNV) analysis of 113 UPR related genes 

were also performed (Figure 2D). Among them, 

Vascular endothelial growth factor A (VEGFA) had  

the highest CNV gain mutation, whereas C-C motif 

chemokine receptor 4-NOT transcription complex 

subunit 4 (CNOT4) presented the most obvious deletion 

mutation. Gene Ontology (GO) and KEGG pathways 

analysis revealed that 113 UPR related genes were 

significantly enriched in protein modification and 

transport and RNA degradation (Figure 2E, 2F). 

 

Identification of molecular subtypes of UPR genes in 

stomach cancer 

 

In an unsupervised Cophenetic, Silhouette Indicator 

analysis, two subtypes of clusters were determined to be 

the optimal number based on UPR-related genes in 

TCGA cohort (Figure 3A–3C). 

 

Based on the principal component analysis (PCA), it 

was concluded that the distribution of patients clustered 

according to UPR-related genes was significantly 

different between the two types of patients (Figure  

3D). Then, we showed that the expression of UPR-

related genes in the two clusters were different by the 

heatmap (Figure 3E). Furthermore, we also analyzed  

the prognostic relationship between the two molecular 

subtypes, with the results showing that Cluster 1 (C1) 

group had a less favorable over-all survival (OS) 

probability (log rank test P = 0.017), disease-free 

survival probability (DFS) (log rank test P = 0.018), 

progression-free survival probability (PFS) (log rank 

test P = 0.0063) and disease specific survival (DSS) 

 

 
 

Figure 1. Flow chart of this study design. 
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probability (log rank test P = 0.028) probability than the 

Cluster 2 (C2) group (Figure 3F–3I). In light of the above 

results, it is evident that, by clustering patients based on 

UPR signatures, we are able to correctly classify stomach 

cancer patients into molecular types, and there is indeed a 

difference in prognosis between them. 

 

Differentially analysis of GO and KEGG pathways 

 

The DEGs between C1 and C2 molecular subtypes can 

be calculated via the “limma” package, in which 84 

genes in C1 that are up-regulated and 57 genes in C1 

molecular subtype that are down-regulated. Then, GO 

and KEGG analysis results showed that 84 up-regulated 

genes in the C1 molecular subtype were significantly 

enriched in some cancer progressed biological processes 

and pathways, such as TGF-β signaling pathway, NF-

κB signaling pathway (Figure 4A, 4B), in contrast, 57 

down-regulated genes are enriched in the ferroptosis, 

adenosine 5’-monophosphate (AMP)-activated protein 

kinase (AMPK) signaling pathway and so on (Figure 

4C, 4D). 

 

Differentially analysis of immune landscape 

 

We utilized multiple algorithms for comprehensive 

immune cell abundance assessment in order to  

clarify differences between the molecular subtypes of  

immune cell infiltration, including CIBERSORT, EPIC, 

MCPcounter, and xCell. Types of tumor-infiltrating 

immune cells were profiled by the heatmap (Figure  

5). The proportion of B cells, CD8+ T cells, and 

macrophages were significantly higher in C1 molecular 

subtype with lower UPR-related genes expression than 

 

 
 

Figure 2. The analysis of UPR-related genes. (A) PPI network for the UPR-related genes. (B) Correlation network for the UPR-related 
genes. (C) Mutation analysis of UPR-related genes. (D) The lollipop diagram shows the CNV profile of the UPR-related genes. (E) GO and  
(F) KEGG pathways of the UPR-related genes. 
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C2 molecular subtype. This result suggested that the 

unfolded protein response may affect the composition 

of the tumor immune microenvironment. 

 

Comparative analysis of drug sensitivity 

 

For the purpose of understanding the sensitivity  

of patients with C1 and C2 molecular subtypes  

to chemotherapy, we examined the sensitivity of 

chemotherapy drugs to two different groups of patients. 

The IC50 for 5-fluorouracil, doxorubicin, docetaxel,  

and camptothecin was lower in patients with C2 

molecular subtype, indicating an increased sensitivity  

to chemotherapy in these patients. (Figure 6A–6D). In 

conclusion, the patients in C2 molecular subtype are 

indeed more sensitive to chemotherapy than those in C1 

molecular subtype. Previously, survival analyses have 

shown that patients in C2 molecular subtype have  

a better prognosis than patients in C1 molecular sub-

type, the UPR-related classifier distinguished different 

prognosis of patients with stomach cancer via the 

potential influence on the sensitivity of chemotherapy 

drugs. Consequently, UPR-related gene function could 

be correlated with treatment sensitivity in stomach 

cancer patients, and UPR-signature related typing could 

be used as a reference index for treatment selection in 

stomach cancer patients. 

 

Prognostic signature construction and validation 

 

In order to simplify the prognostic model, LASSO- 

Cox regression analysis was performed on UPR-related 

genes to establish UPR-related risk signature. Finally,  

7 UPR-related genes were selected for prognostic model 

 

 
 

Figure 3. Two molecular subtypes were identified by UPR-related gene expression. (A) Consensus clustering cumulative 

distribution function (CDF) curve for k = 2–6. (B) Relative change in area under CDF curve for k = 2–6. (C) Consensus map, (D) PCA and  
(E) heatmap for UPR related gene classifier. The difference of (F) overall survival, (G) disease-free survival, (H) progression-free survival and (I) 
disease-specific survival between C1 and C2 group patients. 
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construction (Figure 7A, 7B). The risk score was 

calculated as follows: URPs = 0.2082 × EIF4E + 0.0556 

× EXOSC1 - 0.1725 × IARS1 - 0.4039 × IGFBP1 + 

0.0814 × SPCS1 + 0.1412 × TSPYL2 + 0.0951 × 

TUBB2A. Patients were divided into two risk groups 

based on their median scores. Kaplan-Meier curves 

consistently showed the patients at high risk had a 

worse OS than those at low risk (log-rank P<0.0001) 

(Figure 7C). In the analysis of survival prediction  

using the prognostic model, time-dependent receiver 

operating characteristic (ROC) curves were produced, 

with 1-, 3-, 5-year area under curves (AUCs) reaching 

0.709, 0.726, 0.781 (Figure 7D). Based on the optimal 

cutoff value, patients in the GSE37023 cohort were also 

divided into high-risk and low-risk groups to assess the 

stability of the UPR-related signature. The high-risk 

group likewise demonstrated poorer overall survival 

(OS) compared to the low-risk group (log-rank 

P<0.0001) (Figure 7E). Likewise, the AUC of the 

predictive signature was 0.782 at 1 year, 0.730 at  

3 years, and 0.709 at 5 years (Figure 7F). 

 

In addition, the practical utility of the UPR signature 

when validated using other survival data from TCGA 

cohort. We observed that the high-risk group had lower 

disease specific survival compared to the low-risk group 

(log-rank p < 0.0001) (Figure 8A), with AUC values of 

0.675, 0.747, and 0.767 at 1, 3, and 5 years, respectively 

(Figure 8B). Similarly, the high-risk group exhibited 

poorer disease-free survival than the low-risk group 

(log-rank p < 0.0001) (Figure 8C), with AUC values of 

0.801, 0.743, and 0.784 at 1, 3, and 5 years (Figure 8D). 

