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Abstract: Leukocyte telomere length (LTL) is considered one of the most predictive markers of biological aging. The aim of
this study was to identify novel pathways regulating LTL using a metabolomics approach. To this end, we tested associations
between 280 blood metabolites and LTL in 3511 females from TwinsUK and replicated our results in the KORA cohort. We
furthermore tested significant metabolites for associations with several aging-related phenotypes, gene expression markers
and epigenetic markers to investigate potential underlying pathways. Five metabolites were associated with LTL: Two
lysolipids, 1-stearoylglycerophosphoinositol (P=1.6x10") and 1-palmitoylglycerophosphoinositol (P=1.6x10"), were found to
be negatively associated with LTL and positively associated with phospholipase A2 expression levels suggesting an
involvement of fatty acid metabolism and particularly membrane composition in biological aging. Moreover, two gamma-
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glutamyl amino acids, gamma-glutamyltyrosine (P=2.5x10®) and gamma-glutamylphenylalanine (P=1.7x10"), were negatively
correlated with LTL. Both are products of the glutathione cycle and markers for increased oxidative stress. Metabolites were
also correlated with functional measures of aging, i.e. higher blood pressure and HDL cholesterol levels and poorer lung, liver
and kidney function. Our results suggest an involvement of altered fatty acid metabolism and increased oxidative stress in
human biological aging, reflected by LTL and age-related phenotypes of vital organ systems.

INTRODUCTION

Telomeres are repetitive DNA sequences located at the
end of each chromatid. Several proteins, such as the
telomere repeat-binding factor (TRF) 1 and 2, bind
specifically to this area forming large nucleoprotein
complexes, the t-loops [1]. These structures protect the
DNA from degradation and end-to-end fusion.
Telomeres shorten with each cell cycle, due to the
inability of the DNA polymerase to replicate the end of
the lagging strand. Thus, the shortening of telomeres
has been proposed as a “mitotic clock” which limits the
replicative life span of cells and causes cell senescence
[2]. In fact, leucocyte telomere length (LTL) has been
associated not only with chronological age [3] but also
many aging-related diseases, such as Alzheimer’s
Disease (AD) [4,5], cardiovascular disease [6,7] and
cancer [8,9]. Furthermore, LTL was found to predict
mortality [10,11] and longevity [12]. Thus, it was
suggested as potential biomarker of biological aging [13].

Genome-wide association studies have until now
identified ten genes associated with LTL [14,15,16,17].
Most of these genes physically interact with telomeres;
however, how the shortening of telomeres affects an
individual’s health is still not fully understood.

Recent developments in the field of metabolomics allow
for the high-throughput measurement of an extensive
set of low-molecular-weight molecules (metabolites)
[18]. Changes in metabolite concentrations reflect
physiological functions and can indicate early stages of
diseases [19]. Recently, a study on LTL revealed strong
associations with blood biomarkers in a cohort of
American Indians [20]. However, the study was small
(n=423) and lacked independent replication.

In this study, we assess to which extent metabolic
profiles are correlated with LTL in a large population
study (n=3511, females only) from the UK using a non-
targeted metabolomics platform. We replicate our results
in an independent cohort from Germany (n=904).
Furthermore, we examine the relationship of the LTL-
associated metabolites with aging-related phenotypes as
well as gene expression and methylation markers in order
to gain insights in the mechanisms of biological aging.

RESULTS

The demographic characteristics of the study
populations are presented in Table 1. We analyzed the
associations between 280 fasting blood metabolites and
LTL in 3511 women from the TwinsUK cohort (see
supplemental Table 1).

