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ABSTRACT

Increasing age is a risk factor for many diseases; therefore developing pharmacological interventions that slow
down ageing and consequently postpone the onset of many age-related diseases is highly desirable. In this
work we analyse data from the DrugAge database, which contains chemical compounds and their effect on the
lifespan of model organisms. Predictive models were built using the machine learning method random forests
to predict whether or not a chemical compound will increase Caenorhabditis elegans’ lifespan, using as features
Gene Ontology (GO) terms annotated for proteins targeted by the compounds and chemical descriptors
calculated from each compound’s chemical structure. The model with the best predictive accuracy used both
biological and chemical features, achieving a prediction accuracy of 80%. The top 20 most important GO terms
include those related to mitochondrial processes, to enzymatic and immunological processes, and terms related
to metabolic and transport processes. We applied our best model to predict compounds which are more likely
to increase C. elegans’ lifespan in the DGIdb database, where the effect of the compounds on an organism’s
lifespan is unknown. The top hit compounds can be broadly divided into four groups: compounds affecting
mitochondria, compounds for cancer treatment, anti-inflammatories, and compounds for gonadotropin-
releasing hormone therapies.

INTRODUCTION

Old age is the greatest risk factor for many diseases,
including various types of cancer, inflammatory and
neurodegenerative diseases. Traditional medical science
combats one disease at a time, instead of combating the
underlying biological ageing process that leads to many
age-related diseases. From a whole body system’s point
of view, this traditional one-disease-at-a-time approach
focuses on the downstream diseases, rather than

considering the underlying mechanisms of age-related
functional decline. This approach has limited
effectiveness at present and is likely to be less effective
in the future, because of an increasingly larger elderly
population suffering from multiple age-related diseases.
In contrast, interventions that slow down ageing and
promote “healthy ageing” could in principle delay the
onset of all age-related diseases, with a significant
benefit to human health and a large reduction of
healthcare costs [1].
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Pharmacological interventions are arguably the most
practical ageing intervention for humans, avoiding the
main problems with genetic interventions (generally
unethical in humans) and dietary interventions such as
caloric restriction, which are difficult to maintain for the
vast majority of people. For instance, there is currently
great interest in discovering drugs that mimic the
process of caloric restriction (caloric restriction
mimetics) [2,3]. In addition, promising research on
pharmacological interventions on the ageing process is
underway at the National Institute of Aging’s
Intervention Testing Program (ITP), which consists of
administering drugs or chemical compounds to mice
under carefully controlled conditions [4,5]. However, as
mouse experiments are costly and time consuming, so
far only a limited number of drugs or compounds have
been evaluated. Thus, using simpler model organisms
for evaluating a chemical compound’s effect on an
organism’s lifespan is appealing, and a substantially
larger number of studies have administered compounds
to C. elegans than other organisms. As the ITP for mice,
the Caenorhabditis Intervention Testing Program has
been introduced for assessing longevity variation for
chemical compounds [6]. Although C. elegans is
physiologically different from humans, C. elegans is
the most studied model organism in ageing research,
producing insights that are applicable to other
organisms [7], since cellular-level ageing processes are
often conserved across distantly-related species [8].
According to the GenAge database [9], C. elegans is the
animal model with by far the most known ageing-
related genes (838 at the time of writing).

In this work we analyse data from the DrugAge
database [10], which contains information about
chemical compounds and their effect on the lifespan of
organisms. DrugAge contains a variety of compounds
with anti-ageing properties such as gerosuppressant,
geroprotective and senolytic activity [11-13] as well
lifespan increasing properties for a specific species.
Existing databases with lifespan-extending drugs
include AgeFactDB (http://agefactdb.jenage.de/) [14],
and Geroprotectors.org [15] (http://geroprotectors.org/).
DrugAge incorporates data from these resources and
improves on them by providing a more extensive and
systematic repertoire of lifespan-extending drugs,
compounds and substances. DrugAge is manually
curated and features only information relative to
lifespan assays conducted in well-controlled studies.
DrugAge contains data about several model organisms,
and the majority of compounds in DrugAge have been
evaluated on C. elegans, so we focus on analysing data
for this organism.

In order to analyse such data, we use random forests,
which is a supervised machine learning method — for a

recent review of supervised machine learning applied to
the biology of ageing, see [16]. In this work, the random
forest builds a classification model to predict whether or
not a chemical compound will increase the lifespan of
C. elegans, based on predictive features describing that
compound. We created datasets with two types of
predictive features, namely Gene Ontology (GO) terms
annotated for proteins interacting with the compounds
and chemical descriptors calculated from each
compound’s chemical structure. In order to evaluate the
predictive relevance of these two types of features, we
created three different datasets: one using as predictive
features only the GO terms, another using as predictive
features only the chemical descriptors, and a third
dataset using both types of features. In addition, the best
model produced by the random the forest method was
applied to a screening “external” dataset with com-
pounds from the DGIdb database, where the effect of
the compounds on an organism’s lifespan is unknown.
The predictions of that model were used to identify the
“top hit” compounds in the DGIdb dataset, i.e.
compounds with higher probabilities of increasing
lifespan in C. elegans.

