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Abstract: Most common diseases, e.g., cancer are driven by not one, but multiple cell surface receptors that trigger and
sustain a pathologic signaling network. The largest fraction of therapeutic agents that target individual receptors/pathways
eventually fail due to the emergence of compensatory mechanisms that reestablish the pathologic network. Recently, a
rapidly emerging paradigm has revealed GIV/Girdin as a central platform for receptor cross-talk which integrates signals
downstream of a myriad of cell surface receptors, and modulates several key pathways within downstream signaling
network, all via non-canonical activation of trimeric G proteins. Unlike canonical signal transduction via G proteins, which
is spatially and temporally restricted, the temporal and spatial features of non-canonical activation of G protein via GIV is
unusually unrestricted. Consequently, the GIVeG protein interface serves as a central hub allowing for control over several
pathways within the pathologic signaling network, all at once. The relevance of this new paradigm in cancer and other
disease states and the pros and cons of targeting the GIVeG protein interface are discussed.

Cancer, like most other chronic diseases, is a signal
transduction disease par excellence, a consequence of
aberrant transmission of environmental cues to the
interior of the cell via a complex network of signaling
hubs. Heterotrimeric G proteins are one such major
signaling hub that are essential components of the signal
gating machinery in healthy eukaryotic cells. They
serve as molecular switches for signal transmission via
7 transmembrane domain G protein coupled receptors
(GPCRs) to intracellular effectors [39]. Activation of G
proteins is tightly regulated by a network of modulators:
guanine nucleotide exchange factors (GEFs) trigger
activation, GTPase activating proteins (GAPs) enhance
inactivation, and finally, guanidine dissociation
inhibitors (GDIs) uncouple the trimer and maintain the
G protein in an inactive (GDP-bound) conformation
[40]. These modulators function coordinately to
maintain finiteness of signal transduction via G proteins
[41], mostly by ensuring that activation of G proteins is

spatially and temporally restricted, i.e., triggered
exclusively at the plasma membrane (PM) by agonist
activation of GPCRs via a process that is completed
within a few hundred milliseconds [42].

The importance of maintaining the critical balance
between G protein activation and deactivation and the
loss of such balance in cancer has been highlighted by
studies on several cancer-associated mutants of trimeric
G protein a-subunits and GPCRs (reviewed in [43, 44]).
These mutations trigger malignant transformation and
oncogenesis by rendering the G proteins constitutively
active in the GTP-bound conformation -either by
impairing its intrinsic ability to hydrolyze GTP (i.e.,
GTPase-deficient) or by reducing its sensitivity to the
action of GAPs (i.e., GAP-insensitive). Thus, it has now
been established that “hyperactivation of G proteins” is
a bona-fide basis for oncogenic signaling via trimeric G
proteins.
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Despite the insights gained, the rare oncogenic driver
mutations in G proteins in a handful of cancers do not
explain the basis for deregulated G protein signaling in
the vast majority of cancers that do not harbor mutant G
or GPCR proteins. A growing body of work by us and
others [24, 45, 46] have indicated that genetic or
epigenetic factors that deregulate the intricate network
of G protein regulatory proteins are just as significant as
those that directly affect the G proteins /GPCRs, if not
more. More specifically, a recently identified family of
non-receptor GEFs, called rheostats [35] best exemplify
the wide prevalence and broad significance of
deregulated G protein regulatory network in cancers.
Rheostats like GIV (Ga-Interacting Vesicle-associated,;
a.k.a Girdin) [24] and other members of this family, are
non-receptor GEFs for trimeric G proteins; they derive
their name based on their ability to 'adjust' the duration
of G protein signaling depending on the abundance of
functional copies of the GEF in cells [35]. Studies on
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GIV-GEF have led to the rapid emergence of a new
paradigm in non-canonical activation of trimeric G
proteins that has distinctive temporal and spatial
features. Such activation appears to be less constrained
and less restricted than canonical G protein activation
by receptor GEFs (i.e., GPCRs) in three major ways
(summarized in [24]): 1) G proteins can be
transactivated by diverse classes of receptors, e.g.,
growth factor RTKs, TLRs, integrins and GPCRs--
many of which are typically not known to bind or
activate G proteins; 2) G proteins both at the PM and
on internal membranes that are discontinuous with the
PM can be activated; and 3) Activation continues for
prolonged periods of time (as opposed to milliseconds).

While the molecular mechanisms that govern such non-
canonical G protein activation and the variety of
pathways it modulates (summarized in Figure 1) are still
unfolding, the relevance of this new paradigm in cancer
and other diseases is clear (summarized in [24]).
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Figure 1. Activation of G proteins by GIV-GEF modulates multi-receptor signaling and broadly
impacts the downstream signaling network. Schematic showing the diverse classes of receptors
(upper half) which sense a variety of chemical signals, that converge on GIV. Lower part shows the
consequence of non-canonical transactivation of G proteins by GIV (when GIV-GEF is functionally intact or
turned "ON") on the multitude of downstream pathways within the signaling network. Green =
enhancement; Red = suppression. Shown in the middle are three known ways to either inhibit (PKCO
selectively phosphoinhibits GIV-GEF [27]; SHP-1 dephosphorylates tyrosine-phosphorylated GIV [30]) or
activate (CDK5 phosphoactivates GIV-GEF [37]) GIV-dependent signaling.
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Disease/ Pathology Effect of GIV's GEF Receptor(s) Citation
Investigated function Studied
Migration/Tnvasion "ON" = Enhances IGF1R, EGFR, [8, 11, 36,
£ "OFF" = Inhibits Multi-receptor* 51, 52]
Cancer Stemness Not examined -- [19]
Progression Chemoresistance Not examined -- [53]
Tumor-Stroma Interactions Not examined PDGFR, TGFBR, CXCR4 [2]
Tumor angiogenesis Not examined VEGFR [54]
Organ Myofibroblast transdifferentiation, AT
; N . . L ON" = Enhances
Fibrosis collagen production, chemotaxis, mitosis, " W T PDGFR, CCR1, TGFBR
. . Lo . OFF" = Inhibits [4]
(Liver) anti-apoptotic signaling
Dermal
"ON" = Enhances . «
Wou.nd Wound closure "OFF" = Inhibits Multi-receptor [52]
Healing
Nephrotic . .. "ON" = Enhances survival
Syndrome Podocyte survival after glomerular injury "OFF" = Inhibits survival VEGFR [34]
Insulin
Resistance, Metabolic insulin response in the skeletal Not examined InsR [55]
Type II muscle
Diabetes
Disorders of | eulaizaton:vein POGF, Angiotensinl, | ¢ o
Blood Vessels & i > Not examined VEGF
repair; vein graft
Neuronal
Plasticity, . .. .
Memory Synaptic plasticity Not examined NMDA [60]

