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Could stress granules be involved in age-related diseases?
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Cellular senescence, an irreversible cell-cycle arrest, acts
as a safeguard program that limits the proliferative
capacity of cells when exposed to endogenous or
exogenous stress signals [1, 2]. However, the senescence
phenotype is also considered as a sign that the life span of
a cell has reached its end. Indeed, in the early 1960s,
Hayflick and Moorhead showed that despite the
maintenance of optimal culturing conditions for a long
period of time, normal cells do not proliferate forever [3-
5]. For example, they observed that normal human
diploid fibroblasts have a limited proliferation capacity
and after a finite number of population doubling, they
stop dividing and enter senescence. The occurrence of
replicative senescence has been demonstrated for most
cell types, with a few relevant exceptions including
embryonic germ cells [6]. In human cells, the primary
cause of cellular senescence appears to be the progressive
shortening of telomeres, which are DNA structures at the
end of eukaryotic chromosomes [7-9]. Senescence can
also be induced by non-telomeric signals, termed
“premature” or “accelerated” senescence  [10].
Senescence-inducing signals, such as DNA-damage
response (DDR) and oxidative stress (OS), usually
engage either the p53 or the cyclin-dependent kinase
inhibitor p16 pathway [11-14]. Active p53 establishes
senescence, in part, by inducing the expression of the
cyclin-dependent  kinase inhibitor p21°?,  which
suppresses the phosphorylation of the retinoblastoma
protein pRB, leading to its inactivation [15].

The importance of the senescence phenotype is under-
scored by the fact that this condition could trigger two

opposite outcomes. Due to its antiproliferative effect,
senescence is activated to prevent further growth of
transformed or sick cells that are subsequently
eliminated by the immune system [10, 16]. This effect
has mainly been observed in young organisms, and as
such senescence is considered a natural tumor
suppressor mechanism [16-19]. On the other hand, the
situation seems to change in aged individuals. Indeed,
several studies have suggested that as we age, many
senescent cells escape the immune system and end up
accumulating in different tissues for a long period of
time, which correlates with age-related diseases such as
cancer [1, 16, 20]. This functional dichotomy of the
senescence phenotype raises questions such as how and
why the same conditions could lead to opposite
outcomes depending on age. While the answers to these
questions are still elusive, it is possible that the switch
of senescent cells from being a natural break of tumor
growth to becoming promoters of malignancy occurs
over a long period of time as a consequence of repeated
exposure to stress during the life-span of an organism.
Since senescent cells remain metabolically active [7,
19], these stresses could cause dramatic changes in the
expression pattern of key genes which could explain
how and why as we age senescent cells switch their
function to become promoters of tumor growth.
Although the expression patterns and the activities of
the genes involved in promoting and maintaining the
senescence state are well studied, very little is known
about the effect stress could have on their expression
when the cell are fully senescent.
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To address the questions asked above we assessed how
senescent cells, incapable of further division, react to
extracellular assaults. Our recent work [21] clearly
indicated that in response to stress, senescent cells
activate mechanisms that are similar to those seen in
exponentially growing cells. We observed that fully
senescent cells exposed to stresses such as oxidative
stress (OS) or heat shock are able to form bonafide
stress granules (SGs) [21]. Originally, SGs were
identified as cytoplasmic RNA granules that form in
mammalian cells upon exposure to various stresses [22-
24]. SG assembly represents one of the main
prosurvival mechanisms through which cells cope with
environmental assaults by helping them reprogram
MRNA metabolism and repair stress-induced damage.
We observed that when fully senescent human
fibrobalsts exposed to either heat shock, or to arsenate
(AS), a well-known inducer of OS, a much higher
number of SGs form than in exponentially growing cells
[21]. Since it is known that senescent cells have a
decreased capacity to adapt to environmental stresses
[25, 26], we assessed the impact of this high number of
SGs on their ability to recover from these assaults. We
observed that upon switching cells to AS-free media,
SG disassembly in fully senescent cells occurs at a
slower rate than in cells at earlier stages of the
senescence process. Recent experiments performed in
my laboratory support this observation and showed that
in fully senescent cells there is a small but reproducible
decrease in the expression levels of the heat shock
protein 70 (HSP70), which is one of the key players
involved in cell recovery from a variety of stresses [27,
28] (Figure 1). This already suggested that while
senescent cells maintained the ability to form SGs in
response to stress, their recovery process was affected.
This result is consistent with previous in vitro and in
vivo studies showing that the expression of HSP70
decreases in senescent cells exposed to stresses such as
heat shock [29, 30]. Hence, together these data argue
that the slow recovery rate observed in fully senescent
cells [21] could be explained by the delayed expression
of HSP70 protein. While SGs are entities used as a
protective mechanism under stressful conditions, the
fact that they take more time to disassemble in
senescent cells upon stress removal could indicate a
delay in the synthesis of many vital proteins needed for
the maintenance of the senescence status.