There are some related works that performed data
analysis on compounds increasing C. elegans’ lifespan,
but without using any predictive machine learning
method. In particular, Ziechm et al. used an empirical
scoring function combining several different factors to
evaluate the relevance of a compound for ageing [17];
and Ye et al. (2014) constructed a pharmacological
network in order to reveal pharmacological classes most
related to C. elegans’ ageing [18]. In addition, Calvert
et al. 2016 identified drugs which induce gene
expression profiles similar to the profiles of genes
associated with caloric restriction (CR), and observed
that various genes targeted by lifespan-extending drugs
are included in CR and longevity networks [3].
Furthermore, Aliper et al. [19] utilised computational
tools to carry out signalling pathway analysis of gene
expression between young and old stem cells in
humans. Based on the signalling pathway results,
known compounds were screened and ranked, in order
to identify the best compounds to target those pathways
and restore a “young” cellular profile. A review of
several specific pharmacological classes extending C.
elegans’ lifespan can be found in Carretero et al. 2015
[20], but again with no use of predictive machine
learning methods.

To the best of our knowledge, this is the first work to
propose the use of a predictive machine learning
method (namely Random Forests) to analyse data about
the effect of chemical compounds in C. elegans’ lifespan,
as well as the first work to apply machine learning to data
about compounds in the DrugAge database.
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RESULTS AND DISCUSSION
Predictive accuracy of the models

We have created a DrugAge dataset specifically for
studying the classification of compounds into the
classes “increase lifespan” or “do not increase lifespan”,
depending on each compound’s effect when administer-
ed to C. elegans. In this dataset, each compound to be
classified belongs to one of the two just-mentioned
classes, and is described by a large set of chemical
descriptors and biological GO term features.

We use the random forest method as the classification
algorithm to analyse this dataset. This type of method
was chosen because it is particularly popular in
bioinformatics [21,22], it is robust to overfitting in
datasets where the number of features is much larger
than the number of instances (as with our dataset)
[22,23], it is relatively simple to understand and to use,
and finally, in contrast to other state-of-the-art
classification methods like support vector machines,
random forests produce interpretable results based on a
variable (feature) importance measure, an interpretation
mechanism also exploited in this paper.

Predictive accuracy for the models developed was
evaluated by Area Under the ROC curve (AUC). This is
a measure between 0 and 1, with 1 indicating perfect
(no error) class predictions. The reported predictive
accuracy used is the median over the 10 test sets of the
external cross-validation. We report the median
accuracy, rather than the mean, because the former is
more robust to outliers. The median AUC results from
each of the different versions of the DrugAge dataset
(using either chemical and/or biological descriptors),
where for each dataset version we optimised the
parameters ntrees and mtry of the random forest method
as described in the Methods section.

The AUC results are reported in Table 1. Comparing the
AUC values across the dataset versions (last column in
Table 1), it is clear that, in general, the set of chemical
descriptors have a greater ability to predict a
compound’s class than the set of GO terms. More
precisely, the dataset using only chemical descriptors as
features has substantially larger AUC than the one using
only GO terms as features (0.781 wvs. 0.716,
respectively). However, the GO term features still offer
some positive contribution to the predictive accuracy of
random forests, since the dataset version leading to the
highest AUC value in Table 1 (0.800) was the one using
both GO terms and chemical descriptors as features.

Biological and chemical features for the prediction
of longevity compounds in C. elegans

One of the benefits of utilizing the random forest
method, as well as it being a highly predictive
technique, is that for each feature an importance
measure can be calculated. This importance measure
(often called variable importance) offers the opportunity
to interpret the relevance of each feature in the model
produced. In this work, using the Boruta and Ranger R
packages [21,24] and computing the importance of
features in the best model (built using both GO terms
and chemical descriptors as features), 93 features — 73
chemical descriptors and 20 GO terms — were selected as
statistically significant features (full table Supplemental
Data). Recall that the GO term features are derived from
the proteins which are targeted by each compound.

The 20 GO terms selected as significant mainly make
up biological process GO terms (14 out of 20), five
molecular function terms and one defining a cellular
component term. Biological process GO terms describe
a series of processes as well as specific biological
processes such as macromitophagy and macroautophagy,
which are among the features with the highest importance

Table 1. Predictive accuracy (median AUC values on 10-fold cross validation) obtained
by random forest with parameters optimized for each DrugAge dataset version (each

with a different feature type combination).

RF’s optimized parameters
Dataset features Median AUC
ntrees mtry
GO terms only 300 52 0.716
Chemical descriptors only 100 16 0.781
GO terms and chemical descriptors 900 210 0.800
WWWw.aging-us.com 1723




in this work. Molecular function GO terms describe
specific activities that occur at the molecular level such
as isomerase activity and protein disulfide isomerase
activity. Finally, cellular component GO terms describe
locations in the cell, e.g. at the level of organelles or
macromolecular complexes such as the mitochondrial
proton-transporting ATP synthase complex, highlighted
as the only significant cellular component GO term
feature in this work.

Chemical molecular descriptors are calculated from the
chemical structure and are normally used to build
predictive models to study the relationship between a
compound’s chemical structure and its biological and
pharmacokinetic properties such as drug distribution and
absorption [25,26]. This paper is the first use of chemical
molecular descriptors (as well as GO terms) to study the
relationship between longevity and the chemical structure
of compounds that may affect longevity.