Lastly, the high-risk group displayed lower progression 

free survival compared to the low-risk group (log-rank 

 

 
 

Figure 4. Analysis of differentially expressed genes between two subtypes. Bubble plot of (A) GO and (B) KEGG pathway 

enrichment analysis of up-regulated genes in C1 group patients. Bubble plot of (C) GO and (D) KEGG pathway enrichment analysis of down-
regulated genes in C1 group patients. Each graph showed the top twenty enriched pathways. 
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Figure 5. Analysis of immune landscape between two subtypes distinguished by UPR-related gene expression. 
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p < 0.0001) (Figure 8E), with AUC values of  

0.695, 0.660, and 0.692 at 1, 3, and 5 years (Figure  

8F). The clinical implications of these findings are 

significant. The TCGA stomach cancer prognostic  

UPR signature can be utilized as a valuable tool for  

risk stratification, enabling healthcare professionals  

to identify high-risk patients who may require closer 

monitoring, more aggressive treatment, or personalized 

therapeutic strategies. This risk assessment can lead  

to improved clinical decision-making and ultimately 

better patient outcomes. Furthermore, by understanding 

the underlying molecular mechanisms associated with 

different risk levels, researchers can potentially identify 

new therapeutic targets for the development of novel 

treatments for stomach cancer patients. 

 

Differences in immune cell infiltration levels between 

the URPS groups 

 

In order to better investigate the differences in immune 

cell infiltration between high and low-risk groups,  

we employed multiple immune assessment algorithms. 

 

 
 

Figure 6. Analysis of drug sensitivity between two subtypes. The difference of IC50 of (A) 5-fluorouracil, (B) doxorubicin,  

(C) docetaxel, and (D) camptothecin between two subtypes. 
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Figure 9A illustrates the difference in immune cell 

infiltration levels between high-URPs and low-URPs 

groups. The majority of immune cells exhibit higher 

expression levels in the low-URPs group, particularly 

M1 Macrophages (P<0.05), CD8+ T cells (P<0.05), 

CD4+ memory T cells (P<0.001), and CD8+ Tcm 

(P<0.01). Furthermore, the heat map in Figure 9B  

also reveals that the low-URPs group has increased 

immune cell expression. This finding suggests that 

patients in the low-risk group have stronger immune 

activity, which may contribute to a more favorable 

prognosis. 

 

Independent prognostic value of risk models and 

construction of nomogram 

 

First, we analyzed the differences in various clinical 

factors (including age, gender, clinicopathological 

 

 
 

Figure 7. Construction of UPR-related predictive signature for stomach cancer patients. (A, B) LASSO Cox regression of differential 
expressed UPR-related genes in TCGA cohort. (C) The difference of overall survival between high- and low-UPRS patients in TCGA cohort.  
(D) ROC curve for the overall survival prediction in TCGA cohort. (E) The difference of overall survival between high- and low-UPRS patients in 
GSE13861 and GSE28541 cohort. (F) ROC curve for the overall survival prediction in GSE13861 and GSE28541 cohort. 
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Figure 8. The UPR-related predictive signature for stomach cancer patients. (A) Disease-specific survival among different groups 
and (B) the ROC for disease-specific survival prediction. (C) Disease-free survival among different groups and (D) the ROC for disease-free 
survival prediction. (E) Progression-free survival among different groups and (F) the ROC for progression-free survival prediction. 
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grade, clinicopathological stage, T stage, M stage, and 

N stage) between the low-URPs group and the high-

URPs group in the TCGA cohort. We discovered that 

both stage and N stage were statistically different 

between the low-URPs and high-URPs groups (P<0.05) 

(Figure 10A). The composition of stage and N stage  

is illustrated in Figures 10B, 10C. Next, to broaden  

the risk model’s applicability, we performed validation  

for each stage of clinical factors, and the survival curve 

is presented in Figure 11. Furthermore, univariate and 

 

 
 

Figure 9. Analysis of immune cell infiltration. (A) The barplot and (B) heatmap showed the difference in immune cell infiltration 

between patients with high- and low-UPRS. 

7830



www.aging-us.com 14 AGING 

multivariate Cox regression analyses were conducted  

on the TCGA cohort to evaluate the risk model’s 

accuracy and determine if the risk score could serve as 

an independent prognostic factor for patient survival. 

Univariate Cox regression analysis revealed that age, 

stage, N stage and the genes of prognostic model were 

significantly associated with patient prognosis, after 

adjusting for other confounding factors, multivariate 

analysis indicated that age, grade, SPCS1, IGFBP1  

and TSPYL2 were independent prognostic factors 

(Figure 12A, 12B). 

 

Based on the TCGA cohort, we integrated clinical 

factors such as age, stage, N stage, SPCS1, IGFBP1  

and TSPYL2 to construct a nomogram to enhance 

survival prediction for patients with stomach cancer 

(Figure 12C). Calibration plots for 1-, 3-, and 5-year 

overall survival (OS) demonstrated good agreement 

between nomogram predictions and actual observations 

(Figure 12D). Clinically, this research offers valuable 

insights into the prognostic factors of stomach cancer, 

which can help clinicians make more informed 

decisions regarding treatment strategies. By presenting 

the model in the form of a nomogram and calibration 

plots, we provide a more intuitive and user-friendly tool 

that can be easily implemented in clinical practice to 

improve patient outcomes. 

 

Pan-cancer analysis of IGFBP1 

 

We have constructed a prognostic scoring model 

comprising seven genes, with IGFBP1 having the highest 

absolute coefficient value. Consequently, we consider 

IGFBP1 to be the key gene in our model. Furthermore, 

we aim to investigate the expression of this gene in  

other types of tumors and its relationship with the 

immune microenvironment. Then, other pan-cancer 

analysis revealed that the expression of IGFBP1 in tumor 

tissues was significantly higher than that in normal 

tissues in TCGA-GBM, TCGA-LUAD, TCGA-COAD, 

TCGA-STES, TCGA-HMSC, and TCGA-THCA (Figure 

13A). Additionally, IGFBP1 expression was positively 

 

 
 

Figure 10. Differences in clinical variables were analyzed in patients with high- and low-UPRS. (A) Heat maps showed differences 
in clinical variables between patients with high- and low-UPRS. (B) The proportion of patients with high- and low-UPRS in each stage. (C) The 
proportion of patients with high- and low-UPRS in each N stage. 
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correlated with ImmuneScore, StromalScore, and 

ESTIMATEScore in TCGA-KIPAN, TCGA-MESO, and 

TCGA-PCPG (Figure 13B). These findings demonstrate 

the potential role of IGFBP1 as a biomarker for  

tumor progression and the tumor microenvironment. 

Understanding the involvement of IGFBP1 in various 

cancers and its association with immune and stromal 

components may provide valuable insights for the 

development of novel therapeutic strategies, leading  

to improved patient outcomes. 

