
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
INTRODUCTION 
 
In the last two years the Infinium HumanMethylation-
450 BeadChip (Infinium 450k) [1] has been largely 
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used to investigate age-associated changes in DNA 
methylation profile of the human genome [2–9]. The 
Infinium 450k contains 485577 probes, 64% of them 
mapping to CpG islands and CpG islands surrounding 
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Abstract: Aging is characterized by a profound remodeling of the epigenetic architecture in terms of DNA methylation 
patterns. To date the most effective tool to study genome wide DNA methylation changes is Infinium 
HumanMethylation450 BeadChip (Infinium 450k). Despite the wealth of tools for Infinium 450k analysis, the identification 
of the most biologically relevant DNA methylation changes is still challenging. Here we propose an analytical pipeline to 
select differentially methylated regions (DMRs), tailored on microarray architecture, which is highly effective in 
highlighting biologically relevant results. The pipeline groups microarray probes on the basis of their localization respect to 
CpG islands and genic sequences and, depending on probes density, identifies DMRs through a single-probe or a region-
centric approach that considers the concomitant variation of multiple adjacent CpG probes.  We successfully applied this 
analytical pipeline on 3 independent Infinium 450k datasets that investigated age-associated changes in blood DNA 
methylation. We provide a consensus list of genes that systematically vary in DNA methylation levels from 0 to 100 years 
and that have a potentially relevant role in the aging process. 
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regions (shores and shelves), while the remaining 
mapping to dispersed CpG sites in the genome [10]. The 
array is highly informative, as it covers 96% of the CpG 
islands of the genome and 99% of RefSeq genes.  
 
Using the Infinium 450k, researchers have identified 
several CpG sites that either get hypermethylated or 
hypomethylated during aging in different tissues [11], 
and a subset of these CpG sites has been successfully 
combined in predictors of chronological age [12,13].  
 
Although defining a list of CpG sites whose methylation 
status is age-dependent is an essential step in aging 
research, the real challenge is to identify biologically 
relevant DNA methylation changes and their relative 
contribution to the aging process.  
 
The difficult task of extracting relevant information 
from microarray data can be made easier if the number 
of microarray features is reduced on the basis of a 
biologically meaningful criterion. In this way the top 
ranking groups of features are more likely to be 
functionally linked to the phenotype under study than 
the single features. For expression microarrays this task 
has been successfully addressed by grouping genes that 
share common biological functions [14], but this 
approach is less suitable for methylation microarrays, as 
the relationship between DNA methylation and 
biological function is complex. An alternative solution 
is to adopt a region-centric approach in which the 
methylation value not of the single CpG probes, but of a 
group of adjacent CpG probes is considered. This 
approach is particularly interesting as changes in DNA 
methylation, especially in the CpG islands, usually 
involve groups of adjacent CpG sites whose 
methylation levels are correlated, thus potentially 
affecting chromatin structure. On the contrary the 
biological relevance of alterations at individual CpGs, 
although potentially interesting at specific genomic 
regions, is less characterized [15].  
 
At present, different region-centric approaches have 
been proposed. Illumina Methylation Analyzer (IMA) 
defines for each gene 11 region categories (TSS1500, 
TSS200, 5’ UTR, 1st EXON, GENE BODY, 3’ UTR, 
ILSAND, NSHORE, SSHORE, NSHELF, SSHELF) 
and calculates their mean or median methylation values, 
which are then compared between the samples under 
analysis [16]. As an alternative approach, Numerical 
Identification of Methylation Biomarker Lists (NIMBL) 
reports the number of differentially methylated probes 
within the different annotated regions of each gene [15]. 
A more sophisticated approach is based on the “bump 
hunting” method developed for the analysis of CHARM 
data [17], but its applicability to Infinium 450k data is 

weakened by the lower density of analysed CpG sites in 
comparison to CHARM array.  
 
The main point is that the Infinium 450k probes are not 
evenly distributed across the genome, but they are 
enriched in specific regions while others are 
underrepresented. To deal with this issue, a methodology 
in which differentially methylated regions (DMRs) are 
defined as regions in which at least two contiguous 
probes within 1-kb distance have a significant differential 
statistic was recently proposed [18] and used in a meta-
analysis to identify age associated DMRs. A tool for 
DMRs identification at a region level was implemented 
also in the RnBeads package, where regions were defined 
based on the microarray annotation and ranked based on 
3 criteria (mean of the differences between average 
methylation levels of the probes in a region in the two 
groups under investigation, mean of quotients and a 
combined p-value calculated from the single p-values of 
the probes in the region). 
 