Chemical molecular descriptors can be broadly
categorized into three main groups, which describe a
compound’s chemical structure and its main properties.
These groups are: hydrophobic, electronic and steric
(size and/or shape) descriptors. Hydrophobicity
descriptors describe the hydrophobic character of a
chemical compound and how easily it can cross cell
membranes, and they may also be important for
receptor interactions. Electronic molecular descriptors
describe the electron distribution in a chemical
compound and its electrostatic interactions, therefore
they give an indication of how strongly (in terms of
affinity) and how specifically a chemical compound
binds to specific receptors. Finally, steric descriptors
describe the size and shape of the chemical compound.
The size and shape of a compound may influence its
binding with an enzyme or receptor binding sites and
can also affect other psychochemical properties. Note
that a chemical molecular descriptor can belong to more
than one of the categories described above.

The top 20 selected features with the highest median
variable importance are shown in Table 2. Considering
just the top 20 features as shown in Table 2, there are
slightly more GO terms (12 out of 20) than chemical
molecular descriptors (8 out of 20). Those 12 GO terms
include terms related to mitochondrial processes, terms
related to enzymatic and immunological processes and
terms related to metabolic and transport processes.
Furthermore, the eight chemical molecular descriptors
in the top 20 features contain descriptors related to
electronic and steric (size and shape) effects, but not to
hydrophobic effects directly.

It can be seen from the list of important features that the
vast majority of the most important features are very

specific molecular and biological processes. However,
these specific processes are generic in their applicability
and occur across many tissues and organs. For example
“isomerase activity” covers a broad range of various
enzymes that catalyze reactions across many biological
processes, such as in glycolysis and carbohydrate
metabolism. Although it is evident that isomerase
activity is relevant to metabolism (amongst other
processes) and hence ageing, this feature is not specific
enough to suggest practical targets for pharmacological
intervention. In spite of this, some of the specific
features have been linked with longevity and ageing
processes.

GO terms related to metabolism encompass the vast
majority of the GO term features listed in Table 2.
These GO terms range from very general metabolism-
related properties such as aerobic respiration to more
specific processes such as dipeptidase activity, pyruvate
metabolic process, fatty acid transport and mito-
chondrial electron transport from NADH to ubiquinone.
Given the involvement of metabolic factors in several
theories of ageing such as the free radical theory of
ageing, as well as the well-established effect of calorie-
restriction on longevity, it is expectable that the
compounds that affect ageing do so by interacting with
these pathways and processes, as evidenced also by the
importance of such features in the random forest model.

One apparent group of features that can be related to
longevity and ageing are the GO terms related to
autophagy (macroautophagy and macromitophagy) and
mitochondrial processes. Macroautophagy is the process
where cellular contents are degraded by lysosomes or
vacuoles and recycled, and this process controls
cytosolic protein and organelle degradation [27,28].
Whereas macromitophagy is the degradation of
mitochondrion by macroautophagy and controls
mitochondrial quality and quantity [29]. It is known that
autophagy in general is associated with ageing
processes. This can be evidenced by the occurrence of
degenerative changes in mammalian tissues, similar to
changes seen with ageing, as a result of genetic
inhibition of autophagy. Moreover, pharmacological or
genetic manipulations that increase life span in model
organisms often stimulate autophagy. In the same way,
there is a decrease in autophagy with increasing age in
organisms, which leads to accumulation of damage [30]
which is thought to be responsible for the functional
loss in many biological and physiological processes as
ageing occurs [31,32]. In addition to macroautophagy,
mitophagy is specifically implicated in ageing.
Mitophagy has been shown to be a selective, “non-
random” process [33] that is governed by several
biological pathways (see [34] for a review of the
molecular mechanisms).
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Table 2. Top 20 selected features with the highest median variable importance.

Median Variable Feature Feature Feature Description
Importance type
14.4 a nN MD Number of nitrogen atoms in the molecule
. . GO Catalysis of the geometric or structural changes within
12.8 isomerase activity
one molecule
11.8 macromitophagy GO Degradation of a mitochondrion by macroautophagy
GO Process in which cellular contents are degraded by
11.6 macroautophagy
lysosomes
1.1 protein disulfide GO Catalysis of the rearrangement of both intrachain and
) isomerase activity interchain disulfide bonds in proteins.
11.0 dipeptidase activity | GO Catalysis of the hydrolysis of a dipeptide.
9.72 pyruvate metabolic | GO The chemical reactions and pathways involving
) process pyruvate
MD Total positive van der waals surface area of atoms with
047 PEOE_VSA+4 atomic charge in the range of 0.20-0.25.
931 fatty acid transport GO The Fhrected movement of fatty acids into, out of or
within a cell, or between cells
mitochondrial GO The transfer of electrons from NADH to ubiquinone
electron transport, . ) .
8.79 mediated by the multisubunit enzyme known as
NADH to
.. complex I
ubiquinone
8.64 vsurf Wp2 MD Polar.voh.u.ne at -0.5, a descriptor reflecting the
polarizability of a molecule
857 isotype switchin GO The switching of activated B cells from IgM
) yp & biosynthesis to biosynthesis of other isotypes
8.40 translation GO The cellular metabolic process in which a protein is
formed
MD Relative negative partial charge, defined as the most
8.18 Q _RPC- negative atomic charge divided by the sum of all
negative atomic charges in the molecule.
3.09 acrobic respiration GO The epzymatlc release of energy from inorganic and
organic compounds
MD Atom information content (total), defined as the
7.98 a IC entropy of the element distribution in the molecule
multiplied by the number of atoms.
7.95 IS)EOE—VSA—FPPO MD Fractional polar positive vdw surface area
736 triglyceride GO The release of triglycerides from storage within cells or
) mobilization tissues, making them available for metabolism.
779 chilv MD }/)alence corrected molecular connectivity index (order
MD Sum of the absolute value of the difference between
7.70 bpol atomic polarizabilities of all bonded atoms in the
molecule

