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ABSTRACT

The World Health Organization predicts that the proportion of the world’s population over 60 will almost
double from 12% to 22% between 2015 and 2050. Ageing is the biggest risk factor for cancer, which is a leading
cause of deaths worldwide. Unfortunately, research describing how genetic variants affect cancer progression
commonly neglects to account for the ageing process. Herein is the first systematic analysis that combines a
large longitudinal data set with a targeted candidate gene approach to examine the effect of genetic variation
on survival as a function of age in cancer patients. Survival was significantly decreased in individuals with
heterozygote or rare homozygote (i.e. variant) genotypes compared to those with a common homozygote
genotype (i.e. wild type) for two single nucleotide polymorphisms (rs11574358 and rs4147918), one gene
(SIRT3) and one pathway (FoxO signalling) in an age-dependent manner. All identified genes and pathways
have previously been associated with ageing and cancer. These observations demonstrate that there are
ageing-related genetic elements that differentially affect mortality in cancer patients in an age-dependent
manner. Understanding the genetic determinants affecting prognosis differently with age will be invaluable to
develop age-specific prognostic biomarkers and personalized therapies that may improve clinical outcomes for
older individuals.

INTRODUCTION

Cancer is a leading cause of death worldwide;
approximately 14.1 million new cancer cases and 8.2
million cancer-related deaths were recorded globally in
2012 [1]. Ageing is the biggest risk factor for cancer,
and the majority of tumours are diagnosed in patients
older than 60 years [2,3]. The World Health
Organization predicts that the proportion of the world’s
population over the age of 60 will almost double from
12% to 22% between 2015 and 2050 (World Health
Organization, 2015). The evolving age demography
affects cancer incidence and mortality rates, which has

serious consequences for a country’s healthcare system
and economy [4,5]. Novel insights into the age-related
genetic predisposition of cancer survival would be a
major breakthrough in expanding healthy life span in
humans.

The last decade has seen extensive efforts to catalogue
human genetic variation [6,7] and to correlate variation
with phenotypic traits. For example, single nucleotide
polymorphisms (SNPs) have been assessed for
statistical associations with complex traits such as
longevity [8—14] and various common diseases [15-22].
Case-control studies that compare population SNP
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frequency to disease characteristics often simply list a
set of SNPs statistically significantly associated with a
particular condition, not accounting for the ageing
process. Unfortunately, this is an oversight, as
molecular systems affected by such genetic variants are
evolving entities whose interactions change with age
[23,24]. For example, the ageing process affects
multiple inter-linked molecular systems including the
immune [3,25,26], metabolic [27,28] and cardiovascular
[29] systems.

Ageing affects cancer incidence rates [30,31], prognosis
[32—34] and drug response [35]. Recently, Kulminski et
al. (2014) investigated the effects of the e4 allele of the
APOE gene on human survival in a range of ages from
mid-life until extreme old age, and the sensitivity of
those effects to cardiovascular disease, cancer and
neurodegenerative disease [12]. This allele is thought to
have a protective effect against early life infectious
disease such as diarrhea and liver damage caused by
Hepatitis C virus infection. Their research suggested
that, although there is an advantage to the allele in early
life, there is a significant adverse effect of the e4 allele
on survival that is limited to women with a moderate
lifespan (70-95 years). Furthermore, non-skin cancer
increased the risk of death of e4 carriers two-fold
compared to non-e4 carriers among women of moderate
lifespans. These observations suggest the existence of
age- and gender-sensitive systemic mechanisms linking
the e4 allele to lifespan that can non-additively interfere
with cancer-related mechanisms. The research described
herein combines the availability of a large longitudinal
data set with a targeted candidate gene approach to
examine the effect of genetic variation on survival as a
function of age from a systematic perspective. Insights
obtained from this novel investigation are of high
biological importance, as understanding the biomarkers
and molecular mechanisms that affect cancer prognosis
in an age-dependent manner will provide critical
information for age-specific patient outcome and
relevant assignment to therapies; an area of research
that will only become even more important with a
greying population.

RESULTS

Data set assembly and quality filtering: phenotypic
and genotypic data

The population under study in this analysis is the
Framingham Heart Study (FHS). In brief, the FHS
comprises >10,000 individuals in different cohorts who
have been examined every 2-4 years for up to 60 years
(depending on cohort; see Methods). The FHS has
previously successfully addressed interesting biological
questions related to ageing and disease [11,12,37,38].

Using FHS data, two cancer data sets were assembled
based on tumour topography for all patients that were
first diagnosed with cancer over the age of 50; all
except skin cancer (AESC; n=1,194) and all except skin
and sex cancer (AESSC; n=867) (Table Sla). Survival
was defined as the length of time (in years) between
initial diagnosis and death. In this study, all-cause
mortality is being considered. Survival data was
organised into: full data set (i.e. those diagnosed aged
50+), and three age categories: individuals diagnosed
between the ages of 50 and 64, diagnosed 65 and 79,
and those diagnosed aged 80 plus. Herein, we focus on
the larger data set, AESC; however, the results for
AESSC are also described in the supplementary
material. Unless otherwise stated, the results for the two
data sets were similar, with the exception that the
smaller AESSC data set tended to lose statistical power
more quickly. In addition to cancer survival data, we
also collected information about tumour grade, co-
morbidities, sex, cohort and familial relationships for
each individual, in order to consider the impact that
these factors have on survival (see Methods).

