#### SUPPLEMENTARY MATERIALS

## Supplemental Figure.



Supplemental Figure S1. Immunohistochemistry for detection of FRAT1 and SMAD4 protein levels in FFPE samples. Protein levels were semiquantified using the Immuno-Reactive-Score (IRS). (A, B) Representative images for FRAT1 staining for samples with an IRS of 4 (A) and 12 (B). (C, D) Representative images for SMAD4 staining with an IRS of 4 (C) and 8 (D). Scale bar 50  $\mu$ m.

### **Supplemental Tables.**

|       | miR-34a-3p |        |        |           | scrambled |        | non-tra |        | n-transfect | ed       |        |        |        |           |          |
|-------|------------|--------|--------|-----------|-----------|--------|---------|--------|-------------|----------|--------|--------|--------|-----------|----------|
| Hours | 1          | 2      | 3      | Mean      | SD        | 1      | 2       | 3      | Mean        | SD       | 1      | 2      | 3      | Mean      | SD       |
| 0     | 20000      | 20000  | 20000  | 20000     | 0         | 20000  | 20000   | 20000  | 20000       | 0        | 20000  | 20000  | 20000  | 20000     | 0        |
|       | 20000      | 20000  | 20000  |           |           | 20000  | 20000   | 20000  |             |          | 20000  | 20000  | 20000  |           |          |
| 72    | 117000     | 106000 | 124000 | 112000    | 7724,42   | 143000 | 113000  | 147000 | 121883,33   | 18735,03 | 154000 | 145000 | 176000 | 149500    | 14705,44 |
|       | 117000     | 104000 | 104000 |           |           | 104000 | 97300   | 127000 |             |          | 143000 | 127000 | 152000 |           |          |
| 96    | 179000     | 156000 | 152000 | 178000    | 19874,61  | 244000 | 199000  | 251000 | 225000      | 23194,83 | 251000 | 256000 | 263000 | 253166,67 | 5112,62  |
|       | 204000     | 201000 | 176000 |           |           | 224000 | 242000  | 190000 |             |          | 251000 | 251000 | 247000 |           |          |
| 120   | 258000     | 267000 | 235000 | 251666,67 | 14510,53  | 285000 | 315000  | 269000 | 295000      | 20289,57 | 468000 | 471000 | 414000 | 450333,33 | 25031,09 |
|       | 256000     | 265000 | 229000 |           |           | 292000 | 281000  | 328000 |             |          | 453000 | 419000 | 477000 |           |          |

### Table S1. Raw cell counts for Ben-Men-1 cells after transfection with miR-34a-3p.

### Table S2. Raw cell counts for Ben-Men-1 cells after transfection with anti-miR-34a-3p.

|       | anti-miR-34a-3p |        |        |           | scrambled |        |        |        | non-transfected |          |        |        |        |           |          |
|-------|-----------------|--------|--------|-----------|-----------|--------|--------|--------|-----------------|----------|--------|--------|--------|-----------|----------|
| Hours | 1               | 2      | 3      | Mean      | SD        | 1      | 2      | 3      | Mean            | SD       | 1      | 2      | 3      | Mean      | SD       |
| 0     | 20000           | 20000  | 20000  | 20000     | 0         | 20000  | 20000  | 20000  | 20000           | 0        | 20000  | 20000  | 20000  | 20000     | 0        |
|       | 20000           | 20000  | 20000  |           |           | 20000  | 20000  | 20000  |                 |          | 20000  | 20000  | 20000  |           |          |
| 72    | 104000          | 88200  | 102000 | 99866,67  | 12623,61  | 106000 | 131000 | 106000 | 117216,67       | 14484,52 | 174000 | 172000 | 174000 | 169666,67 | 7063,21  |
|       | 124000          | 95000  | 86000  |           |           | 129000 | 97300  | 134000 |                 |          | 172000 | 154000 | 172000 |           |          |
| 96    | 140000          | 163000 | 183000 | 166666,67 | 19618,59  | 231000 | 213000 | 181000 | 199166,67       | 19878,10 | 251000 | 226000 | 274000 | 245333,33 | 14985,18 |
|       | 170000          | 147000 | 197000 |           |           | 174000 | 208000 | 188000 |                 |          | 244000 | 242000 | 235000 |           |          |
| 120   | 274000          | 367000 | 344000 | 320166,67 | 30218,19  | 403000 | 364000 | 315000 | 353000          | 34539,83 | 432000 | 434000 | 382000 | 405166,67 | 22843,06 |
|       | 296000          | 321000 | 319000 |           |           | 337000 | 387000 | 312000 |                 |          | 403000 | 407000 | 373000 |           |          |