Table 1. Population Characteristics

TwinsUK KORA
N 3511 904
Age (yrs) 53.6+13.6 60.5 £ 8.8
MZ:DZ:Singletons* 1654:1360:497 0:0:904
TL 3.72 +£0.67 1.85+0.31
BMI (kg/m?) 2621 +5.14 27.87 £5.25
FEVI () 2.60 £ 0.61 2.79 £ 0.50
HDL (mmol/L) 1.71 £ 0.48
DBP (mm Hg) 78.01 £10.68
SBP (mm Hg) 126.71 £ 18.20
ALAT (IU/L) 27.63 £17.07
GGT (U/L) 28.36 £25.44
eGFR (mL/min/1.73m?) 83.78 + 17.07
smoking (non:ex:current) 1905:1134:447

*MZ=monozygotic, DZ=dizygotic
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Figure 1. Telomere length, metabolite and phenotype interrelationships. Nodes represent variables where rectangles represent
metabolites, circles represent phenotypes, pentagons represent expression levels and hexagons represent DNA methylation levels.
Links between nodes represent significant correlations (red negative, blue positive). Thicker edges indicate stronger correlations.

Table 2. Metabolites significantly associated with LTL.

TwinsUK KORA Meta
Metabolite PW beta [95%CI] p beta [95%CI] beta [95%CI] p
gf‘gﬁ‘;hymgﬂe Peptide  |-0.09 [-0.12:-0.05] 3.41x10° |-0.05 [-0.12:0.02] | -0.08 [-0.11:-0.05] 2.51x10°
;h‘“g:;;‘(’iﬁlsyl‘t’go Lipid 0.09 [-0.13:-0.05] 1.36x10°° | -0.00 [-0.07:0.07] | -0.07 [-0.10:-0.04] 1.60x10”
;g%iﬁg%f}ﬁero' Lipid -0.08 [-0.13:-0.04] 7.36x107 | -0.07 [-0.14:0.01] | -0.08 [-0.12:-0.04] 1.64x107°
Eiﬁlﬁﬁiﬁiﬁyl' Peptide  |-0.08 [-0.12:-0.04] 2.72x10°™ |-0.04 [-0.11:0.02] | -0.07 [-0.10:-0.04] 1.68x10°°
‘S‘L'Jf‘;‘élphen‘ﬂ Xenobiotic |-0.08 [-0.12:-0.04] 7.41x10” |-0.03 [-0.10:0.05] | -0.07 [-0.10:-0.03] 1.41x10™
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We found two lipids (1-stearoylglycerophosphoinositol:
Beta [95%CI] =-0.07 [-0.10:-0.04] change in metabolite
z-score per change in LTL z-score, P=1.6x10" and 1-
palmitoylglycerophosphoinositol: Beta [95%CI] =-0.08
[-0.12:-0.04], P=1.6x10"), two gamma-glutamyl-amino
acids (gamma—glutamyl‘?/rosine: Beta [95%CI] =-0.08 [-
0.11:-0.05], P=2.5x10" and gamma-glutamylphenyl-
alanine: Beta [95%CI] =-0.07 [-0.10:-0.04], P=1.7x10
5), and one xenobiotic (4-vinylphenol sulfate: Beta
[95%CI] =-0.07 [-0.10:-0.03], P=1.4x10") to be
negatively associated with LTL after adjustment for
potential confounding factors and after correcting the
results for multiple testing (Table 2, Supplemental
Figure 1). All five metabolites showed the same effects
with similar effect sizes in 904 female individuals from
the KORA F4 study, even though they did not reach
significance level. All metabolites remained Bonferroni-
significant (P<1.8x10™) after meta-analysis.

Three multivariate Lasso models were fitted to predict
LTL: The first using clinical variables only (age, BMI),
the second using the five identified metabolites only, and
the third using both clinical variables and metabolites.
The model based on metabolites alone could not achieve

0.95 -

o

©

o
1

the performance of the model based on clinical variables
alone, however, combining clinical variables with
metabolites significantly improved the prediction in the
combined model (Figure 2). In the combined model, 1-
stearoylglycerophosphoinisitol ~ was  the  strongest
predictor followed by the 4-vinylphenol sulfate. All five
metabolites were selected in the optimal Lasso model
(beta < 0), suggesting non-redundant associations with
LTL. The coefficient of determination, a measure of
goodness of fit, of the final model was estimated at
14.5% in a leave-one-out validation.

