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Stochastic epigenetic mutations (DNA methylation) increase
exponentially in human aging and correlate with X chromosome
inactivation skewing in females

Davide Gentilini!, Paolo Garagnaniz's, Serena Pisoni', Maria Giulia Bacalini>*, Luciano Calzari’,
Daniela Mari*, Giovanni Vitale™®, Claudio Franceschi*?, and Anna Maria Di Blasio®

1 Istituto Auxologico Italiano IRCCS, Cusano Milanino, 20095 Milan, Italy

2 Department of Experimental, Diagnostic and Specialty Medicine, Alima Mater Studiorum- University of Bologna,
Bologna 40138, Italy

? Interdepartmental Center "L. Galvani", University of Bologna, Bologna 40126, Italy

* Geriatric Unit, IRCCS Ca’ Granda Foundation Maggiore Policlinico Hospital, Milan, Italy

® Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy

Key words: epimutations, DNA methylation, aging, X chromosome inactivation skewing, epigenetics
Received: 06/23/15; Accepted: 08/16/15; Published: 08/23/15
Correspondence to: Claudio Franceschi; E-mail: claudio.franceschi@unibo.it

Copyright: Gentilini et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Abstract: In this study we applied a new analytical strategy to investigate the relations between stochastic epigenetic
mutations (SEMs) and aging. We analysed methylation levels through the Infinium HumanMethylation27 and
HumanMethylation450 BeadChips in a population of 178 subjects ranging from 3 to 106 years. For each CpG probe,
epimutated subjects were identified as the extreme outliers with methylation level exceeding three times interquartile
ranges the first quartile (Q1-(3 x IQR)) or the third quartile (Q3+(3 x IQR)). We demonstrated that the number of SEMs was
low in childhood and increased exponentially during aging. Using the HUMARA method, skewing of X chromosome
inactivation (XCI) was evaluated in heterozygotes women. Multivariate analysis indicated a significant correlation between
log(SEMs) and degree of XCl skewing after adjustment for age (B = 0.41; confidence interval: 0.14, 0.68; p-value = 0.0053).
The PATH analysis tested the complete model containing the variables: skewing of XCl, age, log(SEMs) and overall CpG
methylation. After adjusting for the number of epimutations we failed to confirm the well reported correlation between
skewing of XCl and aging. This evidence might suggest that the known correlation between XCl skewing and aging could
not be a direct association but mediated by the number of SEMs.

INTRODUCTION

In multicellular organisms, specificity of cell types is
maintained by mitotically heritable differences in gene
expression, which are in part regulated by epigenetic
mechanisms. These include RNA-based mechanisms,
histone modifications, and DNA methylation [1]. The
full range of epigenetic marks is currently unknown but
is potentially enormous, considering that the diploid
human epigenome contains >10° Cytosines (of which
>10" are CpGs) and >10° histone tails that can all
potentially vary.

DNA methylation is one of the best understood
epigenetic modification and has an important role in
several biological processes such as genome imprinting,
defence against viral sequences, inhibition of
recombination, as well as assembly of heterochromatin

[2].

Aberrant DNA methylation patterns have been linked
to genomic instability and increased mutation rates
[3,4]. The role of DNA methylation has been mainly
explored in the context of cancer [5,6]. Findings from
these studies have extensively demonstrated that
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cancer development is associated with gain of DNA
methylation at CpG islands, loss-of-imprinting and
epigenetic remodeling of repeat elements [7].
Interestingly, altered DNA methylation seems to be
involved in the pathogenesis of other age-related
diseases, such as cardiovascular, neurological and
metabolic disorders, and autoimmune diseases [8].

Recently published papers also demonstrate that DNA
methylation patterns are not static and they naturally
change with aging in a complex manner. The
biological meaning of these changes remain to be
elucidated although many authors suggest that aging-
associated epigenetic modifications may play a central
role in the development of several age-related diseases
[9,10].

Several studies analysed the DNA methylation status in
groups of subjects going from childhood to centenarian
age through a genome-wide approach and reported an
age-related decrease in global DNA methylation [11—
13]. Important insights have also been gained regarding
the genes showing promoter hyper- or hypomethylation
as function of age [13-18].

Age-associated hypermethylation preferentially affects
loci at CpG islands and genes involved in
developmental functions and in the control of
metabolism [13,19]. Conversely, hypomethylation
seems to mainly involve repetitive elements like Alu
sequences [13].