# Table S3. Primer sequences for plasmid cloning and mutagenesis.

| Name                  | Sequence                                         |
|-----------------------|--------------------------------------------------|
| pMIR-RNL-TK for       | GAAGTACCGAAAGGTCTTACCG                           |
| pMIR-RNL-TK rev       | CCAAGCTAGCGGCCGCATACAA                           |
| pMIR-BCL2 Mut BS1 for | CCAGTACCTTAAGCCCACGTGGTGTATATTCATATATTTG         |
| pMIR-BCL2 Mut BS1 rev | CAAAATATATGAATATACACCACGTGGGCTTAAGGTACTGG        |
| pMIR-BCL2 Mut BS2 for | CTCCGAATGTCTGGAA <b>TCGCGA</b> GGAGCTCAGAATTCCAC |
| pMIR-BCL2 Mut BS2 rev | GTGGAATTCTGAGCTCC <b>TCGCGA</b> TTCCAGACATTCGGAG |
| 5'-SMAD4-SpeI         | GG <u>ACTAGT</u> GTCTTTTACCGTTGGGG               |
| 3'-SMAD4-SacI         | C <u>GAGCTC</u> CCAACCTTGTGCCTAG                 |
| pMIR-SMAD4 Mut for    | GAATAATCCAGTATT <b>TCGCGAG</b> TTAAAGGCAGAGAAG   |
| pMIR-SMAD4 Mut rev    | CTTCTCTGCCTTTAACTCGCGAAAATACTGGATTATTC           |
| 5'-FRAT1-SpeI         | GG <u>ACTAGT</u> GCACAGCAGCTTATAATGG             |
| 3'-FRAT1-SacI         | C <u>GAGCTC</u> GGAGATCAGAGAAATGTG               |
| pMIR-FRAT1 Mut for    | GGAATTGTGGCTATC <b>TCGCGA</b> ATAGGATTTTAACTTAAC |
| pMIR-FRAT1 Mut rev    | GTTAAGTTAAAATCCTAT <b>TCGCGA</b> GATAGCCACAATTCC |

Restriction sites are underlined, mutated sites are indicated in bold

| ID   | Age   | Sex | WHO grading | Histological subtype | Ki-67 labeling index |
|------|-------|-----|-------------|----------------------|----------------------|
| 2358 | 63,95 | f   | Ι           | meningothelial       | 4                    |
| 2364 | 56,49 | m   | Ι           | meningothelial       | 2                    |
| 2368 | 62,79 | m   | Ι           | microcystic          | <1                   |
| 2382 | 79,20 | m   | Ι           | meningothelial       | 1                    |
| 2401 | 58,08 | f   | Ι           | meningothelial       | 3                    |
| 2415 | 65,88 | f   | Ι           | fibroblastic         | 2                    |
| 2431 | 47,24 | f   | Ι           | meningothelial       | <5                   |
| 2437 | 62,43 | f   | Ι           | transitional         | 1                    |
| 2443 | 46,59 | f   | Ι           | fibroblastic         | 8                    |
| 2442 | 61,95 | m   | Ι           | angiomatous          | 4                    |
| 2464 | 70,87 | m   | Ι           | meningothelial       | 3                    |
| 2463 | 63,15 | m   | Ι           | meningothelial       | 1                    |
| 2466 | 73,02 | f   | Ι           | meningothelial       | 3                    |
| 2498 | 81,58 | f   | Ι           | meningothelial       | 3                    |
| 2503 | 33,01 | f   | Ι           | fibroblastic         | 5                    |
| 2505 | 47,56 | f   | Ι           | meningothelial       | 2                    |
| 2523 | 59,57 | f   | Ι           | secretory            | <1                   |
| 2549 | 46,80 | f   | Ι           | transitional         | 5                    |
| 2558 | 51,22 | f   | Ι           | fibroblastic         | 2                    |
| 2564 | 72,60 | f   | Ι           | transitional         | N/A                  |
| 2371 | 39,30 | f   | II          | atypical             | 15                   |
| 2378 | 70,48 | m   | II          | brain invasive       | 3                    |
| 2385 | 86,61 | f   | II          | atypical             | 12                   |
| 2395 | 50,70 | m   | II          | atypical             | 20                   |
| 2399 | 68,10 | f   | II          | atypical             | 10                   |
| 2400 | 13,33 | m   | Π           | atypical             | 20                   |
| 2408 | 52,16 | m   | II          | chordoid             | 20                   |
| 2423 | 80,42 | f   | II          | atypical             | 10                   |
| 2426 | 70,21 | f   | Π           | brain invasive       | 10                   |
| 2427 | 46,92 | m   | Π           | atypical             | 5                    |
| 2547 | 60,44 | f   | III         | anaplastic           | 20                   |
| 2553 | 87,52 | f   | III         | anaplastic           | 20                   |
| 2581 | 87,71 | m   | III         | anaplastic           | 20                   |
| 2594 | 74,12 | m   | Ш           | anaplastic           | 50                   |
| 2410 | 75,33 | m   | III         | anaplastic           | 30                   |