Here we implemented an alternative pipeline for the 
analysis of Infinium 450k data that is based on a careful 
description of CpG probes distribution within the array. 
The proposed methodology: 1) classifies CpG probes 
based on their genomic localization 2) defines groups of 
adjacent CpG probes based on their density in the 
region 3) depending on the previous classifications, 
applies a single-probe or a region centric analysis which 
considers the concomitant variation of a group of 
adjacent CpG probes.  
 
As a proof of principle, we used our approach to 
conduct a meta-analysis on 3 independent datasets in 
which the Infinium 450k was used to investigate age-
associated variations in blood DNA methylation 
profiles. From this meta-analysis, we extracted a short 
list of genes that potentially have a biologically relevant 
role in the aging process. 
 
RESULTS 
 
Grouping Infinium 450k probes in biologically 
meaningful clusters 
 
The method we propose focuses on grouping CpG 
probes into clusters, hereafter referred as “blocks of 
probes” (BOPs). CpG probes were grouped taking into 
consideration not only their contiguity in DNA 
sequence, but also their genomic localization, which 
represents a critical aspect for data interpretation [19]. 
Using Illumina probe annotation, we first divided the 
probes included in the array in four classes (Fig. 1A; see 
Materials and Methods section): i) Class A, including 
probes in CpG islands and CpG islands-surrounding  
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sequences (shores and shelves) that map in genic 
regions; ii) Class B, including probes in CpG islands 
and CpG islands-surrounding regions (shores and 
shelves) which do not map in genic regions; iii) Class 
C, including probes in genic regions which are not CpG 
rich; iv) Class D, including probes in non-genic regions 
which are not CpG rich. These four classes have 
different epigenetic functions, as their methylation 
status can affect gene function and chromatin structure 
in different ways [20]. Class A, B, C and D included 
247394, 62071, 118206 and 57906 CpG probes 
respectively. 
 
Then, we defined BOPs as follows (Fig. 1B): for probes 
mapping in CpG islands and in CpG islands 
surrounding regions (Class A and Class B), we grouped 
the CpG probes localized in the same island, in the 
same shore or in the same shelf; for probes mapping in 
not CpG rich genic regions (Class C), we grouped the 
CpG probes mapping to the same gene. Class D probes 
were not grouped because they were highly interspersed 
across the genome.  
 
Class A, B and C included 77202, 34448 and 20273 
BOPs respectively (Fig. 2). Class A BOPs mapped 
mainly to CpG islands and shores, but CpG islands 
BOPs were definitely richer in CpG probes (Fig. 2A, 
left panel). Class B BOPs mapped to shelves with 
higher frequency than Class A BOPs, but also in this 
case CpG probes mapped mostly to CpG islands (Fig. 
2A, middle panel). As expected Class C BOPs 
contained a very high number of CpG probes, with a  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
median of 13 and a maximum of 506 (Fig. 2A, right 
panel).  
 
A region-centric approach is meaningful only if CpG 
probes are sufficiently close along the DNA sequence 
under investigation. Indeed, experimental evidences 
indicate that DNA methylation of nearby CpG sites is 
correlated within a tract of 250-500 bp [21]. We 
therefore calculated the mean distance between the 
probes in each BOP for Class A, Class B and Class C 
probes (Fig. 2B). Probes in BOPs belonging to Class A 
and Class B were generally close, with a mean distance 
of 183.5 and 259.4 bp respectively (Fig. 2B, left and 
middle panels) and a mode of 73 and 130 bp 
respectively (Fig. 2C, left and middle panels). In both 
the cases, as expected, mean distance was lower in 
islands than in shores and shelves. On the contrary, 
BOPs belonging to Class C included probes that were 
scattered across the length of gene sequences and, on 
average, that were too distant to be analysed together 
(mean distance 10230 bp, mode 1935 bp; Fig. 2B and 
2C, right panels).  
 
DMR identification by multivariate analysis of 
variance (MANOVA)  
 
Based on the previous observations we propose an 
analysis pipeline for Infinium 450k “customized” on the 
characteristics of the different classes of probes (Fig. 
3A). BOPs belonging to Class A and Class B are suitable 
for a region-centric analysis, while for Class C and Class 
D probes a single-probe analysis is more advisable.  