Moreover, we found all five metabolites to be strongly
associated with several aging-related phenotypes
independently of chronological age (Table 3): Both
lysolipids correlated with increased systolic blood
pressure (1-stearoylglycerophosphoinositol: Beta=1.09
[0.56:1.61], P=5.3x10" and I-palmitoylglycero-
phosphoinositol: Beta=1.10 [0.52:1.67], P=1.7x10").
Additionally, 1-palmitoyl-glycerophosphoinositol was
found to be associated with the serum concentration of
gamma-glutamyl transpeptidase (GGT), a measure of
liver function (Beta=0.08 [0.03:0.12], P=1.0x% 10'3).

Mean-Squared Error

0.85-

lambda

Figure 2. LTL prediction performance. The figure shows the prediction performance (mean square error on Y
axis) of three different Lasso models, based on metabolites only (red), clinical variables only (blue) and metabolites
with clinical variables combined (green), dependent on the amount of regularization (lambda on x axis).
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Table 3. Phenotypes associated with LTL and associated metabolites.

phenotype beta [95%CI] p

HDL cholesterol 0.04 [0.02:0.06] 2.50x10°

eGFR 1.42 [0.82:2.01] 2.79x10°

telomere length . 5
smoking -0.06 [-0.08:-0.03] 3.17x10

FEV1 0.03 [0.01:0.05] 8.85x10™

) o SBP 1.10[0.52:1.67] 1.76x10™

1-palmitoylglycerophosphoinositol 3
GGT 0.08 [0.03:0.12] 1.04x10

1-stearoylglycerophosphoinositol SBP 1.09 [0.56:1.61] 5.34x107

. smoking 0.24 [0.22:0.26] 2.32x107%

4-vinylphenol sulfate 3
FEV1 -0.02 [-0.04:-0.01] 1.40x10

eGFR -2.24 [-2.74:-1.73] 3.14x107"8

GGT 0.15[0.10:0.19] 3.21x10™"

gamma-glutamylphenylalanine FEV1 -0.03 [-0.05:-0.02] 4.48x10°

HDL cholesterol -0.03 [-0.05:-0.02] 1.15x107

ALAT 0.10 [0.05:0.14] 5.76x107

GGT 0.14 [0.10:0.19] 5.41x10™"

gamma-glutamyltyrosine eGFR -1.65 [-2.19:-1.11] 1.58x107

ALAT 0.11[0.06:0.16] 1.67x10”

The two gamma-glutamyl amino acids were strongly
associated with the estimated glomerular filtration rate
(eGFR), a marker for renal function (gamma-
glutamyltyrosine: Beta=-1.65 [-2.19:-1.11], P=1.6x10"
and gamma-glutamylphenylalanine: Beta=-2.24 [-2.74:-
1.73], P=3.1x10""), and two markers of liver function,
namely GGT and alanine amino transaminase (ALAT)
(GGT: Beta=0.14 [0.10:0.19], P=5.4x10"" and
Beta=0.15  [0.10:0.19], P=3.2x10"? respectively;
ALAT: Beta=0.11 [0.06:0.16], P=1.7x10" and
Beta=0.10  [0.05:0.14], P=5.8x10" respectively).
Gamma-glutamylphenylalanine was additionally
associated with lung function, measured as forced
expiratory volume in one second (FEV1, Beta=-0.03 [-
0.05:-0.02], P=4.5x10°), and HDL cholesterol levels
(Beta=-0.03 [-0.05:-0.02], P=1.1x10").

Moreover, the xenobiotic 4-vinylphenol sulfate was
strongly associated with tobacco smoking (Beta=0.24
[0.22:0.26], P=2.3x10"'"?) and also weakly with FEV1
(Beta=-0.02 [-0.04:-0.01], P=1.4x107).

Thus, all five metabolites were consistently associated
with accelerated biological aging, i.e. shorter telomeres,
higher blood pressure and higher HDL cholesterol levels

and poorer lung, liver and kidney function (Table 3 and
Figure 1).