IGFBP1 promotes the malignant phenotype of 

stomach cancer cells 

 

We used three cell lines GES-1, AGS, MKN45 and  

HGC-27 to verify the expression of genes from UPR-

related prognostic model. The expression of EIF4E, 

EXOSC1, IARS1, IGFBP1, and SPCS1 was found  

to be upregulated in stomach cancer cell lines, while 

TSPYL2 and TUBB2A showed downregulated expression 

(Figure 14A–14G). Supplementary Table 2 contains a 

 

 
 

Figure 11. The UPR-related predictive signature for stomach cancer patients in different clinical subgroups. The KM curve for 

stomach cancer patients with (A) age≤65, (B) age>65, (C) Female, (D) Male, (E) Grade 1, (F) Grade 2, (G) Grade 3, (H) M0 stage, (I) M1 stage, 
(J) N0 stage, (K) N1+N2+N3 stage, (L) Stage I, (M) Stage II, (N) Stage III, (O) Stage IV, (P) T1 stage, (Q) T2 stage, (R) T3 stage, (S) T4 stage. 
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list of all primer sequences. Notably, IGFBP1 

demonstrated significant differences in expression 

among the stomach cancer cell lines. As a result, we 

further investigated the functionality of IGFBP1. 

 

Then, using the stomach cancer cell lines MKN45  

and AGS, we performed loss-of-function experiments 

and silenced expression of IGFBP1 to investigate its 

biological function. The efficiency of two siRNAs 

(siIGFBP1-1 and siIGFBP1-2) knockdown of IGFBP1 

(Figure 15A) were confirmed by RT-qPCR, and  

the sequences of both siRNAs are presented in 

Supplementary Table 3. In vitro, the knockdown of 

IGFBP1 resulted in a decrease of the proliferation  

of MKN45 and AGS cells as measured by the CCK8 

assay (Figure 15B) and clonal formation assay  

(Figure 15C, 15D). The proportion of apoptotic  

cells increased significantly (MKN45, P<0.01; AGS, 

P<0.01) by knockdown of IGFBP1, indicating that 

IGFBP1 significantly decreased the antiapoptotic ability 

of the MKN45 and AGS cells (Figure 15E, 15F).  

The knockdown of IGFBP1 significantly decreased 

migration and invasion of both MKN45 and AGS cells 

in the Transwell migration and invasion assay (MKN45, 

P<0.001; AGS, P<0.001) (Figure 15G–15J). It has been 

demonstrated in vitro experiment that the IGFBP1 

promotes the malignant phenotype of stomach cancer, 

including proliferation, invasion, and migration. In  

view of this, IGFBP1 is expected to become a new 

target for the treatment of stomach cancer. 

 

 
 

Figure 12. Construction of nomogram based on independent predictors. (A) Univariate Cox analysis and (B) multivariate Cox 

analysis were performed to figure out prognostic factor. (C) Nomogram was developed based on the results of multivariate Cox analysis.  
(D) Calibration curve of this nomogram indicated observed nomogram performance. 
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Figure 13. Pan-cancer analysis of IGFBP1. (A) The expression of IGFBP1 was compared between tumor tissue and normal tissue in other 
different types of cancer. (B) Association of IGFBP1 expression and immune score, stromal score or tumor purity was evaluated using 
ESTIMATE analysis. GBM, glioblastoma multiforme; LUAD, lung adenocarcinoma; COAD, colon adenocarcinoma; STES, stomach and 
esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; THCA, thyroid carcinoma; KIPAN, pan-kidney carcinoma; MESO, 
mesothelioma; PCPG, pheochromocytoma and paraganglioma. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Mechanistic insights into the role of IGFBP1 in the 

unfolded protein response of gastric cancer 

 

In gastric cancer cell lines AGS and MKN45, IGFBP1 

was knocked down for three days, followed by 

treatment with 2 µg/ml Tunicamycin to induce ER 

stress, for a duration of 24 hours [20]. We monitored the 

expression of UPR biomarkers (CHOP, GRP78, XBP1). 

Western blot analysis indicated that, upon IGFBP1 

knockdown in AGS and MKN45 cells, there was a 

notable upregulation of CHOP, GRP78, and XBP1 

compared to the NC group, suggesting that cells under 

ER stress require a more robust UPR activation to adapt 

to the ER condition. To validate this observation, we 

overexpressed IGFBP1 in another gastric cancer cell 

line with relatively low IGFBP1 expression, HGC-27, 

and treated with Tunicamycin to induce ER stress.  

It was found that the UPR triggered by ER stress was 

not as intense with IGFBP1 overexpression (Figure 

16A). Furthermore, upon re-expressing IGFBP1 in 

IGFBP1-knockdown MKN45cells, the UPR response to 

ER stress was alleviated after IGFBP1 supplementation 

(Figure 16B). These results confirm that IGFBP1 

facilitates gastric cancer adaptation to ER stress. 

 

Stable IGFBP1-knockdown MKN45cell lines were 

established, and the knockdown efficiency of IGFBP1 

was confirmed via Western blot (Figure 16C). To 

further investigate the impact of IGFBP1 on the 

metastatic capability of gastric cancer, we injected the 

blank control group (shNC) and the stable IGFBP1-

knockdown cell line (shIGFBP1 group) into nude  

mice via tail vein. After four weeks, lung metastasis 

was significantly more pronounced in mice from the 

shIGFBP1 group compared to the shNC group (Figure 

16D, 16E). H&E staining of mouse lung tissue slices 

revealed multiple tumor nodules and dense cancer  

cells. In contrast, the experimental group showed fewer 

nodules and cancer cells (Figure 16F), suggesting that 

IGFBP1 promotes gastric cancer metastasis. 

 

Furthermore, subcutaneous xenografts in nude mice 

using shNC and shIGFBP1 cells, and regular measure-

ments of tumor volume, indicated that tumor growth in 

terms of average volume and weight was significantly 

inhibited in the shIGFBP1 group compared to the 

control group (Figure 16G–16I). IHC images of tumor 

slices showed that the shIGFBP1 group exhibited higher 

expression of CHOP, GRP78, XBP1 (Figure 16J). 

Additionally, Ki-67 and Cleaved Caspase 3 staining 

images revealed that the tumor tissue in the shIGFBP1 

group had the lowest level of Ki-67 proliferation and the 

highest level of apoptosis (Figure 16J). These animal 

experiments demonstrate that IGFBP1 not only enhances 

 

 
 

Figure 14. The expression of genes from UPR-related prognostic model in stomach cancer cell lines. The mRNA expression level 
of (A) SPCS1, (B) TUBB2A, (C) IGFBP1, (D) EIF4E, (E) EXOSC1, (F) IARS1 and (G) TSPYL2 in GES-1, AGS and MKN45 cell lines. ns, not significant. 
*P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 15. Functional validation of IGFBP1 in AGS and MKN45 cell lines. (A) The knockdown efficiency of IGFBP1 was tested by qPCR 

in MKN45 and AGS cell lines. (B) The proliferation efficiency of MKN45 and AGS cell lines with IGFBP1 knockdown by CCK8 assay. (C) The 
proliferation efficiency of MKN45 and AGS cell lines with IGFBP1 knockdown by cell cloning formation. (D) The statistical analysis of (C). (E) 
The apoptosis of MKN45 and AGS cell lines with IGFBP1 knockdown. (F) The statistical analysis of (E). (G) The migration efficiency of MKN45 
and AGS cell lines with IGFBP1 knockdown. (H) The statistical analysis of (G). (I) The invasion efficiency of MKN45 and AGS cell lines with 
IGFBP1 knockdown. (J) The statistical analysis of (I). 
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Figure 16. Validation of the role of IGFBP1 in the unfolded protein response of gastric cancer. (A) MKN45 and AGS cells were 