GO: Gene ontology term; MD: Chemical Molecular descriptor

Mitochondrial respiration, and in particular electron
transport chain, is the main source of reactive oxygen

regarded as a defense against oxidative
mitochondrial dysfunction, and ageing. This

stress,

species. As a result, mitochondrial homeostasis is
particularly affected by ageing, as ROS generation in
mitochondria leads to mitochondrial protein and
mtDNA damage [34]. Therefore, mitophagy can be

supported by findings that along with mitochondrial
biogenesis pathways, a key mediator of mitophagy and
longevity assurance under conditions of stress in C.
elegans (DCT-1) is upregulated when mitophagy is
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impaired [35]. It is therefore not unexpected to find in
this work that chemical compounds that modulated
mitophagy are also important promoters of longevity. It
is interesting to note that in model organisms such as C.
elegans disruption of mitochondrial electron transport
chain processes can lead to increases in longevity,
through genetic [36] or pharmacological interventions
[37]. Finally, a related property, aerobic respiration, was
also selected by the random forest model. Although
aerobic respiration is a very broad term encompassing
many processes that lead to the production of cellular
energy, it is very well-associated with ageing through
the known impact of mitochondrial function and caloric
restriction.

Other GO features with links to longevity and ageing
processes are protein disulfide isomerase activity and
translation. Protein disulfide isomerase activity refers to
the activity of isomerases that are involved in protein
folding via formation and breakage of disulfide bonds
within proteins in the endoplasmic reticulum (ER)
[38,39]. The activity of this enzyme is key to protein
folding and quality control in the ER. A number of
studies have demonstrated that the levels of disulfide
isomerase and their catalytic activity diminish with age
[40]. Misfolding of proteins and ER stress are alleviated
by the signalling pathway known as the ER stress
response or the unfolded protein response, which
involves protective measures to limit the protein load.
These include up-regulation of ER chaperones involved
in the refolding of proteins, activation of pathways
leading to reduction of protein translation and
degradation of misfolded proteins. Where ER stress
cannot be reversed, cellular functions deteriorate and
apoptosis will occur [41]. There is evidence in the
literature to suggest that disruption of protein disulfide
isomerase activity leads to ER stress and accumulation
of misfolded proteins, which can give rise to age-related
disease pathology [42]. Finally, the GO term translation
has a clear biological relevance, since it is well-known
that translation inhibition extends lifespan in C. elegans
[43]. Translation has also been highlighted as a prime
category in age-related genes in C. elegans in a recent
paper by Fernandes et al. (2016) [44]. It is therefore
evident that pathways involved in protein translation
and folding may be a target of anti-ageing compounds,
hence the significance of GO terms such as
“translation” and “disulphide isomerase” in the random
forest model.

The molecular descriptors in Table 2 indicate the
molecular properties that impact the longevity effect of
the compounds. From the eight molecular descriptors
listed in the table, the majority are electrostatic
descriptors such as PEOE VSA+4, vsurf Wp2,
Q RPC-, PEOE VSA FPPOS and bpol. These

electrostatic ~ parameters also carry information
regarding the topology of the molecule, and along with
steric parameters such as chilv and a_IC explain the
interaction and binding of the compounds with their
target sites. These targets/processes are in addition to
those already described in the model by the biological
features (GO terms).

Overall, even though the used dataset (like any other
biological dataset) is somewhat biased by the fact that
some genes have been much more studied than others
[44], some of the most important features shown in
Table 2 can be related to important and known
biological processes of ageing and longevity, such as
those related to autophagy and mitochondrial processes.
Furthermore, the other selected biological and chemical
features are a good starting point that warrants further
investigation, to further link the chemical and biological
features of chemical compounds with longevity and
underlying biological ageing processes.

Predictions of novel potential life-extending
compounds

The best model built from the DrugAge dataset (using
GO terms and chemical descriptors) was used to predict
the probability of the class “increase lifespan” for over
6,000 compounds from the DGIdb database v2 [45],
where the class label of each compound is unknown. By
using the predicted class probabilities we can rank and
prioritise those compounds with the highest probability
of increasing the lifespan of C. elegans. The list of all
compounds predicted from the DGIdb dataset and their
associated class probabilities can be found in the
Supplemental Data, and the class probabilities for the
top 20 compounds can be found in Table 3.