# Table S4. Clinical data on patients for immunohistochemistry.

# Table S5. Results of immunohistochemistry.

|      |       | -   |             |                      | FRAT1 | SMAD4 |
|------|-------|-----|-------------|----------------------|-------|-------|
| ID   | Age   | Sex | WHO grading | Histological subtype | IRS   | IRS   |
| 2358 | 63,95 | f   | Ι           | meningothelial       | 12    | 4     |
| 2364 | 56,49 | m   | Ι           | meningothelial       | 12    | 8     |
| 2368 | 62,79 | m   | Ι           | microcystic          | 12    | 6     |
| 2382 | 79,20 | m   | Ι           | meningothelial       | 4     | 4     |
| 2401 | 58,08 | f   | Ι           | meningothelial       | 8     | 8     |
| 2415 | 65,88 | f   | Ι           | fibroblastic         | 4     | 2     |
| 2431 | 47,24 | f   | Ι           | meningothelial       | 8     | 0     |
| 2437 | 62,43 | f   | Ι           | transitional         | 8     | 4     |
| 2443 | 46,59 | f   | Ι           | fibroblastic         | 3     | 0     |
| 2442 | 61,95 | m   | Ι           | angiomatous          | 4     | 3     |
| 2464 | 70,87 | m   | Ι           | meningothelial       | 4     | 0     |
| 2463 | 63,15 | m   | Ι           | meningothelial       | 4     | 0     |
| 2466 | 73,02 | f   | Ι           | meningothelial       | 8     | 4     |
| 2498 | 81,58 | f   | Ι           | meningothelial       | 8     | 3     |
| 2503 | 33,01 | f   | Ι           | fibroblastic         | 4     | 0     |
| 2505 | 47,56 | f   | Ι           | meningothelial       | 4     | 8     |
| 2523 | 59,57 | f   | Ι           | secretory            | 4     | 0     |
| 2549 | 46,80 | f   | Ι           | transitional         | 1     | 3     |
| 2558 | 51,22 | f   | Ι           | fibroblastic         | 0     | 0     |
| 2564 | 72,60 | f   | Ι           | transitional         | 8     | 3     |
| 2371 | 39,30 | f   | II          | atypical             | 4     | 0     |
| 2378 | 70,48 | m   | II          | brain invasive       | 3     | 6     |
| 2385 | 86,61 | f   | II          | atypical             | 4     | 2     |
| 2395 | 50,70 | m   | II          | atypical             | 4     | 3     |
| 2399 | 68,10 | f   | II          | atypical             | 4     | 0     |
| 2400 | 13,33 | m   | II          | atypical             | 8     | 8     |
| 2408 | 52,16 | m   | II          | chordoid             | 12    | 0     |
| 2423 | 80,42 | f   | II          | atypical             | 2     | 1     |
| 2426 | 70,21 | f   | II          | brain invasive       | 4     | 4     |
| 2427 | 46,92 | m   | II          | atypical             | 8     | 4     |
| 2547 | 60,44 | f   | III         | anaplastic           | 0     | 3     |
| 2553 | 87,52 | f   | III         | anaplastic           | 3     | 3     |
| 2581 | 87,71 | m   | III         | anaplastic           | 8     | 4     |
| 2594 | 74,12 | m   | III         | anaplastic           | 6     | 3     |
| 2410 | 75,33 | m   | III         | anaplastic           | 8     | 3     |

Immuno-Reactive-Score (IRS) for FRAT1 and SMAD4 immunostaining

#### mRNA sequences of targets for experimental validation

### 1. Homo sapiens SMAD family member 4 (SMAD4), mRNA

The stop codon is highlighted in red, the potential binding site for miR-34a-3p is highlighted in green and the complete fragment cloned into pMIR-RNL-TK is underlined.