To further investigate mechanisms of biological aging,
we analyzed the association of the five significant
metabolites with gene expression levels of related
enzymes, namely GGT and phospholipase A2 (PLA2),
in a subset of 753 individuals with RNA chip data from
available LCL probes available. We found gamma-
glutamyltyrosine was positively associated with GGT1
and GGTL3 gene expressions (probes ILMN 2274240:
Beta=0.09 [0.02:0.15], P=0.01 and ILMN 1786186:
Beta=0.07 [0.00:0.14], P=0.04). Also, 1-
stearoylglycerophosphoinositol was positively
associated with expression of the PLA2 gene PLA2G15
(probe ILMN 1756910: Beta=0.09 [0.01:0.16], P=0.02
and probe ILMN 1798955: Beta=0.08 [0.00:0.15],
P=0.05) as well as l-palmitoylglycerophosphoinositol
(probe  ILMN 1756910: Beta=0.08 [0.00:0.16],
P=0.05).

The metabolite 4-vinylphenol sulfate is known to be
associated with several DNA methylation probes,
possibly driven by tobacco smoking [21,22]. We found
one of these probes, cgl9572487, being significantly
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associated with LTL (Beta= 0.10 [0.04:0.17], P=9x10
%), smoking (Beta=-0.51 [-0.63:-0.39], P=9x10"%) and
4-vinylphenol sulfate levels (Beta=-0.05 [-0.09:-0.02],
P=1x10") in our data. The probe is located on

chromosome 17 in the retinoic acid receptor, alpha
(RARA) gene.

DISCUSSION

In the largest study of this kind, we searched for
molecular markers and mechanisms involved in LTL
regulation using a metabolomics approach. We
identified five novel blood metabolites, namely gamma-

glutamyltyrosine, gamma-glutamylphenylalanine, 1-
stearoylglycerophosphoinositol, 1-palmitoylglycero-
phosphoinositol and 4-vinylphenol sulfate,

independently associated with LTL with high statistical
significance. These metabolites belong to three different
classes: lysolipids, gamma-glutamyl amino acids and
xenobiotics, which will be discussed in the following.

Lysolipids

Lysolipids are produced from glycerophospholipids by
the enzyme phospholipase A2 (PLA2), which releases
one of the fatty acids from the glycerol backbone [23].
Glycerophospholipids were previously found to be
positively correlated with LTL [20] while in our study,
circulating levels of the lysolipids 1-stearoylglycero-
phosphoinositol and 1-palmitoylglycerophosphoinositol
were significantly associated with shortening of LTL.
This suggests an increased activity of PLA2 in
advanced biological aging. This hypothesis is further
confirmed by the positive association of the two
lysolipids with PLA2 gene expression levels in LCLs in
our study. PLA2 activity, amongst others, affects the
composition and physiology of cell membranes by
catalyzing the hydrolysis of membrane lipids [24,25].
The integrity of cell membranes and their ability to
resist oxidative stress have been shown to be key
aspects of biological aging [26]. Studies comparing
centenarians with younger controls identified alterations
of cell membrane composition [27] and particularly
depletion of the lysolipid stearoylphosphatidylcholine
[28] as possible reasons for longevity.

Another regulator of membrane fluidity is the saturation
of fatty acids. Both stearic acid and palmitic acid are
saturated fatty acids that are known to decrease
membrane fluidity, which in turn was associated with
increased susceptibility to disease [29,30,31]. In
contrast higher levels of polyunsaturated fatty acid-
containing phospholipids were observed in centenarians
compared to elderly [32], suggesting their involvement
in retarded biological aging. These alterations of

membrane composition with biological aging provide a
possible explanation for previously reported association
of LTL with e.g. AD [4].