As shown in Table 3 the highest predicted class
probability for a compound in DGIdb was 0.69.
Although not close to 1, this can be considered a
relatively high probability, considering that the baseline
probability (relative frequency) of the class “lifespan
increase” in the DrugAge dataset used to build the
model was only 0.20. In this section, we focus on the 50
“top hit” DGIdb compounds, with the highest values of
probabilities for the predicted class “lifespan increase”.
In general, the top hit compounds predicted to have
longevity enhancing effects fall into four groups:
compounds affecting mitochondria, compounds used in
treatments for cancer, anti-inflammatories, and
compounds used in gonadotropin-releasing hormone
therapies.

Compounds related to mitochondrial processes
Acrolein (lifespan increase class probability = 0.69) was
the top hit in our screening dataset. Acrolein is a highly
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reactive electrophile and a building block to many other
chemical compounds, including the amino acid
methionine. This compound has been shown to be an
electron transport chain inhibitor, leading to
mitochondrial dysfunction [46]. Acrolein is implicated
in pathways such as p53 and the NF-kB inflammation
pathway [47]. Acrolein is toxic at high concentrations
[46], but at lower doses in vitro exposure to acrolein
inhibits NF-«xB activation, suggesting that inhibition of
NF-xB gives rise to acrolein’s anti-inflammatory
properties — however, the evidence is conflicting
[48,49]. Therefore, the high probability of lifespan
increase predicted by our model, despite the known
toxicity of acrolein, may result from the contribution of
a large diversity of the pathways affected by this
compound, some of which are desirable for longevity.

Table 3. Top 20 chemical compounds with

the highest lifespan-increase  class
probability from the external screening
dataset.

Chemical Compound Predicted
Name Probability
acrolein 0.691
valspodar 0.683
ganirelix 0.674
acetaldehyde 0.669
mmk-1 0.667
rdp-58 0.665
cetrorelix 0.657
gal-b5 0.656

m40 0.654
DB03393 0.650
bortezomib 0.650

ro 25-1392 0.650
gv1001 0.650
lactose 0.650
ergotamine 0.650
cardiolipin 0.642
dactinomycin 0.642
abt-510 0.640
aplyronine a 0.637
valinomycin 0.637

Other compounds affecting mitochondrial processes
include valinomycin and cardiolipin (both with lifespan
increase class probability = 0.64). Valinomycin is a
potassium ionophore and causes mitochondrial
dysfunction by uncoupling oxidative phosphorylation in
the electron transport chain [50]. Cardiolipin is a
dimeric phospholipid found in the inner mitochondrial
membrane (IMM), where it plays a major role in
oxidative phosphorylation. Alterations in the content

and composition, and peroxidation of cardiolipin leads
to mitochondrial dysfunction [51,52]. Decrease in
cardiolipin content has been observed in ageing brain,
and in several pathologies including myocardial
ischemia, heart failure and Parkinson’s disease [53].
Therefore, it is expectable that cardiolipin administra-
tion is predicted to promote longevity.

Anti-cancer drugs and longevity

Anti-cancer compounds from our top 50 hits in the
DGIdb dataset include drugs such as temsirolimus,
valspodar and bortezomib. Interestingly, temsirolimus
(lifespan increase class probability = 0.62) is a
derivative and pro-drug of sirolimus — also known as
rapamycin. Rapamycin was the first pharmacological
compound shown to extend lifespan in both genders in
mice models [54,55], C. elegans [56] and D.
melanogaster [57]. Numerous studies indicate that
inhibition of the TOR (Target of Rapamycin) kinase is
implicated in lifespan control [58,59]. Temsirolimus
also inhibits mTOR, and this compound has been shown
to improve certain cellular phenotypes in accelerated
ageing models via increasing autophagy [60].

Valspodar (lifespan increase probability = 0.68), the
second top-hit in our screening dataset, is an
experimental  chemosensitizer  drug.  Valspodar
desensitizes tumor cells making them more vulnerable
to anti-cancer drugs, due to its ability to inhibit P-
glycoprotein (P-gp), which is overexpressed in many
cancer cells. However, possibly of more relevance is the
apoptotic effect of valspodar (and its structurally related
compound, cyclosporine A) that stems from their
disruption of mitochondrial membrane potential leading
to mitochondrial dysfunction [61].

Bortezomib (lifespan increase probability = 0.65) is a
proteasome inhibitor, and studies have shown that the
inhibition of proteasome activity by bortezomib is
associated with enhanced apoptosis due to inhibition of
NF-xB activity [62,63]. However, this compound also
leads to the accumulation of misfolded proteins and ER
stress followed by unfolded protein response (UPR) and
macroautophagy [64], which may potentially lead to
longevity promotion.

Dactinomycin (lifespan increase probability = 0.64)
interferes with ribosome biogenesis through the
inhibition of RNA polymerase I [65], which leads to the
activation of p53 [66]. Inhibition of the mTOR pathway
leads to a reduction of ribosome biogenesis and
increases lifespan in several species [54,57,67]. mTOR
and p53 signalling pathways are connected by a number
of different mechanisms, highlighting a complex
relationship [66,68,69]. Considering that there are
similar signaling molecules involved in both cancer and
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ageing [70,71], such as mTOR [72], p53 [69] and NF-
kB [73], it is not unexpected to find anti-cancer drugs in
our list of top hit compounds. However, this could be
due to research bias, where anti-cancer drugs may be
overrepresented in datasets (including DrugAge) due to
the extensive study of cancer therapies.