NCBI Reference Sequence: NM\_005359.5

>gi|195963400|ref|NM\_005359.5| Homo sapiens SMAD family member 4 (SMAD4), mRNA

ATGCTCAGTGGCTTCTCGACAAGTTGGCAGCAACAACACGGCCCTGGTCGTCGTCGCCGCTGCGGTAACGGAGCGGTTTGGGTGG  ${\tt CGGAGCCTGCGTTCGCGCCTTCCCGCGCCCTCCCGGGAGGCCCTTCCTGCTCTCCCCCTAGGCTCCGCGGCCGCCCAGGGGGTGGGA$ CTACGGGCCCGGTGCGTCCGCGGGACCAGCAGCGCGGGGAGAGCGGGACTCCCCTCGCCACCGCCCGAGCCCAGGTTATCCTGAATAC ATGTCTAACAATTTTCCTTGCAACGTTAGCTGTTGTTTTTCACTGTTTCCCAAAGGATCAAAATTGCTTCAGAAATTGGAGACATA TTTGATTTAAAAGGAAAAACTTGAACAAATGGACAATATGTCTATTACGAATACACCAACAAGTAATGATGCCTGTCTGAGCATT GTGCATAGTTTGATGTGCCATAGACAAGGTGGAGAGAGTGAAACATTTGCAAAAAGAGCAATTGAAAGATTTGGTAAAGAAGCTGA AGGAGAAAAAAGATGAATTGGATTCTTTAATAACAGCTATAACTACAAATGGAGCTCATCCTAGTAAATGTGTTACCATACAGAG AACATTGGATGGGAGGCTTCAGGTGGCTGGTCGGAAAGGATTTCCTCATGTGATCTATGCCCGTCTCTGGAGGTGGCCTGATCTT  ${\tt CACAAAAAATGAACTAAAAACATGTTAAATATTGTCAGTATGCGTTTGACTTAAAAATGTGATAGTGTCTGTGTGAAATCCATATCACT$ ACGAACGAGTTGTATCACCTGGAATTGATCTCTCAGGATTAACACTGCAGAGTAATGCTCCATCAAGTATGATGGTGAAGGATGA ATATGTGCATGACTTTGAGGGACAGCCATCGTTGTCCACTGAAGGACATTCAATTCAAACCATCCAGCATCCACCAAGTAATCGT GCATCGACAGAGACATACAGCACCCCAGCTCTGTTAGCCCCATCTGAGTCTAATGCTACCAGCACTGCCAACTTTCCCAACATTC CTGTGGCTTCCACAAGTCAGCCTGCCAGTATACTGGGGGGGCAGCCATAGTGAAGGACTGTTGCAGATAGCATCAGGGCCTCAGCC AGGACAGCAGCAGAATGGATTTACTGGTCAGCCAGCTACTTACCATCATAACAGCACTACCACCTGGACTGGAAGTAGGACTGCA CCATACACCTAATTTGCCTCACCACCAAAACGGCCATCTTCAGCACCACCCGCCTATGCCGCCCCATCCCGGACATTACTGGC GGATGTTCAGGTAGGAGAGACATTTAAGGTTCCTTCAAGCTGCCCTATTGTTACTGTTGATGGATACGTGGACCCTTCTGGAGGA GATCGCTTTTGTTTGGGTCAACTCTCCAATGTCCACAGGACAGAAGCCATTGAGAGAGCAAGGTTGCACATAGGCAAAGGTGTGC AGTTGGAATGTAAAGGTGAAGGTGATGTTTGGGTCAGGTGCCTTAGTGACCACGCGGTCTTTGTACAGAGGTTACTACTTAGACAG AGAAGCTGGGCGTGCACCTGGAGATGCTGTTCATAAGATCTACCCAAGTGCATATATAAAGGTCTTTGATTTGCGTCAGTGTCAT CGACAGATGCAGCAGCAGCGGCTACTGCACAAGCTGCAGCAGCTGCCCAGGCAGCAGCCGTGGCAGGAAACATCCCTGGCCCAG GATCAGTAGGTGGAATAGCTCCAGCTATCAGTCTGTCAGCTGCTGCTGGAATTGGTGTTGATGACCTTCGTCGCTTATGCATACT  ${\tt CAGGATGAGTTTTGTGAAAGGCTGGGGACCGGATTACCCAAGACAGAGCATCAAAGAAACACCTTGCTGGATTGAAATTCACTTA$ CACCGGGCCCTCCAGCTCCTAGACGAAGTACTTCATACCATGCCGATTGCAGACCCACAACCTTTAGAC<mark>TGA</mark>GGTCTTTTACCGT TGGGGGCCCTTAACCTTATCAGGATGGTGGACTACAAAATACAATCCTGTTTATAATCTGAAGATATATTTCACTTTTGTTCTGCT AATCATTCCAGTGCTAGAAAAATTTAGCCCTTTAAAACGTCTTAGAGCCTTTTATCTGCAGAACATCGATATGTATATCATTCTAC AGAATAATCCAGTATT<mark>GCTGATT</mark>TTAAAGGCAGAGAAGTTCTCAAAGTTAATTCACCTATGTTATTTTGTGTACAAGTTGTTATT AATAATGTATTGTAATCTTTCATCCAAAATATTTTTTGCAAGTTATATTAGTGAAGATGGTTTCAATTCAGATTGTCTTGCAACT AATTACGTTTGTTATTCCTAGTGGATGACTGTTGATGAAGTATACTTTTCCCCCTGTTAAACAGTAGTTGTATTCTTCTGTATTTC ACTAAAAGCAGCGTCACTCTACCTAATGTCTCACTGTTCTGCAAAGGTGGCAATGCTTAAACTAAATAATGAATAAACTGAATAT TTTGGAAACTGCTAAATTCTATGTTAAATACTGTGCAGAATAATGGAAACATTACAGTTCATAATAGGTAGTTTGGATATTTTTG GGGCAAGACTGCAAACTTTTTTATATCTTTTGGTTATTCTAAGCCCTTTGCCATCAATGATCATATCAATTGGCAGTGACTTTGT  ${\tt CTCAGTGATGAGGTACCTTCTACTAAATGACAGGCAACAGCCAGTTCTATTGGGCAGCTTTGTTTTTTTCCCTCACACTCTACCG$ TGATTATCTACAAGATGATAAATAGATTGTCTACAGGATAAATAGTATGAAATAAAATCAAGGATTATCTTTCAGATGTGTTTAC TTTTGCCTGGAGAACTTTTAGCTATAGAAACACTTGTGTGATGATAGTCCTCCTTATATCACCTGGAATGAACACAGCTTCTACT GCCTTGCTCAGAAGGTCTTTTAAATAGACCATCCTAGAAACCACTGAGTTTGCTTATTTCTGTGATTTAAACATAGATCTTGATC