transfected with siIGFBP1 and overexpressed IGFBP1 in HGC-27 cells. (B) Protein expression changes of CHOP, GRP78, XBP1 after IGFBP1 
supplementation in MKN45 cells. (C) Verify knock down efficiency of shIGFBP1. (D) Anatomical images of lung metastases 4 weeks after 
caudal vein inoculation with gastric cancer cells. Lung metastasis was inhibited in cancer cells transfected with shIGFBP1 compared to shNC. 
(E) Statistical histogram of pulmonary metastatic nodules. (F) H&E staining in the pathology of lung metastases. (G) Images of xenografts 
dissected from nude mice 5 weeks after subcutaneous injection. (H) Graph showing the average tumor weight of the resected tumor.  
(I) Tumor volume curve showing tumor growth. (J) Representative IHC images of the shIGFBP1 and shNC were differentially expressed CHOP, 
GRP78, XBP1, Ki67 and Cleaved Caspase 3. *P < 0.05, **P < 0.01. 
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ER adaptability but also promotes gastric cancer 

progression, thereby nominating IGFBP1 as a potential 

therapeutic target for gastric cancer. 

 

DISCUSSION 
 

Stomach cancer is characterized by a high incidence and 

mortality rate, posing a significant health challenge 

worldwide. Despite advances in medical research, 

stomach cancer prognosis remains difficult to predict. 

The development of reliable prognostic indicators  

for stomach cancer is crucial for improving patient 

outcomes and guiding treatment strategies. Research 

suggests that the unfolded protein response (UPR) may 

be one of the novel mechanisms involved in regulating 

stomach cancer progression [21]. 

 

Herein, in this study, we developed a classifier based  

on UPR-related genes, which effectively stratified 

stomach cancer patients into two distinct molecular 

subtypes. Further analysis revealed that these subtypes 

exhibited significant differences in prognosis, immune 

microenvironment infiltration, and chemosensitivity. 

Subsequently, we constructed a prognostic scoring 

formula using seven UPR-associated genes, which 

effectively predicted the prognosis of stomach cancer 

patients. Finally, we identified IGFBP1 as a crucial 

factor in the prognostic model and verified its role  

in promoting the malignant phenotype of stomach 

cancer cells through functional experiments. 

 

The unfolded protein response (UPR) operates as  

an adaptive mechanism during cancer progression, 

modulating mechanisms that trigger cell transformation, 

enhance survival, and adjust metabolic status [22]. The 

initiation of the UPR in tumor cells, especially when 

subjected to high levels of endoplasmic reticulum  

(ER) stress, plays an important survival strategy [23]. 

When these stress response mechanisms fail to fully 

correct the protein accumulation problem, the UPR 

further promotes tumor cells to initiate the process of 

autophagy, an intracellular recycling mechanism for 

degrading and recycling defective cellular components, 

including damaged organelles and protein aggregates 

[24–26]. This process not only helps to maintain the 

stability of the intracellular environment, but also 

reduces the risk of cell death due to accumulated 

damage. Previous research has proved that UPR-related 

IRE1/XBP1 signaling pathway plays a role in tumor 

progression, with high expression of XBP1s protein 

correlating with poor prognosis in glioblastoma, triple-

negative breast cancer, and pre-B acute lymphoblastic 

leukemia [27–29]. Therefore, UPR is closely related to 

the progression of multiple tumors. In addition, studies 

have shown that GPCRs modulate UPR signaling  

via ERS sensors, IRE1α, PERK, and ATF6, to support 

cancer cell survival and inhibit cell death [30].  

By regulating downstream signaling pathways such  

as NF-κB, PI3K/AKT, TGF-β and Wnt/β-catenin, 

GPCRs also upregulate mesenchymal transcription 

factors including Snail, ZEB, and Twist superfamilies 

which regulate cell polarity, cytoskeleton remodeling, 

migration, and invasion [31, 32]. These pathways  

play a critical role in various pathological conditions 

in humans, including cancer, by regulating a number 

of key processes involved in tumor formation and 

progression [33, 34]. 

 
In addition to UPR affecting the development of the 

tumor itself, he can also affect the sensitivity of the 

tumor to cisplatin therapy, as shown by a study that 

showed that the unfolded protein response (UPR) 

plays a key role in cisplatin-based drug resistance. 

Drugs such as cisplatin, carboplatin, and oxaliplatin 

are inactivated by covalent binding to glutathione, 

which reduces the binding of the drug to its target  

and facilitates drug efflux through ABC transporter 

proteins, leading to resistance [35–37]. In particular, 

under chemotherapeutic stress, the UPR is activated 

through the PERK pathway, which upregulates the 

expression of ATF4 and NRF2, thereby enhancing the 

expression of antioxidant genes (e.g., GST, GCLC) 

[38]. These gene products promote drug binding to 

glutathione, which further leads to inactivation of 

multiple chemotherapeutic agents. Thus, high levels  

of glutathione are closely associated with cisplatin 

resistance. Furthermore, it has been found that in  

order to attenuate cisplatin-induced acute kidney  

injury, p38 MAPK mediation can be inhibited by  

7-hydroxycoumarin-β-D-glucuronide (7-HCG) [39]. Our 

study reveals that clustering stomach cancer patients 

based on UPR-related gene signatures effectively 

classifies them into distinct molecular subtypes with 

different prognoses. The analysis showed that patients 

in Cluster 1 molecular subtype had a less favorable 

overall survival, disease-free survival, progression- 

free survival, and disease-specific survival probability 

compared to those in Cluster 2 molecular subtype. 

Furthermore, differentially expressed genes between 

the two clusters were significantly enriched in cancer 

progression-related biological processes and pathways, 

such as the TGF-β and NF-κB signaling pathways as 

well. In accordance with previous research findings, 

our study demonstrated that the TGF-β and NF-κB 

pathways are indeed classical UPR pathways involved 

in tumor development in accordance with previous 

research findings, our study confirms that the TGF- 

β and NF-κB pathways are indeed classical UPR 

pathways involved in stomach cancer development. 

 
Prognostic signature constructed in this study consisted 

of 7 UPR-related genes, among which IGFBP1 showed 
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the highest positive correlation coefficient. IGFBP1 as a 

protein prolonging the half-life of the insulin-like growth 

factors (IGFs) by combination, is induced during ER 

stress via activating transcription factor 4 (ATF4) 

expression [40]. In this study, we found that IGFBP1 

knockdown in gastric cancer cells AGS and MKN45 

amplifies the UPR under ER stress, suggesting that 

IGFBP1 plays a critical role in ER stress adaptability. 

Conversely, overexpressing IGFBP1 dampens this 

response. In vivo experiments confirm that reduced 

IGFBP1 expression correlates with decreased metastasis 

and tumor growth, underscoring its significance in 

cancer progression and as a target for therapeutic 

intervention. 