It is well accepted that in exponentially growing cells
SGs recruit a variety of mRNA not only for protection
from decay and sorting purposes but also to block their
translation during cell exposure to stress [32]. As soon
as the stress is relieved, however, SG disassemble and
translation resumes. Hence, we investigated whether
this could also be the case in senescent cells. Our data
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Figure 1. The upregulation of Hsp70 expression correlates
with SG disassembly during the recovery from AS stress of
proliferative and senescent cells. (A-B) Expression levels of
Hsp70 protein after the removal of AS stress. (A) Proliferative and
senescent IDH4 cells were incubated with arsenite (0.5mM) for 30
min. Cells were subsequently washed twice with PBS, replenished
with fresh media and incubated for various periods of time at
37°C. Total cell extracts prepared from these cells were then used
for Western blots analysis with antibodies specific to Hsp70 and
G3BP (used as the loading control). Representative western blots
of three independent experiments are shown. (B) The bar graphs
represent the expression level of Hsp70 protein in each time point
normalized to the expression levels of the loading control G3BP.
The intensity of the signal in each lane was measured using
ImageQuant software. Each bar graph represents the ratio of
Hsp70 over G3BP for each time point. The histogram presents the
results from (A) as a mean +/- SEM (error bars), from three
independent experiments.
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indicate that the effect of OS-induced SGs on the
expression of the p21°® mRNAs is dependent on the
senescence stage of the cell [21]. We showed that
although the p21°® mRNAs colocalizes with SGs in
both early and fully senescent cells, the synthesis of
p21°" protein was rapidly shut off only in fully
senescent cells. The fact that these cells were treated
with a sub-lethal dose of AS for only a short period of
time (30 min), indicates that the events leading to the
translation inhibition of p21“®" mMRNA are triggered
quickly and correlate with the assembly of SGs. This,
however, does not explain why p21°" translation is not
affected in cells at earlier stages of the senescence
process despite the fact that in these cells the p21°
message is also rapidly recruited to SGs. Surprisingly,
our data raise the possibility that senescent and
normally growing cells use different molecular
mechanism to assemble SGs in response to OS. We
observed that in both early and fully senescent cells the
phosphorylation of elF2a, a key factor in AS-induced
SG formation [33], is significantly reduced [21]. This
result suggests that during the senescence process OS-
induced SG formation switches from an elF2a
phosphorylation-dependent mechanism to a process that
is independent of this posttranslational modification.

Work from several groups including ours, have
demonstrated  the existence of an elF2a
phosphorylation-independent  mechanism  for SG

assembly. Indeed, cells exposed to Pateamine A or
hippuristanol, two well-known inhibitors of the
eukaryotic translation initiation factor A (elF4A) form
SGs in an elF2a phosphorylation-independent manner
[34, 35]. Although this or similar mechanisms could
explain SGs formation in senescent cells exposed to OS,
this possibility needs to be tested experimentally.
Defining the mechanisms by which SGs assemble in
senescent cells could open the door to screen for
chemical inhibitors/activators that modulate SG
formation in these cells. This could in turn provide tools
to design new strategies that prevent senescent cell from
promoting malignancy.

In summary, delineating the functional relevance of SGs
in senescent cells exposed to a variety of extracellular
drugs could be relevant to the treatment of age-related
diseases such as cancer. Indeed, many chemotherapeutic
agents are used due to their ability to trigger senescence
in cancer cells. Though a growing number of small
molecules that induce irreversible cell cycle arrest in
malignant cells have been recently developed, improve-
ment of cancer treatment is limited, underscoring the
need for identifying the mechanisms by which these
treatments could modify the behavior of senescent cells
[10, 20, 36-38]. In fact, in some cases, malignant cells
exposed to repeated treatments with these molecules may
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Figure 2. Working model of how repeated exposure to
stress could change the pattern of mRNA expression in
senescent cells. In response to stresses such as oxidative stress
and heat shock senescence cells form a high number of stress
granules (SGs). These SGs recruit several mRNAs leading to their
translation inhibition. During its lifespan, a living organism is
exposed repeatedly to a variety of stresses. This could trigger
multiple cycles of SGs assembly/disassembly which in turn
change the expression pattern of mRNAs encoding factors
responsible of activation the senescence-associated secretory
phenotypes (SASPs). Consequently, this could enhance the levels
of these SASPs factors that will be secreted in the
microenvironment promoting malignancy in neighboring cells.

become promoter of tumorigenesis; possibly by
activating  the  senescence-associated  secretory
phenotypes (SASPs) [39, 40]. Indeed, in the work
describing the impact of SASPs on cancer development,
the Campisi laboratory showed that while treatment of
human prostatic tumor cells with the DNA-damaging
agent mitoxantrone (MIT) promote their entry to a
senescence state, it also activates SASPs leading to the
secretion of promalignant factors such as IL-6 and IL-8
[39]. These two proinflammatory cytokines, are
secreted in the microenvironement of senescent cells
triggering  epithelial-mesenchyme  transition  and
invasiveness, two clear signs of tumor growth and
metastasis. Although it is not known whether induction
of senescence in the tumor cell itself could enhance
their malignant potential at later stages, the activation of
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the SASPs clearly indicates that these cells facilitate the
transformation of neighboring cells that are not
tumorigenic to become such. Since chemotherapeutic
agents normally cause severe stresses, it is possible that
some of them trigger the assembly and disassembly of
SGs. If the mRNAs encoding SASPs factors are also
recruited to these entities, the repeated cycles of
translation inhibition/recovery could over time alter
their expression pattern causing their massive synthesis
and secretion in the surrounding environment.
Exploring this possibility and defining whether or not
SG assembly/disassembly plays a role in this outcome
could help better understand why after being effective at
early stages of the treatment some drugs revert and
become promoter of malignancy.
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