CTAATTTTCTTCTGTAAAAGTTTGGTGATTTAAGTTTTATTGGCAGTTTTATAAAAAGACATCTTCTCTAGAAATTGCTAACTTT AGGTCCATTTTACTGTGAATGAGGAATAGGAGTGAGTTTTAGAATAACAGATTTTTAAAAAATCCAGATGATTTGATTAAAAACCTT ATCTCAGCTCACTGCAACCTCTGCCTCCCGGGTTCAACTGATTCTCCTGCCTCAGCCTCCCTGGTAGCTAGGATTACAGGTGCCC GCCACCATGCCTGGCTAACTTTTGTAGTTTTAGTAGAGACGGGGTTTTGCCTGTTGGCCAGGCTGGTCTTGAACTCCTGACCTCA AGTGATCCATCCACCTTGGCCTCCCAAAGTGCTGGGATTACGGGCGTGAGCCACTGTCCCTGGCCTCATTGTTCCCTTTTCTACT TTAAGGAAAGTTTTCATGTTTAATCATCTGGGGGAAAGTATGTGAAAAATATTTGTTAAGAAGTATCTCTTTGGAGCCAAGCCACC TGTCTTGGTTTCTTCTACTAAGAGCCATAAAGTATAGAAATACTTCTAGTTGTTAAGTGCTTATATTTGTACCTAGATTTAGTC ACACGCTTTTGAGAAAACATCTAGTATGTTATGATCAGCTATTCCTGAGAGCTTGGTTGTTAATCTATATTTCTATTTCTTAGTG GTAGTCATCTTTGATGAATAAGACTAAAGATTCTCACAGGTTTAAAATTTTATGTCTACTTTAAGGGTAAAATTATGAGGTTATG GTTCTGGGTGGGTTTTCTCTAGCTAATTCATATCTCAAAGAGTCTCAAAATGTTGAATTTCAGTGCAAGCTGAATGAGAGATGAG CCATGTACACCCACCGTAAGACCTCATTCCATGTTTGTCCAGTGCCTTTCAGTGCATTATCAAAGGGAATCCTTCATGGTGTTGC CTTTATTTTCCGGGGAGTAGATCGTGGGATATAGTCTATCTCATTTTTAATAGTTTACCGCCCCTGGTATACAAAGATAATGACA ATAAATCACTGCCATATAACCTTGCTTTTTCCAGAAACATGGCTGTTTTGTATTGCTGTAACCACTAAATAGGTTGCCTATACCA TTCCTCCTGTGAACAGTGCAGATTTACAGGTTGCATGGTCTGGCTTAAGGAGAGCCATACTTGAGACATGTGAGTAAACTGAACT GTTGAAGGCAAAATAAAATGTCCTGTCTCCCAGATGATATACATCTTATTATTTTTAAAGTTTATTGCTAATTGTAGGAAGGTGA GTTGCAGGTATCTTTGACTATGGTCATCTGGGGAAGGAAAATTTTACATTTTACTATTAATGCTCCTTAAGTGTCTATGGAGGTT AAAGAATAAAATGGTAAATGTTTCTGTGCCTGGTTTGATGGTAACTGGTTAATAGTTACTCACCATTTTATGCAGAGTCACATTA GTTCACACCCTTTCTGAGAGCCCTTTTGGGAGAGCAGCAGTTTTATTCTCTGAGTGGAACAGAGTTCTTTTGTTGATAATTTCTAGT AAATGAGTATATGAAAGCAATTACCTCTAAAGCCAGTTAACAATTATTTTGTAGGTGGGGTACACTCAGCTTAAAGTAATGCATT TTTTTTTCCCGTAAAGGCAGAATCCATCTTGTTGCAGATAGCTATCTAAATAATCTCATATCCTCTTTTGCAAAGACTACAGAGA ATAGGCTATGACAATCTTGTTCAAGCCTTTCCATTTTTTTCCCCTGATAACTAAGTAATTTCTTTGAACATACCAAGAAGTATGTA AAAAGTCCATGGCCTTATTCATCCACAAAGTGGCATCCTAGGCCCAGCCTTATCCCTAGCAGTTGTCCCAGTGCTGCTAGGTTGC TTATCTTGTTTATCTGGAATCACTGTGGAGTGAAATTTTCCACATCATCCAGAATTGCCTTATTTAAGAAGTAAAACGTTTTAAT TTTGTGGACTTCAGGGGCTTCTAAAACAGACAGGACTGTGTTGCCTTTACTAAATGGTCTGAGACAGCTATGGTTTTGAATTTTT AGTTTTTTTTTTTTAACCCACTTCCCCTCCTGGTCTCTCCCCTCTGATAATTACCATTCATATGTGAGTGTTAGTGTGCCTCC TTTTAGCATTTTCTTCTTCTTCTGATTCTTCATTTCTGACTGCCTAGGCAAGGAAACCAGATAACCAAACTTACTAGAACGT TCTTTAAAACACAAGTACAAACTCTGGGACAGGACCCAAGACACTTTCCTGTGAAGTGCTGAAAAAGACCTCATTGTATTGGCAT TTGATATCAGTTTGATGTAGCTTAGAGTGCTTCCTGATTCTTGCTGAGTTTCAGGTAGTTGAGATAGAGAGAAGTGAGTCATATT CATATTTTCCCCCCTTAGAATAATATTTTGAAAGGTTTCATTGCTTCCACTTGAATGCTGCTCTTACAAAAACTGGGGGTTACAAGG GTTACTAAATTAGCATCAGTAGCCAGAGGCAATACCGTTGTCTGGAGGACACCAGCAAACAACAACAACAAAGCAAAACAAACCA TTGGGAAACTAAGGCCATTTGTTTTGTTTTGGTGTCCCCTTTGAAGCCCTGCCTTCTGGCCTTACTCCTGTACAGATATTTTTGA CCTATAGGTGCCTTTATGAGAATTGAGGGTCTGACATCCTGCCCCAAGGAGTAGCTAAAGTAATTGCTAGTGTTTTCAGGGATTT AGCCAGTGTTCTTGTTCAACCTGAAAGTAATGGCTCTGGGTTGGGCCAGACAGTTGCACTCTCTAGTTTGCCCTCTGCCACAAAT TTGATGTGTGACCTTTGGGCAAGTCATTTATCTTCTCTGGGCCTTAGTTGCCTCATCTGTAAAATGAGGGAGTTGGAGTAGATTA ATTATTCCAGCTCTGAAATTCTAAGTGACCTTGGCTACCTTGCAGCAGCTTTTGGATTTCTTCCTTATCTTTGTTCTGCTGTTTGA GGGGGGCTTTTTACTTATTTCCATGTTATTCAAAGGAGACTAGGCTTGATATTTTATTACTGTTCTTTTATGGACAAAAGGTTACA TAGTATGCCCTTAAGACTTAATTTTAACCAAAGGCCTAGCACCACCTTAGGGGGCTGCAATAAACACTTAACGCGCGTGCGCACGC GCGCGCGCACACACACACACACACACACACACACACAGGTCAGAGTTTAAGGCTTTCGAGTCATGACATTCTAGCTTTTGAAT TGCGTGCACACACACGCACGCACCACTCTGGTCAGAGTTTATTAAGGCTTTCGAGTCATGACATTATAGCTTTTGAGTTGGT AGTGATATTATGCTCAAAACAAGGAAATTCCCTTGAACCGTGTCAATTAAACTGGTTTATATGACTCAAGAAAACAATACCAGTA GATGATTATTAACTTTATTCTTGGCTCTTTTTAGGTCCATTTTGATTAAGTGACTTTTGGCTGGATCATTCAGAGCTCTCTTCTA GTTGGGGAGTCCTGGTAGAGGCCAGCTTTGTGGTAGCTGGAGAGGAAGGGATGAAACCAGCTGCTGTTGCAAAGGCTGCTTGTCA TTGATAGAAGGACTCACGGGCTTGGATTGATTAAGACTAAACATGGAGTTGGCAAACTTTCTTCAAGTATTGAGTTCTGTTCAAT GCATTGGACATGTGATTTAAGGGAAAAGTGTGAATGCTTATAGATGATGAAAACCTGGTGGGCTGCAGAGCCCAGTTTAGAAGAA GTGAGTTGGGGGGTTGGGGACAGATTTGGTGGTGGTGGTATTTCCCCAACTGTTTCCTCCCCCTAAATTCAGAGGAATGCAGCTATGCCAG AAGCCAGAGAAGAGCCACTCGTAGCTTCTGCTTTGGGGGACAACTGGTCAGTTGAAAGTCCCAGGAGTTCCTTTGTGGCTTTCTGT ATACTTTTGCCTGGTTAAAGTCTGTGGCTAAAAAATAGTCGAACCTTTCTTGAGAACTCTGTAACAAAGTATGTTTTTGATTAAA AGAGAAAGCCAACTAAAAAAAAAAAAAAAAAAAAAAA