Figure 1. Infinium 450k probes classification and BOPs definition. (A) The 485577 probes included in the 
Illumina HumanMethylation450 BeadChip were divided in 4 classes  on the basis of their genomic localization. (B) 
Graphic representation of how probes were grouped in BOPs. Probes mapping in the island and in the surrounding 
regions of the same CpG island were grouped in 5 functional units: probes in the N-Shelf of the island, probes in the 
N-Shore of the island, probes in the island, probes in the S-Shore of the island, probes in the S-Shelf of the island. 
Probes mapping in gene bodies were grouped on the basis of the gene in which they are located.  
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For the region-centric analysis we propose the use of 
multivariate analysis of variance (MANOVA) to test for 
general changes in methylation of a genomic region. 
However, as described above, Class A and Class B 
BOPs contain a largely variable number of CpGs, 
spanning from 1 to 75 for Class A BOPs and from 1 to 
41 for Class B BOPs. We considered BOPs containing 1 
or 2 CpG probes not informative enough for a region-
centric approach but more suitable for a single-probe 
approach. On the contrary, the remaining BOPs (32356 
BOPs including 192465 probes in Class A; 7253 BOPs 
including 31077 probes in Class B) are analysed by ap- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
plying a sliding-window MANOVA (Fig. 3B). Indeed, 
the non-homogeneous distribution in BOP probe 
content could lead to overrepresentation of short BOPs 
among the top significant BOPs, because when the 
number of probes in a BOPs is high, it is likely that only 
a subgroup of them is differentially methylated in the 
phenotype under study (see the example reported in Fig. 
3C). In the sliding window approach we calculated 
MANOVA for each subgroup of 3 consecutive CpG 
within the same BOP and we kept the lowest p-value 
among those calculated, actually normalizing the 
analysis for the varying number of probes per BOP.  

 

Figure 2. Characteristics of the BOPs belonging to different probe classes. (A) Numbers of BOPs and CpG probes in Class 
A, Class B and Class C. For Class A and Class B, subdivision in CpG islands, N-Shores, S-Shores, N-Shelves and S-Shelves is reported. 
In the lower part of the tables, descriptive statistics for the distribution of number of probes/BOP in the 3 Classes are reported. 
(B) Descriptive statistics for the distribution of mean bp distance between probes /BOP in the 3 Classes are reported. (C) Density 
distributions (upper panel) and frequency histograms (lower panels) of the mean bp distance between the probes/BOP. 
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We implemented the proposed pipeline in R software 
environment. Starting from a table containing the beta-
values of interest (1 row per CpG site, 1 column per 
individual), the script annotates the probes and divides 
them in Class A, Class B, Class B and Class D. Class A 
and Class B probes are grouped in BOPs and BOPs 
containing 3 or more probes are analysed by the region-
approach (MANOVA on sliding windows of 3 CpG 
probes within the same BOP). The remaining CpG 
probes are analysed by ANOVA. Both categorical and 
continuous covariates can be used. A list of significant 
CpG probes is outputted from the single-probe analysis.  
For the region-centric approach, a list of BOPs ranked 
by nominal or FDR-corrected p-values and, if present, 
associated genes, is provided as output. Then, authors 
can choose to select significant BOPs containing at least 
2 adjacent CpG sites for which the DNA methylation 
difference between the considered groups (in the case of 
a categorical variable) or two selected ranges of values 
of the continuous variable is higher than a set threshold.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Significant BOPs can be ranked according to this 
criterion allowing authors to identify “bubbles” of 
different methylation between the conditions under 
study, which are likely to be biologically meaningful. 
The pipeline provides as outputs several useful plots, 
including schematic diagrams in which the 
chromosomal position of the probes within the selected 
BOPs is plotted against the methylation level of each 
probe (see the examples reported in Fig. 6 and in 
Supplementary Fig. 1). These plots provide a easy-to-
interpret visualization of relevant results, that in one 
shot gives information about probes density within the 
region and about the changes in DNA methylation 
between the groups under study. 
 
