Correction: The complex genetics of gait speed: genome-wide metaanalysis approach

Dan Ben-Avraham^{1,*}, David Karasik^{2,3,*}, Joe Verghese^{4,*}, Kathryn L. Lunetta^{5,6}, Jennifer A. Smith⁷, John D. Eicher^{5,8}, Rotem Vered⁹, Joris Deelen^{10,11}, Alice M. Arnold¹², Aron S. Buchman¹³, Toshiko Tanaka¹⁴, Jessica D. Faul¹⁵, Maria Nethander¹⁶, Myriam Fornage¹⁷, Hieab H. Adams^{18,19}, Amy M. Matteini²⁰, Michele L. Callisaya^{21,22}, Albert V. Smith²³, Lei Yu¹³, Philip L. De Jager²⁴, Denis A. Evans²⁵, Vilmundur Gudnason²³, Albert Hofman^{18,26}, Alison Pattie²⁷, Janie Corley²⁷, Lenore J. Launer²⁸, Davis S. Knopman²⁹, Neeta Parimi³⁰, Stephen T. Turner³¹, Stefania Bandinelli³², Marian Beekman¹⁰, Danielle Gutman⁴⁸, Lital Sharvit⁴⁸, Simon P. Mooijaart³³, David C. Liewald³⁴, Jeanine J. Houwing-Duistermaat³⁵, Claes Ohlsson³⁶, Matthijs Moed¹⁰, Vincent J. Verlinden¹⁸, Dan Mellström³⁶, Jos N. van der Geest³⁷, Magnus Karlsson³⁸, Dena Hernandez³⁹, Rebekah McWhirter²², Yongmei Liu⁴⁰, Russell Thomson^{22,41}, Gregory J. Tranah³⁰, Andre G. Uitterlinden⁴², David R. Weir¹⁵, Wei Zhao⁷, John M. Starr^{34,43}, Andrew D. Johnson^{5,8}, M. Arfan Ikram^{18,19}, David A. Bennett¹³, Steven R. Cummings³⁰, Ian J. Deary^{27,34}, Tamara B. Harris²⁸, Sharon L. R. Kardia⁷, Thomas H. Mosley⁴⁴, Velandai K. Srikanth^{21,22}, Beverly G. Windham⁴⁴, Ann B. Newman⁴⁵, Jeremy D. Walston²⁰, Gail Davies^{27,47}, Gil Atzmon^{1,48}

¹Department of Medicine and Genetics Albert Einstein College of Medicine, Bronx, NY 10461, USA

²Institute for Aging Research, Hebrew SeniorLife, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA

³Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel

⁴Integrated Divisions of Cognitive & Motor Aging (Neurology) and Geriatrics (Medicine), Montefiore-Einstein Center for the Aging Brain, Albert Einstein College of Medicine, Bronx, NY 10461, USA

⁵The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA 01702, USA

⁶Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA

⁷Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA

⁸Population Sciences Branch, National Heart Lung and Blood Institute, Framingham, MA 01702, USA

⁹Psychology Department, University of Haifa, Haifa, Israel

¹⁰Molecular Epidemiology, Leiden University Medical Center, Leiden, Netherlands

¹¹Max Planck Institute for Biology of Ageing, Köln, Germany

¹²Department of Biostatistics, University of Washington, Seattle, WA 98115, USA

¹³Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60614, USA

¹⁴Translational Gerontology Branch, National Institute on Aging, Baltimore MD 21224, USA

¹⁵Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA

¹⁶Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

¹⁷The University of Texas Health Science Center at Houston, Houston, TX 77030, USA

¹⁸Department of Epidemiology, Erasmus MC, Rotterdam, Netherlands

¹⁹Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Netherlands

²⁰Division of Geriatric Medicine, Johns Hopkins Medical Institutes, Baltimore, MD 21224, USA

²¹Medicine, Peninsula Health, Peninsula Clinical School, Central Clinical School, Frankston, Melbourne, Victoria,

