## SUPPLEMENTARY MATERIAL



**Supplementary Figure S1. The selection of electrodes comprising each ROI.** Left frontal ROI, right frontal ROI, midline central ROI, left central ROI, and right central ROI represent the left DLPFC, right DLPFC, midline central, left M1, right M1 areas, respectively.



**Supplementary Figure S2. TEP traces with SICI and ICF paradigms at the left DLPFC in younger adults.** P60 TEP was significantly attenuated by the SICI paradigm, while it was significantly increased by the ICF paradigm. Further, N100 TEP was significantly attenuated by the ICF paradigm. These results are derived from our previously published data [11].

| Supplementar | v Table S1. The s | ignificant results | of 3-way AN | NOVA for the T | FEP amplitud | es in DLPFC-SICI. |
|--------------|-------------------|--------------------|-------------|----------------|--------------|-------------------|
|              | ,                 |                    |             |                |              |                   |

| 3-way ANOVA ( $\alpha = 0.025$ )                                        |                                   |          |                       |  |
|-------------------------------------------------------------------------|-----------------------------------|----------|-----------------------|--|
| Main effects                                                            |                                   | $\eta^2$ | <b>Observed</b> power |  |
| ROI                                                                     | $F_{4,44} = 23.561, p < 0.0001$   | 0.682    | 1.000                 |  |
| TEP component                                                           | $F_{4,44} = 63.147, p < 0.0001$   | 0.852    | 1.000                 |  |
| Condition                                                               | $F_{1,11} = 7.396, p = 0.020$     | 0.402    | 0.698                 |  |
| Interactions                                                            |                                   | $\eta^2$ | Observed power        |  |
| ROI-by-TEP component                                                    | $F_{16,176} = 24.673, p < 0.0001$ | 0.692    | 1.000                 |  |
| ROI-by-Condition                                                        | $F_{4,44} = 4.580, p = 0.004$     | 0.294    | 0.920                 |  |
| ROI-by-TEP component-by-Condition                                       | $F_{16,176} = 1.956, p = 0.018$   | 0.151    | 0.955                 |  |
| MANOVA ( $\alpha = 0$ .                                                 | 05)                               |          |                       |  |
| Simple main effects                                                     |                                   | $\eta^2$ | Observed power        |  |
| ROI                                                                     | $F_{4,8} = 15.200, p = 0.001$     | 0.884    | 0.998                 |  |
| TEP component                                                           | $F_{4,8} = 75.604, p < 0.0001$    | 0.974    | 1.000                 |  |
| Condition                                                               | $F_{1,11} = 7.396, p = 0.02$      | 0.402    | 0.698                 |  |
| Simple interactions                                                     |                                   | $\eta^2$ | <b>Observed power</b> |  |
| ROI-by-TEP component; TEP P60                                           | $F_{4.8} = 9.609, p = 0.004$      | 0.828    | 0.970                 |  |
| ROI-by-TEP component; TEP N100                                          | $F_{4,8} = 13.077, p = 0.001$     | 0.881    | 0.998                 |  |
| ROI-by-TEP component; TEP P180                                          | $F_{4,8} = 78.424, p < 0.0001$    | 0.975    | 1.000                 |  |
| ROI-by-TEP component; the left frontal ROI                              | $F_{4,8} = 114.567, p < 0.0001$   | 0.983    | 1.000                 |  |
| ROI-by-Condition; TS                                                    | $F_{4,8} = 14.234, p = 0.001$     | 0.877    | 0.997                 |  |
| ROI-by-Condition; CS.TS (SICI)                                          | $F_{4,8} = 6.563, p = 0.012$      | 0.766    | 0.880                 |  |
| ROI-by-Condition; the left frontal ROI                                  | $F_{1,11} = 26.035, p < 0.0001$   | 0.703    | 0.996                 |  |
| TEP component-by-Condition; TS                                          | $F_{4,8} = 54.277,  p < 0.0001$   | 0.964    | 1.000                 |  |
| TEP component-by-Condition; CS.TS (SICI)                                | $F_{4,8} = 51.501,  p < 0.0001$   | 0.963    | 1.000                 |  |
| ROI-by-TEP component-by-Condition; TEP P60-by-TS                        | $F_{4,8} = 11.703,  p = 0.002$    | 0.854    | 0.989                 |  |
| ROI-by-TEP component-by-Condition; TEP P60-by-CS.TS (SICI)              | $F_{4,8} = 5.224, p = 0.023$      | 0.723    | 0.791                 |  |
| ROI-by-TEP component-by-Condition; TEP N100-by-TS                       | $F_{4,8} = 4.183, p = 0.041$      | 0.671    | 0.675                 |  |
| ROI-by-TEP component-by-Condition; TEP N100-by-CS.TS (SICI)             | $F_{4,8} = 29.325, p < 0.0001$    | 0.936    | 1.000                 |  |
| ROI-by-TEP component-by-Condition; TEP P180-by-TS                       | $F_{4,8} = 27.792,  p < 0.0001$   | 0.933    | 1.000                 |  |
| ROI-by-TEP component-by-Condition; TEP P180-by-CS.TS (SICI)             | $F_{4,8} = 22.532,  p < 0.0001$   | 0.918    | 1.000                 |  |
| ROI-by-TEP component-by-Condition; the left frontal ROI-by-TS           | $F_{4,8} = 44.765,  p < 0.0001$   | 0.957    | 1.000                 |  |
| ROI-by-TEP component-by-Condition; the left frontal ROI-by-CS.TS (SICI) | $F_{4,8} = 70.51,  p < 0.0001$    | 0.972    | 1.000                 |  |
| ROI-by-TEP component-by-Condition; the left frontal ROI-by-TEP P60      | $F_{1.11} = 25.195, p < 0.0001$   | 0.696    | 0.995                 |  |
| ROI-by-TEP component-by-Condition; the left frontal ROI-by-TEP N100     | $F_{1,11} = 19.311, p = 0.001$    | 0.637    | 0.979                 |  |
| ROI-by-TEP component-by-Condition; the left frontal ROI-by-TEP P180     | $F_{1,11} = 8.905, p = 0.012$     | 0.447    | 0.775                 |  |
| Post-hoc paired t-test ( $\alpha = 0.05$ )                              |                                   |          | Power (1-β)           |  |
| TS > CS.TS (SICI); TEP P60 at the left frontal ROI                      | $t_{11} = 5.019, p < 0.0001$      | 1.19     | 0.963                 |  |
| TS > CS.TS (SICI); TEP N100 at the left frontal ROI                     | $t_{11} = 4.394, p = 0.001$       | 1.54     | 0.998                 |  |