Identification of age-associated DMR through the 
region-centric approach 
 
We validated our pipeline on three independent age-
related Infinium 450k experiments performed on whole 

Figure 3. Proposed analytical pipeline for Infinium 450k data. (A) Workflow for the use of single-probe or region-
centric approaches on Infinium 450k data. (B) Graphical representation of the sliding window MANOVA used to normalize 
for BOPs lengths. CpG probes are represented as circles. The CpG probes considered in each round of MANOVA are 
highlighted in yellow. (C) Example of methylation values of CpG probes within a BOP. The BOP includes 22 CpG probes, 5 
of which define a “bubble” of differential methylation between Group A and Group B. The p-value derived from MANOVA 
on this BOP is 2.70*10e-11. We hypothesized to have a shorter BOP including only the 5 CpG probes differentially 
methylated between Group A and Group B, plus a probe on both the sites whose methylation level is comparable 
between the two samples. In this case, although the extent of the bubble of differentially methylation is the same of the 
longer BOP, the p-value derived from MANOVA is lower, equal to 8.64*10e-14. This simple example shows that if we do 
not normalize for the length of the BOP, short BOPs tend to rank at higher positions than long BOPs. 
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blood. The first dataset (referred hereafter as D1) 
includes data from 656 subjects ranging from 19 to 101 
years (average 64 ± 15 years) [3]. The second dataset 
(referred hereafter as D2) includes data from 38 subjects, 
19 newborns and 19 nonagenarians [2]. The third 
dataset (referred hereafter as D3) includes data from 58 
subjects ranging from 9 to 83 years (average 44 ± 18 
years) [4].  
 
In each dataset, probes containing missing values in at 
least one sample and probes on X and Y chromosome 
were removed. Age-associated DMR were identified in 
D1 and D3 using the age as a continuous variable and in 
D2 the group (newborns or nonagenarians) as a 
categorical variable. Ethnicity (Caucasian-European or 
Hispanic-Mexican) was used as covariate in the D1 
analysis. As the relative proportions of the different 
types of blood cells can vary significantly with age, we 
inferred blood cell counts from methylation data and 
use them as covariates in the analysis. 
 
Here we present results only for the region-centric 
analysis performed on Class A BOPs containing at least 
3 CpG probes. MANOVA results were corrected for 
multiple comparisons through Benjamini-Hochberg 
False Discovery Rate correction; 0.05 was used as 
significant threshold for q-values. Based on these 
criteria 21083, 517 and 2736 BOPs were identified as 
age-associated DMRs in D1, D2 and D3 respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The considerably lower number of BOPs identified in 
D2 is ascribable to the effect of blood cell types 
correction, as cord blood and whole blood significantly 
differ for this parameter. 
 
To validate our approach, we compared the results of 
the region-centric approach with the results of a single-
probe approach by analysis of variance (ANOVA). As 
shown in Figure 4, the number of significant CpG 
probes per BOP tended to be higher in the top ranking 
BOPs identified by the region-centric analysis. In most 
the cases, significant CpG probes within the same BOP 
concordantly moved towards hypermethylation or 
hypomethylation in younger compared to older subjects. 
Notably a small number of the selected BOPs in the 
three datasets included slightly differentially methylated 
CpG probes that did not reach the significance threshold 
by themselves, but whose concomitant variation with 
adjacent probes within the same BOP resulted 
significant when analysed by a multivariate approach. 
These results indicate that our approach was successful 
in identifying chromosomal regions, rather than single 
CpG sites, whose methylation status is affected by 
aging. 
 
To confirm that our region-centric approach reduces 
spurious results and is more likely to identify 
biologically relevant regions, we compared the results 
from the three datasets. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Number of significant CpG probes per significant BOP. For each dataset, the boxplot reports 
the –log10(q-value) of each significant Class A BOP (MANOVA analysis) against the number of significant CpG 
probes (q-value < 0.05, ANOVA analysis) included in each BOP. 
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First, we compared the DMRs identified in Hannum et 
al. and in Heyn et al. with those identified by our 
approach. Hannum et al. used a multivariate linear 
model approach based on the Elastic Net algorithm and 
identified a nucleus of 89 CpG probes whose 
methylation is associated to age, while Heyn et al 
selected 3205 age-associated CpG probes that resulted 
significant after ANOVA test (q-value < 0.01) and that 
showed a difference in average beta-values between 
newborns and nonagenarians greater than 0.20. We 
considered only the CpG probes belonging to Class A 
probes, that is 45 and 800 probes in D1 and D2 
respectively, and we matched them with the 
corresponding BOPs. In this way, we achieved a list of 
34 and 472 BOPs identified by Hannum et al. and by 
Heyn et al.. Only one BOP was shared by the two lists 
(Fig 5A, left panel). On the contrary, when we 
considered the first 34 and the first 472 BOPs identified 
by our approach respectively in D1 and D2, we 
observed an overlap of 15 BOPs (Fig 5A, right panel).  
 