 
Increased secretion of IGFBP1 helps cells modulate  

cell metabolism and maintain adaptive response  

under ER stress. IGFBP1 may inhibit IGFs activity  

by attenuating the binding of IGFs to their receptors 

[41], or potentiate IGFs function by facilitating the 

interaction of IGFs with receptors or binding to cell 

membranes through IGFBP1’s Arg-Gly-Asp sequence 

[42]. Post-translational modifications of IGFBP1 may 

affect the regulation of IGFBP1 on IGFs [43]. However, 

complex regulatory network among IGFs and IGFBPs 

is still not elucidated. Also, other IGF-independent 

effects of IGFBP1 were found to regulate cell migration 

and growth by interaction with extracellular or intra-

cellular partners when faced with ER stress [44].  

Taken together, this study we conducted in vitro found 

that IGFBP1 is capable of proliferating, invasive and 

migrating stomach cancer cells in a proliferation-like 

manner. 

 

CONCLUSIONS 
 
In summary, UPR-related gene classifier and risk 

signature were constructed for survival prediction of 

patients with stomach cancer. The patients in Cluster  

1 molecular subtype tended to be characterized as  

short survival time, low chemotherapy sensitivities,  

and low tumor-killing immune cells infiltration. Next, 

we developed a robust prognostic prediction signature 

based on 7 UPR-related genes, and examined the 

relationship between this risk model and the prognosis 

of stomach cancer patients. As a key component of  

the UPR prognostic signature, IGFBP1 serves as an 

independent prognostic factor for poor stomach cancer 

outcomes. We have confirmed that IGFBP1 promotes 

the malignant phenotype of stomach cancer, including 

proliferation, anti-apoptosis, invasion, and migration.  

In vitro and in vivo experiments validate that IGFBP1 

facilitates enhanced adaptation of stomach cancer  
cells to endoplasmic reticulum contingency. IGFBP1  

is expected to become an important therapeutic target 

for stomach cancer. 

AUTHOR CONTRIBUTIONS 
 

Drs. Ouyang, Liu and Huang are co–first authors. 

Concept and design: Drs. Yao and Yu. Data acquisition 

and correction, figure visualization and manuscript 

writing: Drs. Ouyang and Liu. Data bioinformatics and 

statistical analysis: All authors. Validation of in vitro 

experiments: Dr. Liu. Critical revision of the manuscript 

for important intellectual content: All authors. Obtained 

funding: Drs. Yao and Yu. All co-authors have approved 

the final version of the manuscript. 

 

CONFLICTS OF INTEREST 
 

The authors declare no conflicts of interest. 

 

ETHICAL STATEMENT 
 

The approval of animal experiments was permitted  

by the Ethics Committee of Sun Yat-sen Memorial 

Hospital, Sun Yat-sen University (Protocol No. SYSEC-

KY-KS-2019-171-001). 

 

FUNDING 
 

This study was supported by grants 82273204, 81972471, 

82003209 and 82073408 from the National Natural 

Science Foundation of China, grant 2023A1515012412 

and 2023A1515011214 Guangdong Basic and Applied 

Basic Research Foundation, grant 2023A03J0722, 

202206010078, 202102080072 and 202201020574 

from the Guangzhou Science and Technology Project, 

grant 2018007 from the Sun Yat-Sen University Clinical 

Research 5010 Program, grant SYS-C-201801 from the 

Sun Yat-Sen Clinical Research Cultivating Program, 

grant A2020558 from the Guangdong Medical Science 

and Technology Program, grant 7670020025 from 

Tencent Charity Foundation, grant YXQH202209 from 

the Scientific Research Launch Project of Sun Yat-Sen 

Memorial Hospital, grant HL2021012 from the Nursing 

Research Project of Sun Yat-Sen Memorial Hospital. 

 

REFERENCES 
 
1. Sung H, Ferlay J, Siegel RL, Laversanne M, 

Soerjomataram I, Jemal A, Bray F. Global Cancer 
Statistics 2020: GLOBOCAN Estimates of Incidence and 
Mortality Worldwide for 36 Cancers in 185 Countries. 
CA Cancer J Clin. 2021; 71:209–49. 

 https://doi.org/10.3322/caac.21660  
PMID:33538338 

2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, 
Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. 
CA Cancer J Clin. 2016; 66:115–32. 

 https://doi.org/10.3322/caac.21338  

7839

https://doi.org/10.3322/caac.21660
https://pubmed.ncbi.nlm.nih.gov/33538338
https://doi.org/10.3322/caac.21338


www.aging-us.com 23 AGING 

PMID:26808342 

3. Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua 
R, Goswami C, Safran H, Dos Santos LV, Aprile G, Ferry 
DR, Melichar B, Tehfe M, Topuzov E, et al, and REGARD 
Trial Investigators. Ramucirumab monotherapy for 
previously treated advanced gastric or gastro-
oesophageal junction adenocarcinoma (REGARD): an 
international, randomised, multicentre, placebo-
controlled, phase 3 trial. Lancet. 2014; 383:31–9. 

 https://doi.org/10.1016/S0140-6736(13)61719-5 
PMID:24094768 

4. Hetz C, Papa FR. The Unfolded Protein Response and 
Cell Fate Control. Mol Cell. 2018; 69:169–81. 

 https://doi.org/10.1016/j.molcel.2017.06.017 
PMID:29107536 

5. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen 
L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, 
Aprile G, Kulikov E, Hill J, et al, and ToGA Trial 
Investigators. Trastuzumab in combination with 
chemotherapy versus chemotherapy alone for 
treatment of HER2-positive advanced gastric or gastro-
oesophageal junction cancer (ToGA): a phase 3, open-
label, randomised controlled trial. Lancet. 2010; 
376:687–97. 

 https://doi.org/10.1016/S0140-6736(10)61121-X 
PMID:20728210 

6. Senft D, Ronai ZA. UPR, autophagy, and mitochondria 
crosstalk underlies the ER stress response. Trends 
Biochem Sci. 2015; 40:141–8. 

 https://doi.org/10.1016/j.tibs.2015.01.002 
PMID:25656104 

7. Park SW, Ozcan U. Potential for therapeutic 
manipulation of the UPR in disease. Semin 
Immunopathol. 2013; 35:351–73. 

 https://doi.org/10.1007/s00281-013-0370-z 
PMID:23572207 

8. Ajoolabady A, Lebeaupin C, Wu NN, Kaufman RJ, Ren J. 
ER stress and inflammation crosstalk in obesity. Med 
Res Rev. 2023; 43:5–30. 

 https://doi.org/10.1002/med.21921 PMID:35975736 

9. Tian Y, Merkwirth C, Dillin A. Mitochondrial UPR: A 
Double-Edged Sword. Trends Cell Biol. 2016; 26:563–5. 

 https://doi.org/10.1016/j.tcb.2016.06.006 
PMID:27394966 

10. Ko DK, Brandizzi F. Transcriptional competition shapes 
proteotoxic ER stress resolution. Nat Plants. 2022; 
8:481–90. 

 https://doi.org/10.1038/s41477-022-01150-w 
PMID:35577961 

11. Spiotto MT, Banh A, Papandreou I, Cao H, Galvez MG, 
Gurtner GC, Denko NC, Le QT, Koong AC. Imaging the 
unfolded protein response in primary tumors reveals 

microenvironments with metabolic variations that 
predict tumor growth. Cancer Res. 2010; 70:78–88. 