Technologies able to investigate the epigenetic profile
have recently reached the stage at which large-scale
studies are becoming feasible. Next Generation
Sequencing can be considered the future challenge,
although array-based methods actually represent the
most suitable and cheap devices for genome wide
epigenetic  studies. The increasing interest in
epigenome-wide association studies (EWASs) has
supported the development of a growing number of
analytical tools and packages for the analysis of array
methylation data [14,20-25].

Usually, after quality control step and normalisation of
the dataset, mean methylation levels are calculated for
each CpG site and are compared between groups of
subjects in order to identify significant differences or
correlations. This approach is useful and powerful to
identify epigenetic alterations shared by a group of
subjects and potentially associated with their phenotype.
It provides a general overview of the effect size but
does not reflect differences in variances or other
features of the methylation spectrum.

Rare or stochastic epimutations that are not shared
among subjects and that minimally affect the mean
methylation level of the group remain unexplored,
although they may play a role in phenotype
development. Furthermore, an analytical strategy
based on comparisons of mean methylation values
does not allow to process data obtained from single
subjects.

As an example, studies on aging well depicted common
epigenetic modifications associated to the aging
process, however there is still a lack of knowledge
regarding the rate of epigenetic mutations that
stochastically arise on the genome and that are not
shared among subjects.

To investigate this issue we propose herein a different
analytical approach that allows to identify stochastic
epigenetic mutation (SEMs) not shared among subjects.
We applied this analytical strategy to investigate the
relations between stochastic epigenetic alteration and
aging. Furthermore, we studied the relation between
SEMs and age-dependent skewing of X chromosome
inactivation that represents a phenomenon favoring the
expression of multiple deleterious alleles and
consequently influencing human health [26].

RESULTS

Overall DNA methylation is correlated with age and
BMI

Methylation levels of 25.014 CpG sites were evaluated
in whole blood from 170 subjects ranging from 3 to 106
years. A first descriptive evaluation of the methylation
status was performed using the Principal Component
Analysis (Supplemental Figure 1). This analysis
excluded the presence of samples with aberrant
epigenetic profiles and the presence of clusters of
samples carrying peculiar epigenetic features. Subjects
were then grouped in 5 age ranges (0-19 years, 20-39
years, 40-59 years, 60-79 years, 80-106 years) including
at least 10 subjects in each age range.

As shown in Figure 1A, global DNA methylation 8
levels progressively decreased with age and were
inversely correlated with aging (B = -0.36; confidence
interval = -0.48, -0.22; p-value = 1.43 x 10°).
Moreover, a significant progressive decrease in overall
DNA methylation levels was also associated with BMI,
as shown by the density plot in Figure 1B. Indeed, DNA
methylation was inversely correlated with BMI also
after adjustment for age (B = -0.19642; confidence
interval: -0.37, -0.02; p-value < 0.05).
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Figure 1. DNA Methylation profile distribution. The density plot describes the mean methylation profile of
samples grouped by age range (A) and by BMI range (B).
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Figure 2. Schematic description of the SEM. For each probe, a Box-and-whiskers plot analysis identifies
extreme outliers samples. For each sample epimutations are detected, counted and mapped considering
their genomic position.
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The number of epimutations increases exponentially
during aging

The distribution and variability of methylation levels
were studied for each one of the 25.014 CpG sites using
Box-and-whiskers plots (Figure 2) as described in the
materials and methods section. This allowed to obtain
the total number of SEMs for each subject.

As shown in Figure 3A, considering age ranges, the
mean number of SEMs increased exponentially during

aging.
SEMs data were not normally distributed and thus were

logarithmic transformed before regression analysis. A
strong correlation between age ranges and log(SEM)
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was evident (n = 0.92) (Figure 3B). This correlation was
still significant when the subjects were not grouped in
age ranges but considered individually (r = 0.63;
confidence interval: 0.53, 0.71; p-value = 2.2 x 10
'%)(Figure 3C).

The density plot in Figure 3D shows the age dependent
shift in SEMs frequency depending on age range.

Multivariate analysis performed considering log(SEM),
overall DNA methylation levels, BMI and aging
confirmed that these findings were not influenced by the
overall DNA methylation levels. Interestingly, no
significant correlation between log(SEMs) and BMI
even after adjustment for age and other covariates was
detected.
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Figure 3. Correlations between epimutations and aging. (A) Exponential relation between age ranges
and number of SEM. (B) Linear correlation between age ranges and log(SEM), red squares indicates mean
log(SEM) value. (C) Linear correlation between age log(SEM) considering all samples independently. (D)
Density plot describing age dependent shift in log(SEM).
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Figure 4. Path diagram with associated path coefficients (B). Arrows indicate the interrelationships tested in the
analysis: red arrows indicate significant relationships (p value < 0.05), black arrows indicate non-significant relationships.