Chemical compounds with anti-inflammageing effects
Ageing has been characterized by chronic, low-grade
inflammation, also labeled as “inflammageing” [74].
Human studies have shown that suppression of chronic
inflammation is a major determinant of successful
longevity, over a very wide age range up to extreme old
age [75,76].

The compound rdp-58 (lifespan increase class
probability = 0.67), tested for the treatment of the
inflammatory disorder ulcerative colitis [77,78], leads to
a reduction of proinflammatory (tumor necrosis factor
alpha) TNF-a and interleukins (ILs) such as interferon-
v, IL-2, IL-6, and IL-12 [79].

Ergotamine (lifespan increase probability = 0.65), a
vasoconstrictor used for the treatment of migraines, has
also been shown to reduce the level of proinflammatory
TNF-a [80]. Dihydroergotamine methanesulfonate
increases longevity in C.elegans [18] and was used to
build our models. Dihydroergotamine methanesulfonate
is a derivative of ergotamine, so this can explain the
predicted pro-longevity effects for ergotamine.

The compound ro 25-1392 (lifespan increase probability
= 0.65) is a type II vasoactive intestinal peptide receptor
(VIPR2) agonist [81]. ro 25-1392 is an analogue of
vasoactive intestinal peptide (VIP), which binds to both
VIPR1 and VIPR2, leading to protection in models of
inflammatory and autoimmune conditions [82,83].

Reproductive hormone factors and longevity
Gonadotropin-releasing hormone (GnRH) is responsible
for the release of follicle-stimulating hormone (FSH)
and luteinizing hormone (LH) in the pituitary gland,
promoting the production of testosterone and estrogen.
It is a part of the hypothalamic—pituitary—gonadal axis,
which helps in the regulation of reproductive and
immune systems [84].

In our list of top hit compounds there are examples of
GnRH antagonists, such as ganirelix [85] and cetrorelix
[86] (lifespan increase class probabilities 0.67 and 0.66,
respectively); and agonists such as nafarelin [87] and
histrelin [88,89] (lifespan increase class probabilities
0.63 and 0.62, respectively). Both antagonists and
agonists (whose continued use leads to desensitisation
of GnRH receptors) of GnRH receptors lead to the
reduction of FSH and LH.

The decline in GnRH has been shown to contribute to
ageing-related changes such as bone fragility and
reduced neurogenesis in mice. Zhang [90] showed in
mice that activation of NF-xB in the hypothalamus led
to a reduced production of GnRH by neurons and that
continued activation led to accelerated ageing, whereas
GnRH treatment reduced neurogenesis and decelerated
ageing. These findings suggest a link between
inflammation and ageing related to GnRH. However,
whether this relationship involving GnRH applies to
humans and primates is questionable, as it appears that
female primates have higher levels of GnRH with
increasing age [91], whereas in Norway rats GnRH
levels decreased with increasing age [92]. It is therefore
apparent that GnRH has some role in longevity
independent of its role in reproduction.

CONCLUSIONS

In this work we analysed data from the DrugAge
database [10], which contains information about
chemical compounds and their effect on the lifespan of
organisms. We focused on compounds administered to
C. elegans, since the majority of compounds in
DrugAge have been evaluated in this model organism.
For our data analysis, we used the machine learning
method random forests, which builds a classification
model to predict whether or not a chemical compound
will increase the lifespan of C. elegans, based on
predictive features describing that compound. We built
three types of classification models, using either
chemical descriptors or Gene Ontology terms, or both
types of features. The dataset with both types of features
led to the highest predictive accuracy in our
experiments.

We used a score calculated by the random forest
method to identify the most relevant features. Among
the 20 highest score features, there are several GO terms
which have a well-established association with the
ageing process such as “macromitophagy” and
“macroautophagy”. The high score of these GO terms is
consistent with the fact that pharmacological or genetic
interventions that increase lifespan in model organisms
often stimulate autophagy [44]. Another example of a
relevant GO term in the top 20 features was
“translation”. It is well-known that translation inhibition
extends lifespan in C. elegans [43]. The interpretation
of the chemical features in the top 20 features is more
difficult, since they refer to low-level chemical
properties rather than broader biological processes — in
general, those chemical features refer to electronic, size
and shape effects of the compounds.

Furthermore, we applied the best classification model
built by the random forest to a screening “external”
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dataset with compounds from the DGIdb database,
where the effect of the compounds on an organism’s
lifespan is unknown. The predictions of that model were
used to identify the “top hit” compounds in the DGIdb
dataset, i.e. compounds with higher probabilities of
increasing lifespan in C. elegans. We observed that
these top hit compounds can be broadly divided into
four groups: compounds affecting mitochondria,
compounds for cancer treatment, anti-inflammatories,
and compounds for gonadotropin-releasing hormone
therapies.

In conclusion we have built, using machine learning, a
model to predict the longevity effects of chemical
compounds in C.elegans, using the recently published
DrugAge dataset. The list of top-hit compounds and
their analysis contributes to our knowledge of likely
longevity-extending compounds, and experimental
confirmation of these predictions would be an
interesting direction for future research.