### 2. Homo sapiens frequently rearranged in advanced T-cell lymphomas 1 (FRAT1), mRNA

The stop codon is highlighted in red, the potential binding site for miR-34a-3p is highlighted in green and the complete fragment cloned into pMIR-RNL-TK is underlined.

NCBI Reference Sequence: NM\_005479.3

>gi|197313686|ref|NM\_005479.3| Homo sapiens frequently rearranged in advanced T-cell lymphomas 1 (FRAT1), mRNA

GGATTCCGGCTCCCGCGGCTGCAGGCGCGCGCGGCTAGAGTGCCTGGCGGGCTCCGGCTTCCGCGTCCGCGCCCCGGCCCCGGTCCAGA GACAGCTTCCTCCTACTGCAGCAGTCAGTGGCGCTGGGCGAGCTCGGGCGAGGTGGACCGGCTGGTGGCCCAGATCGGCGAGACGC TGCAGCTGGACGCGGCGCAGCACAGCCCGGCCTCGCCGTGCGGGCCCCCGGGGGCGCCGCGGGGCCCCCGGGGCCCCTGGCTGC GCCCCAGCGCGCTGTCCCCCACTGCCCCCTCAGGCCGACCTTGATGGGCCTCCGGGAGCTGGCAAGCAGGGCATCCCGCAGCCGCT CGCACAGGCGACGACCGCCCGCACCGGCTTCTGCAGCAGCTAGTGCTCTCTGGAAACCTCATCAAGGAGGCCGTGCGAAGGCTTC ATTCGCGACGGCTGCAGTTACGTGCAAAGCTTCCCCCAACGCCCGCTCCTGGGACCTCTGTCGGCCCCGGTGCATGAACCCCCTTC GCCTCGCAGCCCTCGCGCGCCTGCAGTGACCCTGGCGCCTCCGGGAGGGCGCAGCTCAGAACTGGCGACGGCGTTCTTGTGCCT GGCAGCTAACACGCCCGGGGTGGCCACAGCGCCAGCCTCAGACTGGAGGGCAAGGGGTTCCCTTGAGGGCCTGCAGTTCTACTCAG GCTGGTGGAGAACTCTGGCTTTTGGAAGCGAGAGTAAAAAGCTAATGACGAGGAACCGAAAAATCGCGAGTGTTTCGCGGGGTAAC TGGGGTTGAGGGCCAAAATATTTGGAATGAAGGACTTTGGCCCTATTTAAGGCAGATTTTACAGAGCGCACCTCAAACGTACAAG TCAGTAGGACTCCTTATTTGGCGTGACCCGACCTGGCCGCGGAGCCTGCATTTCCTCGCAGCCTCTCAGTGCCCTCCAGCCCCGC GACCATGTGGCCACAATCCACGCTTCTCCGGATCGCGGTGCGCCGGAACCACGGAGGATGATGCCAGTTACTTGCTTTACCTTTT CAGGGCTGGCTCCTGATCCACTTTGGGGGGAGGAGAACATGAGTAGATAATTTCAGGGTGCAGCCCAATCTGCCAGACTTAAAAAA ACCATCTTGTGTCTTTGGAGGTGCTGCTTAATACCAAACATGCGGTGCCATGAAGGGACCCTTTGGGGGGTTGAATAGGAGTTAAC CCCTGCGCTCTCTTTGCAACTGTCTCTCTCAGAGTGGTGGGGGAAGGCTGTACGACACGGGTGGGGAAAGGAGGTGGGGGGCG GGGAGTATTGAATGGTGGTGGAAGGGTAGAGAGGCGCGGGAGTGAACCCCACGCCCTGTCTAAAGTGTATTTTCAGAGCCGGCCCG CCTCTCCGGGTTCAAGGTCACTGTTTCCTGGGCACGCACTGGGTTGCGGGACAGAGTAGCCAGGTTCTGCCGGTGCTCGGAGAA GAGCGCAGTGTTTTGCAAGTGCTGGAGTCTCCTGAGGACACGCGCGCCGCCGCCGCGGGGTGTGGGAAAGCGCGGACGTGCTG GGCGGCTGTGCTTCGGTAGGCGACCACCGCCCCTGGCCGCGCTCCGGGCTTTCACGGAAACTCCCCGAGACCGGGCCCTGGGTTCC TCCTCTCCTACTCGGCTCTGCAGTCCTACTCAAGCGGGTGGCTCTGGGATCCTGGGGGCCTGGGTTGGGGGGCTAGGGAGACGCCA TGTGATGGACACTCCAGGGACACACAGCCTAGCACAGCAGCTTATAATGGGCTCTCCGGGGCCCATTTGCAATAACAGCTGCAATT  ${\tt TAAAGGCGCTGAGACTGTGCTGTTGTTCTCGTTTTTATAGTCAATGGCTTGTTCATCATCCAGATGTGGCTACTGACATATCTAC}$ ACTTCGCACCGGAGTGTCTGGAATTGTGGCTATCCTGATTAAGGATTTTAACTTAACTGAAATGCCTGCTTTGAATAAATGTGT TGGGTTTTTTGTTTGGTTTTATTTTTATACTTGCCATCAGTGAAAAAGATGTACAGAACACATTTCTCTGATCTCCATAAACATGA AAACACTTGAAATCTC