Gamma-glutamyl amino acids

We found two gamma-glutamyl amino acids, gamma-
glutamyltyrosine and gamma-glutamylphenylalanine,
were negatively associated with LTL. These metabolites
are components of the gamma-glutamyl cycle and are
produced by the degradation of glutathione (GSH) and
its conjugates catalyzed by the enzyme GGT. The main
purpose of this reaction is regeneration of the
intracellular GSH pool, i.e. to break-down extra-cellular
GSH conjugates to make its components available for
reimport into the cell [33,34,35]. GSH is crucial for
detoxification of reactive oxygen species (ROS) as well
as other toxic compounds [33,34,35]. Thus, increased
GGT activity was proposed as a marker for increased
oxidative stress [33,36]. Gamma-glutamyltyrosine and
gamma-glutamylphenylalanine  were both  highly
correlated with the abundance of the GGT enzyme, as
well as GGT1 and GGTL3 gene expression in this
study. The serum concentration of GGT is a common
clinical marker for liver function [37]. While the liver
produces most of the GSH [34], in the body GGT is
most active in kidneys, which absorb GSH for
detoxification [34,37]. Accordingly, we also found
kidney function, measured as eGFR, being highly
correlated with both, LTL and gamma-glutamyl amino
acids. In conclusion, the gamma-glutamyl amino acids
indicate an involvement of increased oxidative stress
and worsened liver and kidney function in biological

aging.

We also found gamma-glutamylphenylalanine being
associated with worsened lung function in both cohorts.
This might also be due to oxidative stress, which was
previously associated with chronic lung disease [38].

4-Vinylphenol sulfate

4-vinylphenol sulfate is a xenobiotic that was reported
to be strongly associated with tobacco smoking [39].
We observed the same correlation in our data.
Moreover, we found both 4-vinylphenol sulfate as well
as LTL to be strongly correlated with cotinine
abundance, which is a well-established marker for
tobacco smoking. Accordingly, higher levels of 4-
vinylphenol sulfate were associated with worsened lung
function. Moreover, analysis of DNA methylation data
from our cohort confirmed previously published
associations of 4-vinylphenol sulfate with the
methylation level of a CpG site in the RARA gene [21]
and revealed an association of the same site with LTL
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and smoking. RARA is a transcription factor that was
shown to regulate differentiation and apoptosis [40].
However, despite the strong correlation between LTL
and smoking, we did not find a significant difference in
LTL between monozygotic twins, discordant for
smoking. These associations show how smoking
accelerates biological aging mediated by changes in
metabolism as well as DNA methylation. Smoking was
shown to have a profound effect on the GSH
metabolism of the lung [38], suggesting increased
oxidative stress as a possible link between smoking,
metabolism and LTL.

While we were able to identify five novel markers of
LTL, our study has some limits. First, we analyzed data
of females only and some of the identified metabolites
are known to show gender-specific blood levels [41].
However, in a small pilot (n=372) from the TwinsUK
cohort we observed concordant correlations between
LTL and gamma-glutamyl amino acids as well as 4-
vinylphenol sulfate for men as for women. In contrast,
we did not see an association between any of the
lysolipids and LTL in men, suggesting gender-specific
changes of fatty acid metabolism with aging. Second,
we did not reach statistical significance in the
replication cohort. This can be attributed to smaller
sample size. The power to detect the observed effects at
a significance level of 0.05 in 900 individuals is only
around 50%. Nonetheless, despite the lack of power, the
much higher age and the different geographical location
and genetic background of the replication cohort, all of
the five metabolites remain Bonferroni-significant after
meta-analysis.

Our results suggest two mechanisms of biological
aging: On the one hand, changes in lipid metabolism
and resulting changes of the cell membrane composition
appear to be related to LTL and biological aging. On the
other hand, we observed metabolites indicating
increased oxidative stress due to alterations in the GSH
metabolism, which has been previously related to LTL
and aging phenotypes. One possible cause for increased
oxidative stress is tobacco smoking, which might
mediate the association of 4-vinylphenol sulfate with
LTL. Moreover we found LTL and the related
metabolites being associated with impairment of liver
and kidney function. This highlights the importance of
detoxification, particularly of reactive oxygen species,
in biological aging.

METHODS

Discovery population. Study subjects were twins
enrolled in the TwinsUK registry, a national register of
adult twins recruited as volunteers without selecting for

any particular disease or trait [42]. In this study we
analyzed data from 3511 female twins who had who
had complete data for LTL and metabolomics profiling.
The study was approved by St. Thomas' Hospital
Research Ethics Committee, and all twins provided
informed written consent.