Secondly, we considered a progressively increasing 
number of significant BOPs (region-centric analysis) 
and CpG probes (single-probe analysis) and we 
calculated the number of common DMRs between the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
three datasets. As shown in Figure 5B, the extent of 
overlap was higher for the region- centric approach 
compared to the single-probe approach.  
 
Finally, we provided a short list of genomic regions 
whose methylation levels vary according to age in D1, 
D2 and D3 (Table 1). We considered the overlap 
between the first 500 ranked BOPs identified by our 
region-centric approach in the 3 datasets, resulting in 42 
BOPs (44 genes, because some BOPs mapped to 
multiple genes which share the same CpG island). 11 
and 2 of the selected BOPs included at least one CpG 
probe that was provided also in Hannum’s and Heyn’s 
results respectively. Moreover, 4 of the selected BOPs 
contained at least one CpG probe that was included also 
in Horvath’s epigenetic clock. Two genes (HOXC4 and 
SST) were included in the GenAge database as related 
to aging in model systems and/or humans [22]. To have 
a general view of age-associated changes of the selected 
BOPs, we joined their beta-values from D1, D2 and D3 
and we divided samples in 10 age ranges from 0 to 100 
years. The plots reported in Fig 6 and in Supplementary 
Figure 1 confirm that the 42 genomic regions encounter 
a systematic hypermethylation (20 BOPs) or hypo-
methylation (22 BOPs) with age. 

Figure 5. The region-centric approach increases the common findings between the 
3 datasets. (A) Intersection between the results provided by Hannum et al. and Heyn et al. 
(left panel) and between the results of the region-centric approach on the two datasets. (B) 
Intersection between a progressively increasing number of top ranking features (BOPs for the 
region-centric analysis, CpG probes for the single-probe analysis) in the three datasets.  
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Figure 6. Examples of DNA methylation profiles of selected age-associated BOPs. 6 of the 42 
selected BOPs are reported as an example. Mean methylation values in 10 age classes are reported for each 
CpG probe within the selected BOPs. For each BOP, beta-values from D1, D2 and D3 were joined together. 
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Table 1. Candidate age-associated genomic regions 
 

Gene Name Description BOP 

H
an

nu
m

 

H
ey

n 

H
or

va
th

 