### 3. Homo sapiens B-cell CLL/lymphoma 2 (BCL2), transcript variant alpha, mRNA

The stop codon is highlighted in red, the potential binding sites for miR-34a-3p are highlighted in green and the complete fragment that was *de novo* synthesized and cloned into pMIR-RNL-TK is underlined

NCBI Reference Sequence: NM\_000633.2

>gi|72198188|ref|NM\_000633.2| Homo sapiens B-cell CLL/lymphoma 2 (BCL2), transcript variant alpha, mRNA

TTTCTGTGAAGCAGAAGTCTGGGAATCGGACTCTGGAAATCCTCCTAATTTTTACTCCCCTCTCCCCGCGACTCCTGATTCATTGGGA AGTTTCAAATCAGCTATAACTGGAGAGTGCTGAAGATTGATGGGATCGTTGCCTTATGCATTTGTTTTGGTTTTACAAAAAGGAA GTGCCTCATGAAATAAAGATCCGAAAGGAATTGGAATAAAAATTTCCTGCATCTCATGCCAAGGGGGAAACACCAGAATCAAGTG TTCCGCGTGATTGAAGACACCCCCCTCGTCCAAGAATGCAAAGCACATCCAATAAAATAGCTGGATTATAACTCCTCTTTTCTC AACAGGGTACGATAACCGGGAGATAGTGATGAAGTACATCCATTATAAGCTGTCGCAGAGGGGCTACGAGTGGGATGCGGGAGAT GTGGGCGCCGCGCCCCGGGGGCCCCCCCGCACCGGGCATCTTCTCCCCCAGCCCGGGCACACGCCCCATCCAGCCGCATCCC GATGACTGAGTACCTGAACCGGCACCTGCACACCTGGATCCAGGATAACGGAGGCTGGGATGCCTTTGTGGAACTGTACGGCCCC AGCATGCGGCCTCTGTTTGATTTCTCCTGGCTGTCTCTGAAGACTCTGCTCAGTTTGGCCCTGGTGGGGGGGCTTGCATCACCCTGG GTGCCTATCTGGGCCACAAG<mark>TGA</mark>AGTCAACATGCCTGCCCCAAACAAATATGCAAAAGGTTCACTAAAGCAGTAGAAATAATATG ACATTATTAAGAAAAAAAGATTTATTTAATTTAAGACAGTCCCATCAAAACTCCTGTCTTTGGAAAATCCGACCACTAATTGCCAAG CACCGCTTCGTGTGGCTCCACCTGGATGTTCTGTGCCTGTAAACATAGATTCGCTTTCCATGTTGTTGGCCGGATCACCATCTGA GAGACTCTTTGCATATGACTCACATGATGCATACCTGGTGGGAGGAAAAGAGTTGGGAACTTCAGATGGACCTAGTACCCACTGA GATTTCCACGCCGAAGGACAGCGATGGGAAAAATGCCCTTAAATCATAGGAAAGTATTTTTTTAAGCTACCAATTGTGCCGAGAA AAGCATTTTAGCAATTTATACAATATCATCCAGTACCTTAAGCCCCTGATTGTATATTCATATATTTTGGATACGCACCCCCCA ACTCCCAATACTGGCTCTGTCTGAGTAAGAAACAGAATCCTCTGGAACTTGAGGAAGTGAACATTTCGGTGACTTCCGCATCAGG CTTGGAGGCCTGGTCCTGGAACTGAGCCGGGGGCCCTCACTGGCCTCCCAGGGATGATCAACAGGGCAGTGTGGTCTCCGAATG TCTGGAA<mark>GCTGAT</mark>GGAGCTCAGAATTCCACTGTCAAGAAAGAGCAGTAGAGGGGTGTGGCCTGGGCCTGTCACCCTGGGGCCCTCC GGGCCCTTCCTATCAGAAGGACATGGTGAAGGCTGGGAACGTGAGGAGAGGCAATGGCCACGGCCCATTTTGGCTGTAGCACATG GCACGTTGGCTGTGGCCTTGGCCCACCTGTGAGTTTAAAGCAAGGCTTTAAATGACTTTGGAGAGGGTCACAAATCCTAAAAG AAGCATTGAAGTGAGGTGTCATGGATTAATTGACCCCTGTCTATGGAATTACATGTAAAACATTATCTTGTCACTGTAGTTTGGT ATCAGCCTTGAAACATTGATGGAATAACTCTGTGGCATTATTGCATTATATACCATTTATCTGTATTAACTTTGGAATGTACTCT GTTCAATGTTTAATGCTGTGGTTGATATTTCGAAAGCTGCTTTAAAAAAATACATGCATCTCAGCGTTTTTTTGTTTTTAATTGT ATTTAGTTATGGCCTATACACTATTTGTGAGCAAAGGTGATCGTTTTCTGTTTGAGATTTTTATCTCTTTGATTCTTCAAAAGCAT TCTGAGAAGGTGAGATAAGCCCTGAGTCTCAGCTACCTAAGAAAAACCTGGATGTCACTGGCCACTGAGGAGCTTTGTTTCAACC AAGTCATGTGCATTTCCACGTCAACAGAATTGTTTATTGTGACAGTTATATCTGTTGTCCCTTTGACCTTGTTTCTTGAAGGTTT AAAAATCCAGATGGCAAATGACCAGCAGATTCAAATCTATGGTGGTTTGACCTTTAGAGAGTTGCTTTACGTGGCCTGTTTCAAC ACAGACCCACCCAGAGCCCTCCTGCCCTCCTCCGCGGGGGGCTTTCTCATGGCTGTCCTTCAGGGTCTTCCTGAAATGCAGTGGT GCTTACGCTCCACCAAGAAAGCAGGAAACCTGTGGTATGAAGCCAGACCTCCCCGGCGGGCCTCAGGGAACAGAATGATCAGACC TTTGAATGATTCTAATTTTTAAGCAAAATATTATTTTTATGAAAGGTTTACATTGTCAAAGTGATGAATATGGAATATCCAATCCT TAACAATGAAGAACGTGGACGTTTTTAATATAAAGCCTGTTTTGTCTTTTGTTGTTGTTCAAACGGGATTCACAGAGTATTTGAA 