METHODS
Dataset creation

Chemical compounds that increased longevity in C.
elegans were extracted from the DrugAge database
(Build 2, release date: 01/09/2016) [10], available from
the Human Ageing Genomic Resources website [9].
These compounds were assigned a positive class label
(i.e. increased lifespan). Additionally, compounds that
were found not to increase or had no effect on longevity
in C. elegans were collected from the literature and
were assigned a negative class label. The sets of
positive and negative labelled compounds were
combined to form the dataset for modelling. For ease,
hereafter reference to the DrugAge dataset for
modelling describes the positive entries from DrugAge
plus the negative class label compounds. The number of
positive and negative entries obtained were 229 and
1163 respectively, after dataset curation. The list of
negative entries is present in the Supplemental Data.
Compound entries from the DGIdb database v2 [45]
were used to test and prioritise chemical compounds for
longevity effects from the classification models built
from the DrugAge dataset. The DGIdb dataset is used as
our independent screening (or “external”) dataset,
where the compounds’ longevity class labels are
unknown.

Calculation of chemical molecular descriptors for the
datasets used

For calculation of chemical molecular descriptors for
chemical compounds, SMILES (Simplified Molecular-
Input Line-Entry System) codes, which are line
notations encoding the chemical structure, were

extracted using PubChem [93] or ChemSpider
(http://www.chemspider.com). For compounds where
the chemical structure was not available, the structure
was drawn directly from the literature reference (if
available) and the SMILES code extracted. Compounds
were removed at this stage if there was no SMILES
code available, contained heavy inorganic metals, were
duplicate compounds or were compound mixtures.
Additionally, if there were chemical isomers with the
same class label, only one entry was kept. For the
DGIdb dataset, compounds were removed if they had a
molecular weight greater than 3000 Daltons due to
software restraints.

For molecular descriptor calculation, MOE (Chemical
Computing Group Inc.) v2013.0.8 and Advanced
Chemistry Development ACD Labs/LogD Suite v12
were used to calculate 2D and 3D molecular descriptors
using the desalted and minimised chemical structure
(using the semi-empirical method MOPAC PM6) of
each compound. For the DrugAge dataset, molecular
descriptors were removed if they had greater than 98%
constant values, resulting in a final number of 268
molecular descriptors. The same 268 molecular
descriptors were also calculated for the compounds in
the DGIdb dataset. Due to software limitations, some
molecular descriptors could not be calculated for some
compounds. Using the “missForest” R package v1.4
[94], missing values were imputed for chemical
molecular descriptors where this occurred, in both the
DrugAge and the DGIdb datasets. A total of 1392
compound entries had molecular descriptors calculated
for the DrugAge dataset (229 positive and 1163
negative entries). For the DGIdb dataset, 6802 entries
had molecular descriptors calculated.

Computation of biological descriptors for the datasets
used

Biological descriptors for each compound in each of the
datasets were obtained by extracting drug-gene
interactions using the DGIdb v2 database [45] and drug-
protein interactions using the STITCH v4 database [95].
For drug-protein interactions using STITCH, only the
top 100 interactions with a confidence score greater
than 0.450 (considered a ‘medium confidence strength’
in STITCH) were used. The drug—gene/protein inter-
actions obtained were annotated using GO terms
(biological process, molecular function and cellular
component terms) using the ClueGO plugin [96] in
Cytoscape v3.3.0 [97]. For ClueGO, the parameters
selected were “GO term fusion” and the entire “GO tree
interval” using a background of Homo sapiens as the
reference set. Homo sapiens annotations were used
rather than C. elegans due to the poor representation of
GO terms for this model organism. There were 10757
GO terms that were created as categorical biological

WWWw.aging-us.com 1729

AGING



features for the datasets. For each GO term, for each
compound a categorical “yes” or “no” feature value was
provided for each compound, indicating whether or not,
respectively, the protein interacting with that compound
was annotated with that GO term.

For this work, classification models were built using
datasets with different combinations of chemical and
biological descriptors (features) from the original
DrugAge dataset. The different datasets used were:
Firstly, a dataset using only biological descriptors (GO
terms) as features. Secondly, a dataset using only
chemical descriptors as features. Thirdly, a dataset
using both biological and chemical descriptors as
features. A summary of compound numbers for each of
the different versions of the DrugAge dataset and the
DGIdb dataset can be found in Table 4. Datasets
DrugAge 1 and DrugAge 3 have fewer compounds
than dataset DrugAge2 because they use GO terms as
features, and compounds were discarded because their
interacting proteins had no GO term annotation.

Random forests

In this work we used a random forest algorithm [98].
For our classification task, a random forest algorithm
builds a classification model consisting of a set of
decision trees, where each tree predicts a class label for
each new compound. The predictions from all of the
trees are then counted, and the class label assigned to a
new compound is the label (positive or negative) with
the highest number of votes from all of the decision
trees in the forest.

Random  forest training, including parameter
optimization (explained in more detail below), was
performed using the “mlr” R package (developer
version 2.9) [99], which is a general machine learning
interface that works as a wrapper for a plethora of learn-

ing algorithms available in distinct R packages. We
have trained the random forests that the mir package
imported from the “ranger” R package [21].