 https://doi.org/10.1158/0008-5472.CAN-09-2747 
PMID:20028872 

12. Wan Q, Jin L, Wang Z. Comprehensive analysis of 
cancer hallmarks in cutaneous melanoma and 
identification of a novel unfolded protein response as a 
prognostic signature. Aging (Albany NY). 2020; 
12:20684–701. 

 https://doi.org/10.18632/aging.103974 
PMID:33136551 

13. Su Z, Wang L, Chen X, Zhong X, Wang D, Wang J, Shao 
L, Chen G, Wu J. An Unfolded Protein Response-
Related mRNA Signature Predicting the Survival and 
Therapeutic Effect of Hepatocellular Carcinoma. Comb 
Chem High Throughput Screen. 2022; 25:2046–58. 

 https://doi.org/10.2174/1386207325666220204140925 
PMID:35125080 

14. Zhang F, Feng D, Wang X, Gu Y, Shen Z, Yang Y, Wang J, 
Zhong Q, Li D, Hu H, Han P. An Unfolded Protein 
Response Related Signature Could Robustly Predict 
Survival Outcomes and Closely Correlate With 
Response to Immunotherapy and Chemotherapy in 
Bladder Cancer. Front Mol Biosci. 2021; 8:780329. 

 https://doi.org/10.3389/fmolb.2021.780329 
PMID:35004850 

15. Andruska N, Zheng X, Yang X, Helferich WG, Shapiro DJ. 
Anticipatory estrogen activation of the unfolded 
protein response is linked to cell proliferation and poor 
survival in estrogen receptor α-positive breast cancer. 
Oncogene. 2015; 34:3760–9. 

 https://doi.org/10.1038/onc.2014.292  
PMID:25263449 

16. Zhang Q, Guan G, Cheng P, Cheng W, Yang L, Wu A. 
Characterization of an endoplasmic reticulum stress-
related signature to evaluate immune features and 
predict prognosis in glioma. J Cell Mol Med. 2021; 
25:3870–84. 

 https://doi.org/10.1111/jcmm.16321  
PMID:33611848 

17. Wang W, Li Z, Chen Y, Wu H, Zhang S, Chen X. 
Prediction Value of Serum NGAL in the Diagnosis and 
Prognosis of Experimental Acute and Chronic Kidney 
Injuries. Biomolecules. 2020; 10:981. 

 https://doi.org/10.3390/biom10070981 
PMID:32630021 

18. Zhang Y, He W, Zhang S. Seeking for Correlative Genes 
and Signaling Pathways With Bone Metastasis From 
Breast Cancer by Integrated Analysis. Front Oncol. 
2019; 9:138. 

 https://doi.org/10.3389/fonc.2019.00138 
PMID:30918839 

7840

https://pubmed.ncbi.nlm.nih.gov/26808342
https://doi.org/10.1016/S0140-6736(13)61719-5
https://pubmed.ncbi.nlm.nih.gov/24094768
https://doi.org/10.1016/j.molcel.2017.06.017
https://pubmed.ncbi.nlm.nih.gov/29107536
https://doi.org/10.1016/S0140-6736(10)61121-X
https://pubmed.ncbi.nlm.nih.gov/20728210
https://doi.org/10.1016/j.tibs.2015.01.002
https://pubmed.ncbi.nlm.nih.gov/25656104
https://doi.org/10.1007/s00281-013-0370-z
https://pubmed.ncbi.nlm.nih.gov/23572207
https://doi.org/10.1002/med.21921
https://pubmed.ncbi.nlm.nih.gov/35975736
https://doi.org/10.1016/j.tcb.2016.06.006
https://pubmed.ncbi.nlm.nih.gov/27394966
https://doi.org/10.1038/s41477-022-01150-w
https://pubmed.ncbi.nlm.nih.gov/35577961
https://doi.org/10.1158/0008-5472.CAN-09-2747
https://pubmed.ncbi.nlm.nih.gov/20028872
https://doi.org/10.18632/aging.103974
https://pubmed.ncbi.nlm.nih.gov/33136551
https://doi.org/10.2174/1386207325666220204140925
https://pubmed.ncbi.nlm.nih.gov/35125080
https://doi.org/10.3389/fmolb.2021.780329
https://pubmed.ncbi.nlm.nih.gov/35004850
https://doi.org/10.1038/onc.2014.292
https://pubmed.ncbi.nlm.nih.gov/25263449
https://doi.org/10.1111/jcmm.16321
https://pubmed.ncbi.nlm.nih.gov/33611848
https://doi.org/10.3390/biom10070981
https://pubmed.ncbi.nlm.nih.gov/32630021
https://doi.org/10.3389/fonc.2019.00138
https://pubmed.ncbi.nlm.nih.gov/30918839


www.aging-us.com 24 AGING 

19. Wu H, Jia B, Zhao X, Zhang H, Li Z, Wang W, Chen X, 
Zhang S. Pathophysiology and system biology of rat 
c-BSA induced immune complex glomerulonephritis 
and pathway comparison with human gene 
sequencing data. Int Immunopharmacol. 2022; 
109:108891. 

 https://doi.org/10.1016/j.intimp.2022.108891 
PMID:35691274 

20. Wang Y, Zhang L, He Z, Deng J, Zhang Z, Liu L, Ye W,  
Liu S. Tunicamycin induces ER stress and inhibits 
tumorigenesis of head and neck cancer cells by 
inhibiting N-glycosylation. Am J Transl Res. 2020; 
12:541–50. 

 PMID:32194902 

21. Brettingham-Moore KH, Duong CP, Heriot AG, Thomas 
RJ, Phillips WA. Using gene expression profiling to 
predict response and prognosis in gastrointestinal 
cancers-the promise and the perils. Ann Surg Oncol. 
2011; 18:1484–91. 

 https://doi.org/10.1245/s10434-010-1433-1 
PMID:21104326 

22. Su S, Shi YT, Chu Y, Jiang MZ, Wu N, Xu B, Zhou H, Lin 
JC, Jin YR, Li XF, Liang J. Sec62 promotes gastric cancer 
metastasis through mediating UPR-induced autophagy 
activation. Cell Mol Life Sci. 2022; 79:133. 

 https://doi.org/10.1007/s00018-022-04143-2 
PMID:35165763 

23. Moidu NA, A Rahman NS, Syafruddin SE, Low TY, 
Mohtar MA. Secretion of pro-oncogenic AGR2 protein 
in cancer. Heliyon. 2020; 6:e05000. 

 https://doi.org/10.1016/j.heliyon.2020.e05000 
PMID:33005802 

24. Gámez-García A, Bolinaga-Ayala I, Yoldi G, Espinosa-Gil 
S, Diéguez-Martínez N, Megías-Roda E, Muñoz-
Guardiola P, Lizcano JM. ERK5 Inhibition Induces 
Autophagy-Mediated Cancer Cell Death by Activating 
ER Stress. Front Cell Dev Biol. 2021; 9:742049. 

 https://doi.org/10.3389/fcell.2021.742049 
PMID:34805151 

25. Cherubini A, Zito E. ER stress as a trigger of UPR and 
ER-phagy in cancer growth and spread. Front Oncol. 
2022; 12:997235. 