#### TS > CS.TS (SICI); TEP P180 at the left frontal ROI

0.69

\*MANOVA: multivariate analysis of variance

### The significant results of comparison analysis between young and old participants in the modulation of TEP by DLPFC–SICI

| Post-hoc independent t-test ( $\alpha = 0.05$ )                                                                 |   | d    | Power (1-β) |
|-----------------------------------------------------------------------------------------------------------------|---|------|-------------|
| YNG < OLD participants (ratio of 1); TEP N100 modulation at the left frontal ROI $t_{22} = -2.975$ , $p = 0.00$ | 7 | 1.22 | 0.815       |

#### Supplementary Table S2. The significant results of 3-way ANOVA for the TEP amplitudes in DLPFC-ICF.

| 3-way ANOVA ( $\alpha = 0.025$ )           |                                   |          |                |  |
|--------------------------------------------|-----------------------------------|----------|----------------|--|
| Main effects                               |                                   | $\eta^2$ | Observed power |  |
| ROI                                        | $F_{4,44} = 43.393, p < 0.0001$   | 0.798    | 1.000          |  |
| TEP component                              | $F_{4,44} = 76.432, p < 0.0001$   | 0.874    | 1.000          |  |
| Condition                                  | $F_{1,11} = 50.577, p < 0.0001$   | 0.821    | 1.000          |  |
| Interactions                               |                                   | $\eta^2$ | Observed power |  |
| ROI-by-TEP component                       | $F_{16,176} = 21.770, p < 0.0001$ | 0.664    | 1.000          |  |
| ROI-by-Condition                           | $F_{4,44} = 10.224, p < 0.0001$   | 0.541    | 1.000          |  |
| TEP component-by-Condition                 | $F_{4,44} = 4.752, p = 0.003$     | 0.302    | 0.930          |  |
| ROI-by-TEP component-by-Condition          | $F_{16,176} = 6.272, p < 0.0001$  | 0.363    | 1.000          |  |
| MANOV                                      | $TA (\alpha = 0.05)$              |          |                |  |
| Simple main effects                        |                                   | $\eta^2$ | Observed power |  |
| ROI                                        | $F_{4.8} = 24.600, p < 0.0001$    | 0.925    | 1.000          |  |
| TEP component                              | $F_{4,8} = 42.624, p < 0.0001$    | 0.955    | 1.000          |  |
| Condition                                  | $F_{1,11} = 50.577, p < 0.0001$   | 0.821    | 1.000          |  |
| Simple interactions                        |                                   | $\eta^2$ | Observed power |  |
| ROI-by-TEP component; TEP N45              | $F_{4,8} = 7.613, p = 0.008$      | 0.792    | 0.924          |  |
| ROI-by-TEP component; TEP P60              | $F_{4,8} = 27.033, p < 0.0001$    | 0.931    | 1.000          |  |
| ROI-by-TEP component; TEP N100             | $F_{4,8} = 8.483, p = 0.006$      | 0.809    | 0.949          |  |
| ROI-by-TEP component; the left frontal ROI | $F_{4,8} = 34.372, p < 0.0001$    | 0.945    | 1.000          |  |
| ROI-by-Condition; TS                       | $F_{4,8} = 9.079, p = 0.005$      | 0.819    | 0.962          |  |
| ROI-by-Condition; CS.TS (ICF)              | $F_{4,8} = 15.264, p = 0.001$     | 0.884    | 0.998          |  |
| ROI-by-Condition; the left frontal ROI     | $F_{1,11} = 36.439, p < 0.0001$   | 0.768    | 1.000          |  |
| TEP component-by-Condition; TS             | $F_{4,8} = 44.473, p < 0.0001$    | 0.957    | 1.000          |  |
| TEP component-by-Condition; CS.TS (ICF)    | $F_{4,8} = 36.340, p < 0.0001$    | 0.948    | 1.000          |  |
| TEP component-by-Condition; TEP N45        | $F_{1,11} = 9.462, p = 0.011$     | 0.462    | 0.799          |  |
| TEP component-by-Condition; TEP P60        | $F_{1,11} = 29.791, p < 0.0001$   | 0.730    | 0.999          |  |
| TEP component-by-Condition; TEP N100       | $F_{1,11} = 13.587, p = 0.004$    | 0.553    | 0.918          |  |