AVG beta = average DNA methylation [3 values.

The number of SEMs is correlated with skewing of
X chromosome inactivation

Using the HUMARA method, skewing of X
chromosome inactivation (XCI) was evaluated in a
subset of 45 heterozygous women. Multivariate analysis
indicated a significant correlation between log(SEM)
and degree of XCI after adjustment for age (f = 0.41;
confidence interval: 0.14, 0.68; p-value = 0.0053).

Subsequently, we performed a PATH analysis using
the not imputed original dataset to test the complete
model containing the variables skewing of XCI, age,
log(SEMs) and overall CpG methylation in order to
understand the relations between them. After adjusting
for the number of epimutations, the marginal
correlation between skewing of XCI and aging was not
significant yet. Figure 4 shows the path with the
respective standardized coefficients. Similar results
were obtained also using and combining the five
imputed datasets.

DISCUSSION

Recent findings demonstrate that age associated
epigenetic modifications involve specific array of genes
that become hyper or hypo-methylated [11-16].

In addition to this common epigenetic drift that involves
specific loci and is shared among old subjects, there are
also stochastic epigenetic mutations that arise randomly
in the genome and that are not shared among subjects.
The somatic mutation theory of aging claims that
accumulation of stochastic mutations in somatic cells
results in a decrease of cellular functions [27] and plays
an important role in aging and in several age-related
diseases. Ong et al. recently reported a massive increase
in variably methylated region with age and in regions of
the genome associated with open chromatin and
neurotransmission [21]. However, to date there are no
data regarding the accumulation rate of epigenetic
mutations.

In the present study we investigated this specific topic
with a new analytical strategy. Briefly, in a population
of normal subjects we estimated, for each locus, the
normal methylation range. This allowed us to identify
epimutations when the methylation value of a subject
exceeded the normal range and was extremely far from
that of the other subjects. We validated this type of
analysis using duplicated samples and samples with
well-known and previously reported epigenetic
alteration.

Using this analytical approach, we report for the first
time that the number of SEMs is low in childhood and
increases exponentially during aging. It is highly
variable among individuals but the correlation between
log(SEMs) and age is extremely strong. These findings
lead to speculate that SEMs might have a predictive
value for aging and could be used as an index of the
biological age.

We also confirmed that overall DNA methylation level
decreases  during aging and observed that,
independently of age, BMI can influence DNA
methylation. These data are in line with previous studies
reporting an inverse correlation between BMI and
LINE-1 methylation [28]. In contrast, no association
between BMI and the number of SEMs was detected.
This observation is worth noting and unexpected if
considering the association between BMI and food
intake that, by itself, can deeply influence DNA
methylation [29-31]. Finally, we investigated the
relationship between the number of SEMs and XCI
skewing. This phenomenon is considered a natural
consequence of aging [32] and it has been reported to be
associated with several age-related diseases [33-38].
Moreover, recent findings suggest that XCI skewing
might also influence human longevity and life span
[26].

We have described a significant correlation between
XCI skewing and the number of observed SEM.
Interestingly, the correlation between age and XCI
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skewing, previously reported in other studies [32,39,40]
did not remain significant when the number of SEMs
was considered as a covariate. These results may
suggest for the first time that XCI skewing may not be a
direct consequence of aging. Indeed, this phenomenon
has been recently widely debated. Some studies have
proposed that it could be the result of a clonal stochastic
loss of haematopoietic cells [36,41] or of a competitive
advantage for haematopoietic stem cells with a specific
genotype [42]. The data presented herein support this
hypothesis leading to speculate that an increased
number of SEMs might influence haematopoietic stem
cells viability or might create conditions able to induce
clonal stochastic loss of a specific type of
haematopoietic cells.

We acknowledge that the present study has few
limitations:

1) Only DNA from blood cells was analyzed and, thus,
additional studies on other tissues are mandatory to
confirm these preliminary observations.

2) The phenotypic data of the subjects studied are rather
scanty. Future studies based on a detailed phenotypic
characterization may better investigate the effect of
SEMs on human health and confirm their role as a
predictor of human aging and healthy aging.

3) The number of subjects enrolled is consistent, but we
must underline that a larger sample size could better
estimate normal ranges of DNA methylation for each
locus.

In conclusion, the analytical approach presented herein
might be useful to identify for each subject of a
population the pattern of epimutations that could have a
role in determining his phenotype. Moreover, we report
for the first time that the number of SEMs increase
exponentially during aging. This observation might be
used as a predictor of aging and might have important
implications in future. Finally, we present evidence
suggesting that the known association between XCI
skewing and aging could be mediated by the number of
stochastic epimutations.