 https://doi.org/10.3389/fonc.2022.997235 
PMID:36408145 

26. Chen Y, Tao Y, Hu K, Lu J. GRP78 inhibitor HA15 
increases the effect of Bortezomib on eradicating 
multiple myeloma cells through triggering endoplasmic 
reticulum stress. Heliyon. 2023; 9:e19806. 

 https://doi.org/10.1016/j.heliyon.2023.e19806 
PMID:37809599 

27. Lin J, Liu H, Fukumoto T, Zundell J, Yan Q, Tang CA, Wu 
S, Zhou W, Guo D, Karakashev S, Hu CA, Sarma K, 

Kossenkov AV, Zhang R. Targeting the IRE1α/XBP1s 
pathway suppresses CARM1-expressing ovarian 
cancer. Nat Commun. 2021; 12:5321. 

 https://doi.org/10.1038/s41467-021-25684-3 
PMID:34493732 

28. Harnoss JM, Le Thomas A, Reichelt M, Guttman O, Wu 
TD, Marsters SA, Shemorry A, Lawrence DA, Kan D, 
Segal E, Merchant M, Totpal K, Crocker LM, et al. IRE1α 
Disruption in Triple-Negative Breast Cancer Cooperates 
with Antiangiogenic Therapy by Reversing ER Stress 
Adaptation and Remodeling the Tumor 
Microenvironment. Cancer Res. 2020; 80:2368–79. 

 https://doi.org/10.1158/0008-5472.CAN-19-3108 
PMID:32265225 

29. Leung-Hagesteijn C, Erdmann N, Cheung G, Keats JJ, 
Stewart AK, Reece DE, Chung KC, Tiedemann RE. 
Xbp1s-negative tumor B cells and pre-plasmablasts 
mediate therapeutic proteasome inhibitor resistance in 
multiple myeloma. Cancer Cell. 2013; 24:289–304. 

 https://doi.org/10.1016/j.ccr.2013.08.009 
PMID:24029229 

30. Vázquez-Prado J, Bracho-Valdés I, Cervantes-Villagrana 
RD, Reyes-Cruz G. Gβγ Pathways in Cell Polarity and 
Migration Linked to Oncogenic GPCR Signaling: 
Potential Relevance in Tumor Microenvironment. Mol 
Pharmacol. 2016; 90:573–86. 

 https://doi.org/10.1124/mol.116.105338 
PMID:27638873 

31. Chusri P, Kumthip K, Hong J, Zhu C, Duan X, Jilg N, 
Fusco DN, Brisac C, Schaefer EA, Cai D, Peng LF, 
Maneekarn N, Lin W, Chung RT. HCV induces 
transforming growth factor β1 through activation of 
endoplasmic reticulum stress and the unfolded protein 
response. Sci Rep. 2016; 6:22487. 

 https://doi.org/10.1038/srep22487  
PMID:26927933 

32. Kumari N, Reabroi S, North BJ. Unraveling the 
Molecular Nexus between GPCRs, ERS, and EMT. 
Mediators Inflamm. 2021; 2021:6655417. 

 https://doi.org/10.1155/2021/6655417 
PMID:33746610 

33. Rufo N, Garg AD, Agostinis P. The Unfolded Protein 
Response in Immunogenic Cell Death and Cancer 
Immunotherapy. Trends Cancer. 2017; 3:643–58. 

 https://doi.org/10.1016/j.trecan.2017.07.002 
PMID:28867168 

34. Marchand A, Tomkiewicz C, Magne L, Barouki R, 
Garlatti M. Endoplasmic reticulum stress induction of 
insulin-like growth factor-binding protein-1 involves 
ATF4. J Biol Chem. 2006; 281:19124–33. 

 https://doi.org/10.1074/jbc.M602157200 
PMID:16687408 

7841

https://doi.org/10.1016/j.intimp.2022.108891
https://pubmed.ncbi.nlm.nih.gov/35691274
https://pubmed.ncbi.nlm.nih.gov/32194902
https://doi.org/10.1245/s10434-010-1433-1
https://pubmed.ncbi.nlm.nih.gov/21104326
https://doi.org/10.1007/s00018-022-04143-2
https://pubmed.ncbi.nlm.nih.gov/35165763
https://doi.org/10.1016/j.heliyon.2020.e05000
https://pubmed.ncbi.nlm.nih.gov/33005802
https://doi.org/10.3389/fcell.2021.742049
https://pubmed.ncbi.nlm.nih.gov/34805151
https://doi.org/10.3389/fonc.2022.997235
https://pubmed.ncbi.nlm.nih.gov/36408145
https://doi.org/10.1016/j.heliyon.2023.e19806
https://pubmed.ncbi.nlm.nih.gov/37809599
https://doi.org/10.1038/s41467-021-25684-3
https://pubmed.ncbi.nlm.nih.gov/34493732
https://doi.org/10.1158/0008-5472.CAN-19-3108
https://pubmed.ncbi.nlm.nih.gov/32265225
https://doi.org/10.1016/j.ccr.2013.08.009
https://pubmed.ncbi.nlm.nih.gov/24029229
https://doi.org/10.1124/mol.116.105338
https://pubmed.ncbi.nlm.nih.gov/27638873
https://doi.org/10.1038/srep22487
https://pubmed.ncbi.nlm.nih.gov/26927933
https://doi.org/10.1155/2021/6655417
https://pubmed.ncbi.nlm.nih.gov/33746610/
https://doi.org/10.1016/j.trecan.2017.07.002
https://pubmed.ncbi.nlm.nih.gov/28867168
https://doi.org/10.1074/jbc.M602157200
https://pubmed.ncbi.nlm.nih.gov/16687408


www.aging-us.com 25 AGING 

35. Holohan C, Van Schaeybroeck S, Longley DB, Johnston 
PG. Cancer drug resistance: an evolving paradigm. Nat 
Rev Cancer. 2013; 13:714–26. 

 https://doi.org/10.1038/nrc3599 PMID:24060863 

36. Giddings EL, Champagne DP, Wu MH, Laffin JM, 
Thornton TM, Valenca-Pereira F, Culp-Hill R, Fortner 
KA, Romero N, East J, Cao P, Arias-Pulido H, Sidhu KS, 
et al. Mitochondrial ATP fuels ABC transporter-
mediated drug efflux in cancer chemoresistance. Nat 
Commun. 2021; 12:2804. 

 https://doi.org/10.1038/s41467-021-23071-6 
PMID:33990571 

37. Huang XC, Sun YL, Salim AA, Chen ZS, Capon RJ. 
Parguerenes: Marine red alga bromoditerpenes as 
inhibitors of P-glycoprotein (ABCB1) in multidrug 
resistant human cancer cells. Biochem Pharmacol. 
2013; 85:1257–68. 

 https://doi.org/10.1016/j.bcp.2013.02.005 
PMID:23415901 

38. Cheng SY, Chen NF, Wen ZH, Yao ZK, Tsui KH, Kuo HM, 
Chen WF. Glutathione S-Transferase M3 Is Associated 
with Glycolysis in Intrinsic Temozolomide-Resistant 
Glioblastoma Multiforme Cells. Int J Mol Sci. 2021; 
22:7080. 