| ROI-by-TEP component-by-Condition; TEP N45-by-TS                       | $F_{4,8} = 20.221, p < 0.0001$  | 0.910 | 1.000       |
|------------------------------------------------------------------------|---------------------------------|-------|-------------|
| ROI-by-TEP component-by-Condition; TEP N45-by-CS.TS (ICF)              | $F_{4,8} = 4.281, p = 0.038$    | 0.682 | 0.699       |
| ROI-by-TEP component-by-Condition; TEP P60-by-TS                       | $F_{4,8} = 17.688, p < 0.0001$  | 0.898 | 1.000       |
| ROI-by-TEP component-by-Condition; TEP P60-by-CS.TS (ICF)              | $F_{4,8} = 65.866, p < 0.0001$  | 0.971 | 1.000       |
| ROI-by-TEP component-by-Condition; TEP N100-by-TS                      | $F_{4,8} = 12.109, p = 0.002$   | 0.858 | 0.991       |
| ROI-by-TEP component-by-Condition; TEP N100-by-CS.TS (ICF)             | $F_{4,8} = 8.913, p = 0.005$    | 0.817 | 0.959       |
| ROI-by-TEP component-by-Condition; the left frontal ROI-by-TS          | $F_{4,8} = 42.030,  p < 0.0001$ | 0.955 | 1.000       |
| ROI-by-TEP component-by-Condition; the left frontal ROI-by-CS.TS (ICF) | $F_{4,8} = 13.158, p = 0.001$   | 0.868 | 0.995       |
| ROI-by-TEP component-by-Condition; the left frontal ROI-by-TEP N45     | $F_{1,11} = 6.156, p = 0.031$   | 0.359 | 0.619       |
| ROI-by-TEP component-by-Condition; the left frontal ROI-by-TEP P60     | $F_{1,11} = 98.561, p < 0.0001$ | 0.900 | 1.000       |
| ROI-by-TEP component-by-Condition; the left frontal ROI-by-TEP N100    | $F_{1,11} = 28.217, p < 0.0001$ | 0.720 | 0.998       |
| <b>Post-hoc paired t-test (</b> $\alpha$ = 0.05)                       |                                 | d     | Power (1-β) |
| TS < CS.TS (ICF); TEP N45 at the left frontal ROI                      | $t_{11} = -2.481, p = 0.031$    | 0.83  | 0.745       |
| TS < CS.TS (ICF); TEP P60 at the left frontal ROI                      | $t_{11} = -9.928, p < 0.0001$   | 3.01  | 1.000       |
| TS < CS.TS (ICF); TEP N100 at the left frontal ROI                     | $t_{11} = -5.312, p < 0.0001$   | 1.65  | 0.999       |

\*MANOVA: multivariate analysis of variance

# The significant results of comparison analysis between young and old participants in the modulation of TEP by DLPFC-ICF

| Post-hoc independent t-test ( $\alpha = 0.05$ )                                                               | d    | Power (1-β) |
|---------------------------------------------------------------------------------------------------------------|------|-------------|
| YNG < OLD participants (ratio of 1); TEP N45 modulation at the left frontal ROI $t_{22} = -3.721$ , p = 0.001 | 1.55 | 0.952       |
| YNG > OLD participants (ratio of 1); TEP N100 modulation at the left frontal ROI $t_{22} = 2.250, p = 0.035$  | 0.92 | 0.577       |