
Supplemental Information

1 List comparison algorithm: problem formula-
tion

The goal of the gene list comparison algorithm is to assess how similar two
set of significant genes obtained from two experiments are. Genes are ranked
according to a chosen metric, for example the fold-change between treatment
and control in each experiment. We will refer to the two lists of genes generated
in this manner as list A and list B. The first step is to compute the statistical
significance of the intersection between two sets of genes from the two lists.

2 Statistical significance of ranked lists intersec-
tion

Table 1 shows the contingency table describing the comparison of the top m
genes across two experimental conditions. A and B are the two experimental
conditions, N is the total number of genes, m is the number of genes selected
from each experiment (typically the top m genes from the ranked list are se-
lected), and k is the number of genes in the intersection.

Since the margins of Table 1 are fixed, the probability of observing k genes
in the intersection of two lists generated by randomly choosing two sets of m
genes out of a total of N is given by the hypergeometric distribution:

P (X = k) =

(
m
k

)(
N−m
m−k

)(
N
m

) (1)

Table 1: Contingency table describing the selection of the top m genes.

A Ā Total

B k m− k m
B̄ m− k N + k − 2m N −m
Total m N −m N
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Table 2: Contingency table for the selection of additional m2 −m1 genes.

A Ā Total

B k2 − k1 m2 − k2 m2 − k1

B̄ m2 − k2 N + k2 − 2m2 N −m2

Total m2 − k1 N −m2 N − k1

If k∗ is the observed number of genes in the intersection, we want to compute
the probability of observing at least k∗ genes in the intersection when the two
lists are randomly generated. This probability is given by:

P (X ≥ k∗) =
m∑

k=k∗

P (X = k) (2)

3 Statistical significance of adding genes

When we increase the number of genes we compare in the two lists, i.e. the value
of m, the number of genes in the intersection is bound to increase as well. It is
possible that although the intersection is still significant, the number of genes
we added to the intersection is close to what we would expect from random
chance. In order to test for this we need to compute such probability. Let k1 be
the number of genes in the intersection when we select m1 genes from the two
lists, and k2 the number of genes in the intersection when we select m2 genes.

The probability of observing the values in Table 2:

P (X = k) =

(
m2−k1
k2−k1

)(
N−m2
m2−k2

)(
N−k1
m2−k1

) (3)

The probability of observing an intersection larger or equal to k∗ is then:

P (X ≥ k∗) =
m2∑

k=k∗

(
m2−k1
k−k1

)(
N−m2
m2−k

)(
N−k1
m2−k1

) (4)

So for a given ∆k = k2 − k1 it is possible to use Equation (4) to test for
significance of the intersection between the two lists for the added ∆m = m2−m1

genes in the ranked list. Specifically, adding ∆m genes leads to a significant
increase to the intersection between the two lists if P (X ≥ ∆k) ≤ α where α is
the significance level.

4 List comparison algorithm

The top ranking m genes in the two experimental conditions are compared by
computing the two probabilities in Equations (2) and (4). The value of m is
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increase with a step ∆m until either of the two probabilities is larger than a set
significance value α. In the analysis of both simulated and experimental data
in this paper we used ∆m = 100 and α = 0.05. In the experimental datasets,
the algorithm was applied separately to both up-regulated and down-regulated
genes. For the down-redulated gene, genes were ranked in increasing order of
fold-change, i.e. from the largest negative fold-change to the smallest negative
fold-change.

5 Algorithm performance

We evaluated the performance of the gene list comparison method on simulated
data generated as follows. For any given value of m and k, we took a ranked list
of N = 10, 000 genes (list A) and randomly selected a set of k genes among the
top m genes. These k genes were distributed randomly across the top m ranks
of list B. All of the remaining genes in list A were randomly distributed among
the remaining ranks of list B, from 1 to N , that had not already been occupied
by the initial k genes. This procedure guaranties that the two lists will have
at least k genes in common among the top m genes. We then applied the list
comparison algorithm as described in Section 4 for different values of m and k
to empirically estimate the value of m. For each value of m and k we computed
the percent of times out of 100 simulations the estimated of m was equal to the
original value used to generate the data. Figure 1 shows this percentage as a
function of k/m for different values of m/N , from 4% to 15%. When just 20% of
the genes are in common among the top 4% of the total number of genes in the
lists, the algorithm estimated the correct value of m over 80% of the times, and
reached a 100% when 40% or more genes were in common. As we increased the
value of m in the simulations, the value of k/m needed to achieve a percentage
of correct estimation of 80% or more increased. This is expected because the
statistical significance of the overlap decreases for increasing values of m.
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Figure 1: Performance of the list comparison algorithm on simulated data. Two
lists with a known number k of common genes among the top m genes in the
rank ordered list were analyzed using the list comparison algorithm. The y-axis
corresponds to the percentage of times the correct value of m was estimated out
of 100 simulations.
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