ATATCTAATTATTTTGCAGTTGGGCAACAGAGAACCATCCCTATTTTGTATTGAAGAGGGATTCACATCTGCATCTTAACTGCTC TTTATGAATGAAAAAACAGTCCTCTGTATGTACTCCTCTTTACACTGGCCAGGGTCAGAGTTAAATAGAGTATATGCACTTTCCA AATTGGGGACAAGGGCTCTAAAAAAAGCCCCCAAAAGGAGAAGAACATCTGAGAACCTCCTCGGCCCTCCCAGTCCCTCGCTGCAC AAATACTCCGCAAGAGGGCCAGAATGACAGCTGACAGGGTCTATGGCCATCGGGTCGTCTCCGAAGATTTGGCAGGGGCAGAAA ACTCTGGCAGGCTTAAGATTTGGAATAAAGTCACAGAATTAAGGAAGCACCTCAATTTAGTTCAAACAAGACGCCAACATTCTCT  ${\tt CCACAGCTCACTTACCTCTCTGTGTTCAGATGTGGCCTTCCATTTATATGTGATCTTTGTTTTATTAGTAAATGCTTATCATCTA$ AAGATGTAGCTCTGGCCCAGTGGGAAAAATTAGGAAGTGATTATAAATCGAGAGGAGTTATAATAATCAAGATTAAATGTAAATA ATCAGGGCAATCCCAACACATGTCTAGCTTTCACCTCCAGGATCTATTGAGTGAACAGAATTGCAAATAGTCTCTATTTGTAATT TAGACTTTCTTATCACTTATAGTTAGTAATGTACACCTACTCTATCAGAGAAAAACAGGAAAGGCTCGAAATACAAGCCATTCTA AGGAAATTAGGGAGTCAGTTGAAATTCTATTCTGATCTTATTCTGTGGTGTCTTTTGCAGCCCAGACAAATGTGGTTACACACTT TTTAAGAAATACAATTCTACATTGTCAAGCTTATGAAGGTTCCAATCAGATCTTTATTGTTATTCAATTTGGATCTTTCAGGGAT GTTTGGATCAGGGAGTTGGAAGTTTTCAGAATAACCAGAACTAAGGGTATGAAGGACCTGTATTGGGGTCGATGTGATGCCTCTG CGAAGAACCTTGTGTGACAAATGAGAAACATTTTGAAGTTTGTGGTACGACCTTTAGATTCCAGAGACATCAGCATGGCTCAAAG TGCAGCTCCGTTTGGCAGTGCAATGGTATAAATTTCAAGCTGGATATGTCTAATGGGTATTTAAACAATAAATGTGCAGTTTTAA CTAACAGGATATTTAATGACAACCTTCTGGTTGGTAGGGACATCTGTTTCTAAATGTTTATTATGTACAATACAGAAAAAAATTT TATAAAATTAAGCAATGTGAAACTGAAATTGGAGAGTGATAATACAAGTCCTTTAGTCTTACCCAGTGAATCATTCTGTTCCATGT CTTTGGACAACCATGACCTTGGACAATCATGAAATATGCATCTCACTGGATGCAAAGAAAATCAGATGGAGCATGAATGGTACTG TACCGGTTCATCTGGACTGCCCCAGAAAAATAACTTCAAGCAAACATCCTATCAACAACAAGGTTGTTCTGCATACCAAGCTGAG GTAGATACTGAGTAAATCCATGCACCTAAACCTTTTGGAAAATCTGCCGTGGGCCCTCCAGATAGCTCATTTCATTAAGTTTTTC TTTTTGTATTGAAAGCTTTTTGTTATCAAGATTTTCATACTTTTACCTTCCATGGCTCTTTTTAAGATTGATACTTTTAAGAGGTG TGAAGAAAAATAAAGTACAGTGTGAGATACTG