ABCC4 ATP-binding cassette, sub-family C (CFTR/MRP), member 4 chr13:95953337-95954211*N_Shore    
ABHD14A abhydrolase domain containing 14A chr3:52008943-52009339*N_Shore X  X 
ABHD14B abhydrolase domain containing 14B chr3:52008943-52009339*N_Shore X  X 
AKAP8L A kinase (PRKA) anchor protein 8-like chr19:15529290-15529902*S_Shore    
ALDOA aldolase A, fructose-bisphosphate chr16:30076310-30077872*N_Shore    
AMER3 APC membrane recruitment protein 3 chr2:131513363-131514183*Island X   
ATP13A2 ATPase type 13A2 chr1:17337829-17338590*S_Shore X   
AXL AXL receptor tyrosine kinase chr19:41769215-41769417*N_Shore X   
CACNA1G calcium channel, voltage-dependent, T type, alpha 1G subunit chr17:48636103-48639279*Island    
COL1A1 collagen, type I, alpha 1 chr17:48276877-48279008*N_Shore    
CPEB1 cytoplasmic polyadenylation element binding protein 1 chr15:83315116-83317541*Island  X  
CSNK1D casein kinase 1, delta chr17:80231019-80231820*S_Shore   X 
EDARADD EDAR-associated death domain chr1:236558459-236559336*N_Shore X  X 
EIF1 eukaryotic translation initiation factor 1 chr17:39844833-39845950*N_Shore X   
ELOVL2 ELOVL fatty acid elongase 2 chr6:11043913-11045206*Island X   
FHL2 four and a half LIM domains 2 chr2:106014878-106015884*Island X X  
GIT1 G protein-coupled receptor kinase interacting ArfGAP 1 chr17:27918161-27918398*N_Shore    
GLRA1 glycine receptor, alpha 1 chr5:151304226-151304824*Island    
GPR78 G protein-coupled receptor 78 chr4:8582036-8583364*Island    
GRIN2C glutamate receptor, ionotropic, N-methyl D-aspartate 2C chr17:72848166-72848901*Island    
GUSB glucuronidase, beta chr7:65446771-65447340*S_Shore    
HNRNPUL1 heterogeneous nuclear ribonucleoprotein U-like 1 chr19:41769215-41769417*N_Shore X   
HOXC4 homeobox C4 chr12:54447744-54448091*S_Shore X   
IRX5 iroquois homeobox 5 chr16:54962422-54967805*Island    
LAG3 lymphocyte-activation gene 3 chr12:6882855-6883184*N_Shore   X 
MLXIPL MLX interacting protein-like chr7:73037528-73038957*Island    
NENF neudesin neurotrophic factor chr1:212606105-212606844*N_Shore    
NFIA nuclear factor I/A chr1:61548753-61549564*N_Shore    
OTUD7A OTU deubiquitinase 7A chr15:31775540-31776988*Island X   
PI4KB phosphatidylinositol 4-kinase, catalytic, beta chr1:151300522-151300724*N_Shore    
PRLHR prolactin releasing hormone receptor chr10:120353692-120355821*Island    
PRRT4 proline-rich transmembrane protein 4 chr7:127990926-127992616*Island    
PTGDS prostaglandin D2 synthase 21kDa (brain) chr9:139872237-139873143*N_Shore    
PXN paxillin chr12:120702976-120703541*S_Shore    
RCSD1 RCSD domain containing 1 chr1:167599464-167599839*N_Shore    
SLC12A5 solute carrier family 12 (potassium/chloride transporter), member 5 chr20:44657463-44659243*Island    
SLC25A22 solute carrier family 25 (mitochondrial carrier: glutamate), member 22 chr11:797640-798544*N_Shore    
SOX1 SRY (sex determining region Y)-box 1 chr13:112720564-112723582*Island    
SST somatostatin chr3:187387914-187388176*N_Shore X   
TFAP2B transcription factor AP-2 beta (activating enhancer binding protein 2 beta) chr6:50787286-50788091*Island    
VARS2 valyl-tRNA synthetase 2, mitochondrial chr6:30881533-30882296*S_Shore    
ZAR1 zygote arrest 1 chr4:48492117-48493589*Island    
ZEB2 zinc finger E-box binding homeobox 2 chr2:145281736-145282269*N_Shelf    
ZYG11A zyg-11 family member A, cell cycle regulator chr1:53308294-53309262*Island    
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DISCUSSION 
 
In this paper we present an original pipeline for the 
analysis of Infinium 450k data, in which different 
genomic regions are analyzed either by a single-probe 
or a region-centric approach depending on their context 
and probe content/density.  
 
The Infinium 450k is currently the most used 
technology for EWAS studies. The reasons for the 
success of this microarray are to be found in its 
affordability and simplicity, in addition to a reasonable 
informativeness on genome-wide DNA methylation 
profiles. Alternative techniques such as sequencing of 
immunoprecipitated methylated DNA (MeDIP-seq) or 
of bisulfite-treated genomic DNA (BS-seq) provide a 
more comprehensive picture of DNA methylome [23] 
but, despite the recent introduction of pipelines for their 
automatization and analysis [24–27], are still more 
laborious and expensive. 
 
A recent comprehensive review has collected the 
bioinformatic tools developed to specifically analyze 
Infinium 450k data [27]. Apart from methods to 
normalize data and adjust them for technical bias, several 
algorithms to identify differentially methylated regions 
(DMRs) between groups of interest have been developed. 
A growing body of literature suggests to analyze 
Infinium 450k data by a region-centric approach, with 
several advantages respect to single-probe analysis 
[15,18]. First of all, it better resembles the biological 
basis of the process, as concordant changes in a group of 
adjacent CpG sites are more likely to affect the 
phenotype compared to alterations of single CpG sites. 
Moreover, a region-centric approach simplifies the 
identification of genomic regions of interest as provides a 
shorter list of ranked results and is less prone to provide 
spurious results due for example to the presence of SNPs 
in the probes included in the array [18].  
 