METHODS

Study population. We enrolled a total number of 178
subjects spanning from 3 to 106 years selected from
Istituto Auxologico Italiano Biobank. In order to better
estimate epimutations frequency we identified 5 age
ranges (0-19 years, 20-39 years, 40-59 years, 60-79
years, 80-106 years), enrolling at least 10 subjects for
each age range. An histogram of age and BMI
distribution of subjects is shown in Supplemental Figure
2.

Subjects with imprinting disorders, emathological
cancers, immune diseases were excluded from the
study. The study protocol was approved by the Ethical
Committee of the Istituto Auxologico Italiano.

DNA extraction and bisulphite treatment of the DNA.
Genomic DNA was extracted from peripheral blood
using the Wizard genomic DNA purification kit
(PROMEGA, Madison WI, USA). Samples were
processed for DNA isolation as follows: 3 to 5 mL of
blood were lysed with lysis solution provided, digested
with proteinase K in sodium dodecyl sulfate (SDS)
buffer at 37°C for 1 hours, then DNA was extracted by
salting-out, and resuspended in Tris- EDTA (TE)
buffer. Sodium bisulphite conversion of DNA (500 ng)
was performed by the EZ DNA Methylation-Gold Kit
(Zymo Research Corporation, Orange, CA) according to
the manufacturer’s protocol.

Quality control and quantification of DNA were
performed before and after bisulphite conversion. DNA
was quantified with NanoDrop (NanoDrop Products
Thermo Scientific Wilmington, DE) and quality was
assessed by visualisation of genomic DNA on 1%
agarose gel electrophoresis. Only DNA samples not
fragmented were subsequently processed.

Genome-wide methylation analyses. Whole-genome
methylation analysis of the DNA from 178 subjects was
performed using the Illumina Infinium Methylation
Platform (Illumina, San Diego, CA). 94 samples were
analysed using the Infinium HumanMethylation 450K
BeadChip while 84 samples were analysed using the
27K BeadChip. Those chips allow to assess the
methylation level of 485,764 and 27,578 CpG sites over
the entire genome, respectively.

The methylation profile was analysed according to the
manufacturer’s instructions using Illumina-supplied
reagents and conditions. In brief, after bisulfite
conversion, 250 ng of DNA were whole-genome
amplified (WGA) and enzymatically fragmented. The
bisulfite-converted WGA-DNA samples were purified
and randomized again prior to hybridization to
BeadChips. During hybridization, the WGA-DNA
molecules annealed to locus-specific DNA oligomers
linked to individual bead types, one designed against
the unmethylated site and one against the methylated
site. After hybridization, allele-specific single-base
extension provided another level of specificity and
incorporated a fluorescent label for detection. The level
of methylation was determined at each locus by the
intensity of the two possible fluorescent signals, specific
for the methylated and unmethylated alleles. DNA
methylation values, described as (- values, were

www.impactaging.com

AGING, August 2015, Vol. 7 No.8



recorded for each locus in each sample. Beta-value
provides a continuous measure of levels of DNA
methylation at a CpG site, ranging from 0 in the case of
completely unmethylated sites to 1 in completely
methylated sites.

HUMARA  assay. X-inactivation pattern was
determined in 45 female blood DNA samples using a
modification of the methylation analysis of the
HUMARA locus as described previously (26-
GENTILINI). Briefly, 250 ng of DNA were digested at
37°C for 2 h with 10 U Hpall and 10 U Hhal (CELBIO)
and a no-enzyme control digest was also setup for each
sample. Digested and undigested DNAs were then
amplified in duplicate PCRs using primers, amplifying
the highly polymorphic CAG repeat region in Exon 1 of
the AR gene at Xql2. The sequences of the primers
used were as follows: forward; 5’-GCT GTG AAG GTT
GCT GTT CCT CAT-3" |labelled with 5°-
phosphoamidite dye, reverse; 5’-TCC AGA ATC TGT
TCC AGA GCG TGC-3’. The samples were amplified
for 35 cycles comprising of 15 s at 95°C, 30 s at 62°C
and 30 s at 72°C with an initial denaturation at 95°C for
5 min. The PCR products were separated on an ABI 310
automated sequencer. The size of PCR product from
each allele was analysed by Genescan software for the
quantification by peak height.

XCI skewing was measured as Degree of Skewing
(DS), which designates the percentage of the
preferentially active allele. DS varies between 0% and
50%, where 0% indicates a random X inactivation
pattern and 50% a completely skewed inactivation
pattern.