Australia

²²Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia

²³Icelandic Heart Association, Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland

²⁴Broad Institute of Harvard and MIT, Cambridge, Harvard Medical School, Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA

²⁵Rush Institute for Healthy Aging and Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA

²⁶Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA

²⁷Department of Psychology, University of Edinburgh, Edinburgh, UK

²⁸Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA

²⁹Mayo Clinic, Rochester, MN 55905, USA

³⁰California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA

³¹Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA

³²Geriatric Unit, Azienda Sanitaria Firenze (ASF), Florence, Italy

³³Gerontology and Geriatrics, Leiden University Medical Center, Leiden, Netherland

³⁴Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK

³⁵Genetical Statistics, Leiden University Medical Center, Leiden, Netherland. Department of Statistics, University of Leeds, Leeds, UK

³⁶Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska, Academy, University of Gothenburg, Gothenburg, Sweden

³⁷Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands

³⁸Clinical and Molecular Osteoporosis Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden

³⁹Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD 20892, USA

⁴⁰Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University, Winston-Salem, NC 27109, USA

⁴¹School of Computing, Engineering and Mathematics, University of Western Sydney, Sydney, Australia

⁴²Department of Internal Medicine, Erasmus MC, and Netherlands Genomics Initiative (NGI)-sponsored Netherlands Consortium for Healthy Aging (NCHA), Rotterdam, The Netherlands

⁴³Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK

⁴⁴University of Mississippi Medical Center, Jackson, MS 39216, USA

⁴⁵Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15261, USA

⁴⁶Broad Institute of Harvard and MIT, Boston, MA 02131, USA

⁴⁷Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA

⁴⁸Department of Human Biology, Faculty of Natural Science, University of Haifa, Haifa, Israel *Equal contribution

Original article: Aging (Albany NY) 2017; 9(1): 209-246.

PMCID: PMC 5310665 PMID: 28077804 DOI: 10.18632/aging.101151 Please check the link to the original paper: <u>http://www.aging-us.com/article/101151/text</u>

Present: Due to proofreading oversight, there is a mistake (marked in bold) in the last paragraph before DISCUSSION on page 219

Applying HaploReg v4.1 analysis to the 536 variants resulted in 9 categories (Supplementary Table 8): miscRNA (1 variant); snoRNA (2 variants); microRNA (4 variants); snRNA (9 variants); pseudogenes (14 variants);

sequencing in progress (43 variants); LINC RNA (86 variants); and 372 variants within protein coding genes. In addition, some variants annotate to the same gene resulting in a total of 139 genes (protein-coding or non-coding). Of those genes, 6 are exceptionally long, containing over a million base-pairs, the longest of which is **PTPRD coded by 2298477bp.** The shortest genes are the ones coding for micro (MIR3143) or small nuclear (U7) RNAs at 63bp each. There is only partial information regarding the chromatin state of each variant. However, from the information gathered in the analysis we observed 14 transcription start sites and 245 enhancers (Supplementary Table 8).

Corrected: The corrected text is provided below.

Applying HaploReg v4.1 analysis to the 536 variants resulted in 9 categories (Supplementary Table 8): miscRNA (1 variant); snoRNA (2 variants); microRNA (4 variants); snRNA (9 variants); pseudogenes (14 variants); sequencing in progress (43 variants); LINC RNA (86 variants); and 372 variants within protein coding genes. In addition, some variants annotate to the same gene resulting in a total of 139 genes (protein-coding or non-coding). Of those genes, 6 are exceptionally long, containing over a million base-pairs, the longest of which is **PTPRT coded by 1117219bp**. The shortest genes are the ones coding for micro (MIR3143) or small nuclear (U7) RNAs at 63bp each. There is only partial information regarding the chromatin state of each variant. However, from the information gathered in the analysis we observed 14 transcription start sites and 245 enhancers (Supplementary Table 8).

The authors sincerely apologize for this error.