Replication cohort. KORA F4 is a population cohort
based in the region of Augsburg, Germany [43]. The
replication set consisted of 904 female individuals with
serum metabolite levels, measures of telomeres and
measures of lung function [44] available.

LTL measurement. A detailed description of LTL
measurement in both TwinsUK and KORA was
previously described in Codd et al. [15]. In brief, mean
LTL of the samples was measured using a quantitative
PCR-based technique [14,45] and expressed as a ratio of
telomere repeat length (T) to a copy number of a single
copy gene (S). A calibrator sample or a standard curve
was used for to standardize T/S results across plates.
LTLs measures were inverse normalized in both cohorts.

Metabolomics measurement. Metabolomics data was
measured by Metabolon Inc., Durham, USA as
previously  described [46]. Briefly, metabolite
concentrations were measured in blood samples using
an untargeted GC/MS and LC/MS platform.
Measurements were scaled by run-day median and
inverse normalized in both cohorts.

Aging phenotypes. Lung function was measured as
forced expiratory volume in one second (FEV1) in line
with ATS/ERS recommendations [44,47]. Furthermore,
diastolic and systolic blood pressure (DBP and SBP),
body mass index (BMI) and serum HDL cholesterol
levels were measured during clinical visits of the study
participants. Renal function was measured by
estimating glomerular filtration rate (¢GFR) from serum
creatinine levels using the CKD-EPI equation [48].
Liver function was assessed by measuring serum
gamma-glutamyl transpeptidase (GGT) and alanine
amino transaminase (ALAT) concentrations. Both
measures were inverse normalized prior to analysis.

Gene expression. RNA abundance was measured in
LCLs of 778 female individuals from the TwinsUK
cohort using the [llumina Human HT-12 V3 BeadChip as
part of the MuTHER project as previously described
[49]. We selected 30 probes from GGT and PLA2 genes.
Probes were adjusted for batch effects by linear models
and residuals were inverse normalized prior to analysis.

DNA methylation. DNA was extracted from whole
blood, bisulfite converted and subsequently analyzed
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using the Infinium 450K kit as previously described [50].
The beta mixture quantile dilation (BMIQ) method was
performed to correct for technical variation [51].
Measurements were inverse normalized and then
adjusted for batch effects, family structure and cell counts
(PlasmaBlast, CD8+CD28-CD45RA- T cells, naive CDS§
T cells, CD4+ T cells, Natural Killer cells, monocytes,
and granulocytes) using linear models.

Statistical analysis. All analyses were performed using
R (version 3.1.2) using the Ime4 (version 1.1) package.

Correlations between metabolites and LTL were
calculated using linear mixed models, correcting for age,
BMI and family relatedness (as random intercept). A
conservative multiple test-corrected threshold of
P<1.8x10™ was used to identify significant associations;
this value represented P = 0.05 divided by the total
number of tests performed (280 metabolites). We
replicated the five Bonferroni-significant metabolites in
the KORA F4 cohort. The data was consistently
normalized in both cohorts. The results were meta-
analyzed using inverse variance fixed effect meta-analys-
is implemented in the R package meta (version 4.3).

We estimated the power of the replication cohort using
the R package pwr (version 1.1), which implements
power estimation according to Cohen [52].

To identify redundant associations of the metabolites,
we fitted a multivariate Lasso model [53] incorporating
all Bonferroni significant metabolites together with age
and BMI. The predictive performance of the model was
then compared to a similar model containing age and
BMI only. The model performance was assessed by
calculating the predicted residual sum of squares
(PRESS) and subsequent P? statistics using a leave-one-
out cross validation.

Subsequently, we aimed to further explore the
relationship of LTL and the identified metabolites with
biological aging. To this end, we used linear mixed
models to test for association of the previously
identified metabolites with previously described aging
phenotypes. All models were adjusted for age, BMI and
family relatedness. The lung function parameter FEV1
was additionally adjusted for height, as suggested in the
literature. We replicated the associations with lung
function parameters in KORA, adjusting for the same
covariates.
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