Methylation data management, normalisation and
quality control. Methylation raw data were generated
using GenomeStudio software (Illumina, San Diego,
CA)and were pre-processed using IMA R package [23].
Samples with low bisulphite conversion (BS) efficiency
(BS control intensity values < 4000) were immediately
excluded from the analysis as well as samples that
failed the quality control analysis performed according
the IMA package pipeline. Moreover, a principal
component analysis was performed on methylation data
in order to identify and remove samples with aberrant
methylation profiles. A total of 8 samples were
excluded from the study. Density plot of B-values
showed a bimodal distribution with a shift between the
positions of the peaks derived from type I and type II
assay. Therefore, peak correction was performed using
the IMA package, moreover data were normalised using
background  correction  followed by  quantile
normalisation method. Furthermore, probes containing
missing B-values, probes having <95% of samples with

detection p-value <0.05 and probes on chromosome X
and Y were also removed from the analysis.

We finally pooled data obtained from 27K and from
450K arrays and created a new data matrix containing
25.014 probes that were in common between the two
array platforms and passed quality control steps.

Epimutations detection. The distribution and variability
of methylation levels in our population were studied for
each one of the 25.014 CpG sites using Box-and-
whiskers plots in order to identify SEMs. For each
probe, whenever the methylation level of one subject
extremely differed from the rest of the population we
considered the outlier sample as epimutated for that
locus.

Thus, for each locus epimutated subjects were identified
as the extreme outliers with methylation level exceeding
three times interquartile ranges Q1-(3 x IQR) and
Q3+(3 x IQR). Finally, all epimutated loci were
annotated in a new data matrix that allowed to calculate,
for each subject, the total amount of epimutations and
their genomic position.

A schematic description of the analysis is shown in
Figure 2.

The Box-and-whiskers plot analysis was conducted
using boxplot function provided in the R car package
and confirmed using the outlier function in the R
outliers package.

Validation of the SEM analysis. In order to confirm the
power of this analytical approach to detect epimutations
we performed two separate tests after introducing
positive controls.

1) We analysed 3 samples in duplicates and compared
epimutations found in each of them. Results showed a
mean correlation of 0.99 p< 0.01 among the
experiments. It’s important to underlie that the duplicate
samples underwent independent bisulfite conversion
reactions and this suggests that epimutations are not
significantly influenced by bisulfite conversion errors.

2) We analysed 48 whole blood DNA samples obtained
from subjects affected by imprinting diseases (BWS
syndrome, Angelman Syndrome and Silver Russel
syndrome) that attended diagnostic test at Istituto
Auxologico Italiano. For these subjects we already had
a medical report indicating the genomic position of their
epigenetic alteration. For this control test, we used only
data obtained from Illumina Infinium 450K arrays thus
reducing the number of the control population (n=91).
However, using a more informative array, we were able
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to better define all probes showing epigenetic
alterations. Briefly, after the identification of the
epimutated probes we performed a test for
overrepresentation of epimutated probes inside each
gene using the hypergeometric cumulative function. We
considered the total number of probes (Ng = 485.764),
the total number of epimutated probes in the selected
sample (Ns) the number of probes in each gene (G;) and
the epimutated probes in each gene (S)).

The analysis identified genes with enriched number of
epimutated probes (bonferroni corrected p-value < 0.05)
confirming the presence of the epigenetic alterations
previously reported in the medical report.

Supplemental Figure 3 shows positive control test
results.

All the R scripts employed as well as the set of
methylation data generated will be made freely
available to the scientific community.

Multiple regression and path analysis. The variables
(age, BMI, overall methylation level, Skewing of XCI
and log(SEM))were Z transformed and Z scores were
used for the multiple regression and path analysis.
Results of regression analyses were indicated as
standardised regression coefficients f.

The univariate and multivariate linear regressions were
conducted using the generalised linear mixed model
function provided in the R base package.

The interrelationships among skewing of XCI and the
other variables were examined by a path analysis
model. A path diagram with associated path coefficients
(B) was constructed as shown in Figure 4 based on
previous findings [13] and theoretic rationales.

As age is generally considered a determinant of changes
in XCI skewing profile and in overall DNA
methylation, direct and indirect Paths from age to these
components were tested. The Path Analysis was
performed using the General Structural Equation
Models R package.

Missing data imputation. Multiple imputation,
producing five imputed datasets, was carried out to
allow full use of all available data.

Imputation was performed using the bootstrap-based
EMB algorithm included in the R package Amelia II.
Five imputations were generated and models fitted to
each imputed dataset. Model results were consolidated
using Rubin’s rules [43].
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