After building a random forest model, a measure of
variable importance can be computed in order to
identify the most relevant input variables (features) for
predicting the class variable. We used a permutation-
based method for measuring variable importance. In
order to evaluate the predictive power of a feature, for
each tree in the forest, this method computes the
predictive accuracy of that tree using two versions of
the data: with random permutation of the values of the
variable being evaluated, and without random
permutation (i.e., using the original data). These
differences of predictive accuracies are averaged over
all trees in the random forest to give the feature’s
permutation-based importance value. In this work the
variable importance values were computed using the
Boruta R package [21,24] with the unscaled,
unconditional permutation-based variable importance
measure [100], performing the analysis on 100
permutation-based random forests (varying the random
seed used to generate the permutations).

Measuring predictive accuracy

We use the Area Under the Receiver Operating
Characteristic Curve (AUC) as the predictive accuracy
measure in our experiments. This is a popular measure
of predictive accuracy in both machine learning and
bioinformatics, and copes well with imbalanced class
distributions (such as in our datasets). The AUC value
varies from 0 to 1, with 1 indicating a perfect classifier,
which would correctly classify every instance; 0.5
indicating a classifier that randomly guesses the class
(positive or negative label) for each instance, and 0
indicating the worst possible classifier, which would
systematically misclassify every instance.

Table 4. Compound numbers for the DGIdb dataset and different combinations of
DrugAge datasets using different combinations of chemical and biological descriptors
used in this work.

Dataset n Positive n Negative | n Total Type of features used

DrugAge 1 190 783 973 GO terms ONLY

DrugAge 2 229 1163 1392 Chemical Descriptor ONLY
DrugAge 3 190 783 973 GO terms + Chemical Descriptors
DGIdb - - 6802 GO terms + Chemical Descriptors

Notation used in the table: n — number of compounds; Positive — increases longevity; Negative —
no effect or decrease in longevity; Biological descriptors — GO terms (all three types); Chemical
descriptors — molecular descriptors calculated from the chemical structure of compound entries
using cheminformatics software.
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Nested cross-validation and random forest
parameter optimization

To measure the predictive accuracy of the models
developed, we used a nested cross-validation procedure.
First, the DrugAge dataset was randomly divided into
10 non-overlapping folds with approximately the same
number of compounds in each fold. The external cross-
validation procedure performs 10 iterations of the
classification algorithm (random forest), each time
using one of the folds as the test set and the other 9
folds as the training set. In each of these 10 external
cross-validation iterations, an internal 10-fold cross-
validation procedure was applied to the training set.
That is, the training set was randomly partitioned into
10 folds of approximately the same size, and 10
iterations were performed, using one of the training
folds as a validation set and the other 9 training folds as
the learning set from which a random forest model is
built. Hence, in total 100 iterations were performed.

This nested cross-validation structure was used to
perform parameter optimization in a strict way, using
only the training set and not the test set in each external
cross-validation iteration. This is important because
parameter optimization is part of the training of a
classification algorithm, and it has to be done using the
training set only. The test set is reserved purely for
measuring generalization ability, i.e. the ability to
correctly predict the classes of compounds not observed
during training.

A random forest algorithm has two major parameters
which are often optimized for the target dataset,
namely: the number of trees in the forest (ntrees) and
the number of candidate features evaluated to select the
best feature in each tree node (mtry) [101]. In order to
optimize these parameters, we tested five settings for
the ntrees parameter, namely ntrees = 100, 300, 500,
700, and 900; and three settings for the mtry parameter,
namely: the square root of the number of features in the
dataset (the default setting in [23,102]), as well as the
half and the double of that default setting. For other
parameters, their default values in the “mlr” R package
were used.

In the above nested scheme, in each iteration of the
external cross-validation procedure, parameters are
optimized as follows: we ran the random forest
algorithm 15 times, each time with a different
combination of parameter settings (5 ntrees settings
times 3 mtry settings), and each time performing an
internal cross-validation in the training set. The
parameter setting combination producing the best
median AUC value across the 10 internal cross-
validation iterations was chosen as the optimized

parameter settings for the current external cross-
validation iteration, and then a random forest algorithm
with those optimized parameter settings was ran using
the entire training set available at the current external
iteration, with its predictive accuracy being evaluated
on the test set for that iteration. The final measure of
predictive accuracy reported in the Results section is the
median AUC value across the 10 test sets in the external
cross-validation procedure.

Evaluation methodology

We evaluate the results of the random forest in three
ways. First, we measure its predictive accuracy, using
the well-known cross-validation procedure that is
commonly used in supervised machine learning.
Second, we identify the GO terms most relevant for
predicting a compound’s effect on C. elegans’ lifespan,
according to a feature score calculated by the random
forest, and discuss the relevance of such GO terms to
the biology of ageing research. Third, we apply the best
classification model built by the random forest to a
screening “external” dataset with compounds from the
DGIdb database, where the effect of the compounds on
an organism’s lifespan is unknown. That model’s
predictions are then used to identify the “top hit”
compounds in the DGIdb dataset which have more
potential as a pharmacological intervention against
ageing in C. elegans.
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