 https://doi.org/10.3390/ijms22137080 
PMID:34209254 

39. Wu H, Shi X, Zang Y, Zhao X, Liu X, Wang W, Shi W, 
Wong CT, Sheng L, Chen X, Zhang S. 7-
hydroxycoumarin-β-D-glucuronide protects against 
cisplatin-induced acute kidney injury via inhibiting p38 
MAPK-mediated apoptosis in mice. Life Sci. 2023; 
327:121864. 

 https://doi.org/10.1016/j.lfs.2023.121864 
PMID:37336359 

40. Kajimura S, Aida K, Duan C. Insulin-like growth factor-
binding protein-1 (IGFBP-1) mediates hypoxia-induced 
embryonic growth and developmental retardation. 
Proc Natl Acad Sci USA. 2005; 102:1240–5. 

 https://doi.org/10.1073/pnas.0407443102 
PMID:15644436 

41. Fleming SD, Fazleabas AT, Bell SC. Differential 
regulation of insulin-like growth factor binding protein-
1 and -2 by insulin in the baboon (Papio anubis) 
endometrium. Reprod Biol Endocrinol. 2008; 6:6. 

 https://doi.org/10.1186/1477-7827-6-6 
PMID:18234122 

42. Gupta MB. The role and regulation of IGFBP-1 
phosphorylation in fetal growth restriction. J Cell 
Commun Signal. 2015; 9:111–23. 

 https://doi.org/10.1007/s12079-015-0266-x 
PMID:25682045 

43. Cai Q, Dozmorov M, Oh Y. IGFBP-3/IGFBP-3 Receptor 
System as an Anti-Tumor and Anti-Metastatic Signaling 
in Cancer. Cells. 2020; 9:1261. 

 https://doi.org/10.3390/cells9051261  
PMID:32443727 

44. Jones JI, Gockerman A, Busby WH Jr, Wright G, 
Clemmons DR. Insulin-like growth factor binding 
protein 1 stimulates cell migration and binds to the 
alpha 5 beta 1 integrin by means of its Arg-Gly-Asp 
sequence. Proc Natl Acad Sci USA. 1993; 90:10553–7. 

 https://doi.org/10.1073/pnas.90.22.10553 
PMID:7504269 

  

7842

https://doi.org/10.1038/nrc3599
https://pubmed.ncbi.nlm.nih.gov/24060863
https://doi.org/10.1038/s41467-021-23071-6
https://pubmed.ncbi.nlm.nih.gov/33990571
https://doi.org/10.1016/j.bcp.2013.02.005
https://pubmed.ncbi.nlm.nih.gov/23415901
https://doi.org/10.3390/ijms22137080
https://pubmed.ncbi.nlm.nih.gov/34209254
https://doi.org/10.1016/j.lfs.2023.121864
https://pubmed.ncbi.nlm.nih.gov/37336359
https://doi.org/10.1073/pnas.0407443102
https://pubmed.ncbi.nlm.nih.gov/15644436
https://doi.org/10.1186/1477-7827-6-6
https://pubmed.ncbi.nlm.nih.gov/18234122
https://doi.org/10.1007/s12079-015-0266-x
https://pubmed.ncbi.nlm.nih.gov/25682045
https://doi.org/10.3390/cells9051261
https://pubmed.ncbi.nlm.nih.gov/32443727
https://doi.org/10.1073/pnas.90.22.10553
https://pubmed.ncbi.nlm.nih.gov/7504269


www.aging-us.com 26 AGING 

SUPPLEMENTARY MATERIALS 

 

Supplementary Tables 

 

 

 

 

Supplementary Table 1. Clinical information of patients with stomach cancer in this 
study. 

Cohort TCGA GSE13861 GSE28541 

Number of patients n=375 n=60 n=40 

Age (Mean±SD) 65.83±10.65 60.87±11.78 58.40±13.06 

Follow up time (Mean±SD) (months) 18.84±17.90 65.73±32.75 24.58±24.73 

Follow up status 

Alive 228 (60.8%) 34 (56.7%) 8 (20.0%) 

Dead 147 (39.2%) 26 (43.3%) 32 (80.0%) 

Gender 

Male 241 (64.3%) 42 (70.0%) 27 (67.5%) 

Female 134 (35.7%) 18 (30.0%) 13 (32.5%) 

Clinical stage 

Stage I 53 (14.1%) - 1 (2.5%) 

Stage II 111 (29.6%) - 6 (15%) 

Stage III 150 (40.0%) - 12 (30.0%) 

Stage IV 38 (10.1%) - 21 (52.5%) 

Unknown 23 (6.1%) - - 

Grade 

G1 10 (2.7%) - - 

G2 137 (36.5%) - - 

G3 219 (58.4%) - - 

GX 9 (2.4%) - - 

T stage    

T1 19 (5.1%) - - 

T2 80 (21.3%) - - 

T3 168 (44.8%) - - 

T4 100 (26.7%) - - 

TX 8 (2.1%) - - 

Unknown - - - 

M stage 

M0 330 (88.0%) 52 (86.6%) - 

M1 25 (6.7%) 4 (6.7%) - 

MX 20 (5.3%) - - 

Unknown - 4 (6.7%) - 

N stage 

N0 111 (29.6%) - - 

N1 97 (25.9%) - - 

N2 75 (20.0%) - - 

N3 74 (19.7%) - - 

NX 16 (4.3%) - - 

Unknown 2 (0.5%) - - 
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Supplementary Table 2. Summary of primers of each gene. 

id Primer direction Sequence (5’ > 3’) 

EIF4E Forward primer 5’-GAAACCACCCCTACTCCTAATCC-3’ 

 Reverse primer 5’-AGAGTGCCCATCTGTTCTGTA-3’ 

EXOSC1 Forward primer 5’-GCACAGTCCAACTACCTGCT-3’ 

 Reverse primer 5’-GTGTGGGTCTTAGGGCACTG-3’ 

IARS1 Forward primer 5’-TTGCACCGCATCTCTGAAGT-3’ 

 Reverse primer 5’-TGCCCTCGGCAATGAAATCT-3’ 

IGFBP1 Forward primer 5’-AGGCACAGGAGACATCAGGA-3’ 

 Reverse primer 5’-CCATTCCAAGGGTAGACGCA-3’ 

SPCS1 Forward primer 5’-ATCTACGGGTACGTGGCTGA-3’ 

 Reverse primer 5’-AACCACTTGAGAGGATGCCG-3’ 

TSPYL2 Forward primer 5’-CCCAGAGGCTGACAGGATTG-3’ 

 Reverse primer 5’-CTCACATCTGCCCCTGGTTT-3’ 

TUBB2A Forward primer 5’-CGCGCACCGCTCCGA-3’ 

 Reverse primer 5’-CTGATGACCTCCCAAAACTTGGC-3’ 

β-actin Forward primer 5’-GGACCTGACTGACTACCTCAT-3’ 

 Reverse primer 5’-CGTAGCACAGCTTCTCCTTAAT-3’ 

 

Supplementary Table 3. The sequence of siIGFBP1. 

id Sequence (5’ > 3’) 

siCTL 5’-CCUAAGGUUAAGUCGCCCUCG-3’ 

siIGFBP1-1 5’-CAGGAGAAGAAAUUUCCAAAU-3’ 

siIGFBP1-2 5’-CCUGGAUAAUUUCCAUCUGAU-3’ 

siCTL, siRNA control. 
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