Here we reasoned that the statistical analysis of the 
Infinium 450k microarray should take into account the 
specific architecture of the microarray. Indeed, we 
clearly showed that different genomic regions present 
different level of coverage in terms of probes 
distribution. We grouped probes in blocks (BOPs) based 
on microarray annotations and verified that only in CpG 
islands and in the surrounding regions (shores and 
shelves) the mean distance between probes in a BOP 
was within 500 bp, a range in which the methylation 
values of CpG sites are usually correlated [21]. On the 
contrary, the density of probes mapping in not CpG-rich 
regions (not CpG-rich promoters, gene bodies, 
intergenic regions) was strikingly lower. This means 
that different regions of the array are more suitable to a 

single-probe or a region-centric analysis. Noteworthy, 
the proposed probes classification does not have only a 
mere methodological value, but it has important 
biological implications. First of all, the region-centric 
approach is selectively applied to short regions (most 
CpG islands are within 3000 bp, while shores and 
shelves are by definition 2000 bp long), in which the 
methylation level of CpG probes is more likely to be 
correlated. Moreover, a growing body of evidences 
indicates that the function of DNA methylation greatly 
varies with genomic context [28]. This means for 
example that methylation of CpG islands, of shores or 
of gene bodies can differently affect gene expression 
and that it can be differently affected by the condition 
under study. Also, the methylation status of non-genic 
regions can have important consequences, for example 
by influencing chromatin architecture and stability, and 
it is likely that the effect of methylation at non-genic 
CpG islands or at open-sea CpG sites can be different. 
Analyzing separately these regions that have different 
functional meaning can therefore facilitate the 
identification of informative variations in methylation 
profiles in the model under consideration. Moreover, 
this approach provides shorter ranked lists of results that 
can be more easily examined by the researcher. 
 
We used multivariate ANOVA (MANOVA) to test for 
general changes in methylation in the region-centric 
analysis. This approach has been previously adopted for 
the analysis of methylation data [29,30] as it allows to 
explore simultaneously the relationship between several 
dependent variables (in our case, 3 adjacent CpG probes 
within a BOP) and the independent variables under 
study. Notably, most of the other algorithms for DMRs 
identification is not based on a multivariate approach, 
but combines the results from univariate analyses on 
adjacent CpG probes [27]. As shown in the meta-
analysis, MANOVA can identify not only regions in 
which multiple adjacent probes are significantly 
different between the samples, but also regions in which 
there are concomitant little variations of adjacent 
probes, none of which would reach the significance 
threshold by itself in a univariate test. This could be 
particularly valuable when small differences exist 
between the samples under study.  
 
Overall the strength of our approach is that not only 
microarray features are grouped in biologically 
meaningful groups, but also that the ranking criterion is 
based on a multivariate approach. Additionally, 
significant BOPs can be ranked also on the basis of the 
“bubble” of differential methylation, defined as at least 
two adjacent probes whose mean methylation in the 
groups under investigation differs of at least a minimum 
value. As a confirm of the validity of the approach we 
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demonstrated that, when considering the top ranking 
BOPs, our method increased the number of common 
genes identified in all three studies compared to a 
single-probe analysis, indicating that it is likely to 
provide a more informative overview of biologically 
relevant results. 
 
The analysis pipeline we propose is implemented in R 
software environment and is therefore freely available. 
Researchers just need to define the analysis parameters, 
such as the covariates to be used in the 
ANOVA/MANOVA, the FDR correction method, the 
significance threshold and the minimum difference 
between mean methylation values between the groups 
under investigation. 
 