Most of these diseases, if not all, are characterized by
cellular processes (migration, proliferation,
apoptosis/survival, autophagy, secretion, etc) that are

driven by more than one receptor or one class of
receptors, and most often require synergistic signaling of

diverse classes of receptors. GIV appears to serve as a

platform on which crosstalk between diverse classes of

receptors either directly (in the case of RTKs [24]) or
indirectly (via mechanisms that are still unclear)
converge; GIV's intrinsic GEF activity subsequently
translates the converging signals into activation of Gai in
the vicinity of activated receptors. The impact of such
transactivation on downstream signals is equally diverse
(Figure 1). When GIV-GEF is transcriptionally
upregulated [11, 38] and/or turned "ON" by phospho-
activation [37], Gai is activated and multiple signaling
pathways are either enhanced or suppressed, thereby
affecting an entire network, not just individual pathways.
Conversely, when GIV-GEF is turned "OFF" by selective
phosphoinhibition [27] or alternative splicing [31, 35],
Gai activation cannot be coupled to incoming signals;
consequently, the network assumes a yin-yang mirror
image pattern (Figure 1).

Given the broad landscape of signaling pathways that
GIV modulates, and its ubiquitous nature of expression,
it is not surprising that deregulation of GIV-GEF drives
several pathophysiologic conditions (Table). In the
context of cancer, it is clear that high copies of GIV
means unrestricted G protein signaling and propagation
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Figure 2. GIV is a bona-fide prometastatic protein.
Schematic summarizing the variety of solid tumors in which
elevated expression of GIV/Girdin in tumor cells has been linked
to its role in imparting stemness, invasiveness, prometastatic
and anti-apoptotic signaling, aggressiveness and poor clinical
outcome has been studied.
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of signals that enhance tumorigenesis (like
invasiveness, stemness and chemoresistance; [24],
Table) regardless of the receptor of origin. Given the
nature of receptor classes modulates and the
prometastatic nature of the signaling pathways
enhanced, GIV's expression at high levels carries a poor
prognosis across a broad range of solid tumors (Figure
2). Although prometastatic signaling is the most well
understood role of GIV, the striking yin-yang effect of
GEF-ON versus GEF-OFF states has also been
described in the context of some other cellular processes
and diseases, e.g., fibrosis, wound healing, diabetes
[24], most, if not all these diseases are also multi-
receptor in origin (Table; green columns). It is possible
that a similar yin-yang effect modulates all other
diseases where GIV's role has been defined but the role
of its GEF function has not (Table; red columns).

Finally, the ability to manipulate a broad signaling
network and reset it from an unstable pathologic to a
stable physiologic state downstream of multiple
receptors by fine-tuning GIV's GEF function is an
attractive concept because of many reasons: 1)
Eliminates the need to block physiologic signaling via
cell surface receptors; 2) Overcomes the limitations of
unknown upstream and downstream components; 3)
Preserves the utility of biomarkers/therapeutic targets
despite re-wiring of signaling pathways during the
course of disease progression. Recently, in a proof-of-
concept study [47] using cell permeable peptides
exogenous modulation of GIV's GEF function allowed
resetting pathologic signaling networks and phenotypes
in diverse cell types, while sparing individual receptors.
Such a strategy represents a fundamental deviation from
the current strategy of individual pathway/receptor-
blockade, that sooner or later fails due to a switch in
addiction of the tumor from the targeted pathway to
other pathways [48]. An appropriate analogy for such
individual receptor/pathway blockade is the futility of
severing the heads of a Hydra; for each head severed,
two more grows in its place. While the studies on GIV-
GEF indicate that it may be an unusual hub for
convergent multi-receptor signaling for the broad
modulation of the "disease network", and raise our hope
that the GIVeGui-interface may serve as an effective
target for therapy, several hurdles lie ahead of us before
such a possibility can be realized. For example,
targeting a protein like GIV, which is expressed
ubiquitously and serves a long list of roles in normal
tissues [24] may carry an insurmountable risk of side
effects. Even if targeting the targeted therapy selectively
to the tumor cells overcomes the first challenge, the
second challenge is that inhibition of the GIVeGai-
interface may inadvertently disrupt also signaling via

other members of this family [49, 50] that share a
similar structural basis for activating G proteins.

In conclusion, through the studies on GIV, we have
obtained a sneak preview of just how large the footprint
of oncogenic signaling via trimeric G proteins could be.
Because GIV is just one of the members of the rheostat
family, we are likely seeing only the proverbial tip of
the iceberg, and a lot more must be known before any of
these findings can be translated to transformative and
impactful therapies and/or biomarkers for personalized
care.
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