We used our analysis pipeline to perform a meta-
analysis on 3 Infinium 450k datasets that investigated 
age-associated changes in DNA methylation. The 3 
datasets are considerably different in terms of both 
samples number and age range. Nevertheless, we were 
able to identify a core of genomic regions whose 
methylation profiles systematically vary with aging, 
from newborns to nonagenarians. To our knowledge, 
this is the first report describing a relatively large 
number of genomic regions with such characteristics. 
Only a subset of these genes was identified by Hannum 
et al. and by Heyn et al. or was included in Horvath’s 
epigenetic clock. Inferring how the methylation of these 
regions can contribute to the aging process is out of the 
scope of this paper, although the life-long variations in 
DNA methylation that we described are suggestive of a 
profound link between development and aging [31]. 
Many genes showed marked differences between cord 
blood and the other age ranges. Although these 
differences could in principle be ascribed to differences 
in blood cells composition, it is tempting to suggest that 
during the first phases of growth a profound epigenetic 
remodeling occurs. It is interesting to note that 2 genes 
from our list (SST and HOXC4) are enclosed as age-
related genes in the GenAge database [22]. Moreover, a 
Pubmed search using the query “gene name AND aging 
[title/abstract]” gave some interesting hints, as the 
expression of CACNA1G, COL1A1, LAG3, PTGDS and 
ZEB2 genes resulted modulated by age in several models 
[32–38]. COL1A1 and PTGDS emerged from the same 
study [32] in which hippocampal gene expression in 
senescent female mice was assessed after long-term 
exercise. The observation that age-dependent expression 
of the above mentioned genes was detected in tissues 
other than blood prompts further studies to evaluate 
general rearrangements in epigenetic landscapes of 
different cell types. Finally, the methylation status of 
ELOVL2, FHL2 and EDARADD genomic regions was 
previously described as associated to aging [4,39]. 

Collectively the above observations indicate that this 
short list of genes, selected by means of an analytical 
pipeline that is tailored on the architecture of the 
microarray and that is more likely to provide 
biologically relevant findings, can be used as the basis 
for deeper investigations to shed light on the molecular 
basis of the aging process. 
 
METHODS 
 
Datasets. D1 and D2 are publicly available at NCBI 
Gene Expression Omnibus (GEO) (http://www.ncbi. 
nlm.nih.gov/geo/) under accession numbers GSE40279 
and GSE30870 respectively. D3 includes 32 mother–
offspring couples and is part of a larger datasets 
submitted to GEO with accession number GSE52588. 
 
Estimation of cell counts. Abundance measures of blood 
cell types were estimated using the appropriate option 
of the DNA Methylation Age Calculator, freely 
available at https://dnamage.genetics.ucla.edu/ [12], 
which is in part based on a previously published 
algorithm [40]. As suggested by authors, methylation 
measures were corrected for “CD8.naive” (Naive CD8 
T cells), “CD8pCD28nCD45RAn” (memory and 
effector T cells), “PlasmaBlast” (plasmablasts), CD4 T 
cells, monocytes, granulocytes and natural killer cells. 
 
BOPs definition and DMR identification. The 
analytical pipeline is implemented as an R script freely 
available at https://immunologyomics.unibo.it/labkey/-
450K_pipeline.url. For ease of use, the pipeline is split 
in 3 step: 1) Definition of Classes and BOPs; 2) DMRs 
identification 3) FDR correction, selection of 
significant DMRs/probes, sorting of probes and plots. 
Step 2 and step 3 are separately provided for Class A 
BOPs containing 3 or more probes, Class A BOPs 
containing 1 or 2 probes, Class B BOPs containing 3 
or more probes, Class B BOPs containing 1 or 2 
probes , Class C probes and Class D probes. Detailed 
explanations of input and output files are provided. A 
general description of the 3 analytical steps is provided 
below: 
 
Step 1: Probes containing missing values  and probes 
with a detection p-value greater than 0.05 in more than 
75% samples were removed, together with those 
localized on sexual chromosomes. Probes that 
contained SNPs were annotated as previously 
described [21]. For probes classification and BOPs 
definition, the RELATION_TO_UCSC_CPG_ISLAND 
and the UCSC_REFGEN_NAME columns in the 
Illumina Infinium 450k annotation were used to subset 
the array probes in four classes and to group probes in 
BOPs.  
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Step 2: DMRs identification is based on MANOVA and 
ANOVA functions from the R package car. For sliding 
windows MANOVA, the function is applied on sliding 
windows of 3 consecutive CpGs within the same BOP. 
For each BOP, the lowest p-value among those 
calculated for the different sliding windows is kept. 
Both MANOVA and ANOVA analysis support the use 
of both categorical and continuous covariates. Parallel 
processing can be used if the computational 
environment supports it. 
 
Step 3: The analytic pipeline allows to correct 
MANOVA/ANOVA p-values for multiple testing using 
the correction methods implemented in the R package 
multtest. BOPs/probes can be selected on the basis of a 
significance threshold on either nominal or FDR-
corrected p-values. In the case of BOP analysis, BOPs 
can be ranked on the basis of a user-defined minimum 
mean methylation difference between adjacent CpG 
probes. MDS plots, heatmap plots and line plots are 
generated as outputs. 
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