The FHS Affymetrix 50K Human Gene Focused
microarray was employed in this study. There were
36,647 SNPs remaining after a quality filtering and
linkage disequilibrium (LD) analysis (see Methods).
The primary objective of our analysis was to identify
polymorphisms  and  corresponding  molecular
mechanisms that affect survival in an ageing-related
manner. Thus, we used the commonly implemented
approach that focuses on SNPs that are in close
proximity to known longevity associated genes (LAGs)
[42,61-64]. A set of 316 putative longevity associated
genes (LAGs) was assembled (Table S1d); and 880
SNPs located near/within 245 of the 316 longevity
associated genes were extracted for analysis. The
commonly used dominant genotypic model was
employed, in which the heterozygous and variant
homozygote genotypes were combined into a single risk
group (the “variant”/ “Var” group) and compared to the
common homozygote (the “wild type”/ “WT” group)
[12,68,69].

Subsequently, we conducted a gene-level analysis by
examining the 245 genes that the 880 SNPs that had
been assigned to in the previous paragraph (Table Sle).
A LAG could have (1) One SNP per gene, (2) Two
SNPs per gene or (3) More than two SNPs per gene. For
the “one SNP per gene” category, each individual was
classified as possessing either the wild type or variant
genotype at the SNP position. For the “two SNPs per
gene” category, each individual was classified
depending on the combination of wild type and variant
alleles that they possessed at each SNP position;
“WT_WT” (i.e. wild type at first SNP position and wild
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type at second SNP position) or “WT_Var”, “Var WT”
or “Var_Var”. For the “more than two SNPs per gene”
category, individuals were classed as having a low
(<33%), medium (34-65%) or high (>66%) number of
wild types. Each gene was assigned to an age-related
KEGG pathway, where possible. Individuals were
described as either having a low (<50%) or high (>50%)
number of wild type SNPs per pathway. In total, 880
SNPs were assigned to 245 aging-related genes and 18
pathways.

To identify differences in survival patterns in different
genotypes for a set of ageing-related variants between
different diagnosis age brackets, we conducted a
survival analysis, comprising (1) Kaplan Meier (KM)
Estimator and (2) Cox Proportional Hazards Model. A
Kaplan Meier Curve constructs a survival curve to
compare the survival patterns of two or more groups of
individuals, and a Log Rank Test is subsequently
implemented to examine the null hypothesis that there is
no difference between the populations in the probability
of an event (in this case, death) occurring at a time
point. A Kaplan Meier Curve and Log Rank Test cannot
account for any other possible confounding factors that
may affect survival, and so a Cox Proportional Hazard
Regression Model subsequently modelled survival as a
function of other variables, including genotype, sex,
comorbidity status, cancer grade and cohort. Data sets
were then divided by sex, cohort, and equal numbers of
genotypes to examine the robustness of both the Kaplan
Meier and Cox Model analyses. The reader is directed
to the exact number of individuals used in each analysis
at relevant times throughout the manuscript.

There is one SNP (rs11574359), two genes (GPX4 and
SIRT3) and one pathway (FoxO) that demonstrated age-
related patterns of survival in cancer patients and will
be discussed in turn. For each SNP, gene and pathway
of interest, the results are laid out as a description of: (1)
Kaplan Meier Curve, (2) Kaplan Meier Curve using
sub-sets of the data (i.e. using equal numbers of
genotypes, and dividing the data set by sex and cohort),
(3) Cox Model and (4) Cox Model results once the
model is adjusted for co-variates of interest rather than
stratified, and once the data set is split by sex and
cohort.

Rs11574358, a non-synonymous SNP in the WRN
gene, has an age-dependent impact on mortality in
cancer patients

A Kaplan Meier analysis was conducted for each of the
880 SNPs assigned to LAGs (Table S2a for full output
from Kaplan Meier analysis for all SNPs). Four SNPs
consistently demonstrate significant (FDR < 0.05)
survival differences between the wild type and variant

genotypes in different age categories (Table S2b):
rs1794108, rs4147918, rs11574358 and rs317913. In
all of these cases, possessing the wild type confers a
longer survival time. In this section, we will focus on
one SNP, rs11574358, the only SNP whose survival
differences between genotypes in an age-dependent
manner remained significant after the implementation of
the Cox Model. However, it is interesting that the other
SNPs significant from the Kaplan Meier analysis (i.e.
rs1794108, rs4147918 and rs317913) are all located
within well-known cancer and ageing related genes. For
example, rs1794108 is a missense deleterious mutation
in the proteasome 26S subunit, non-ATPase 13
(PSMD13) that is involved in cellular senescence [85],
ageing [86] and with the onset of various cancers [87—
89]. ABCA7, the gene that rs4147918 is located within,
is on chromosome 19p13.3, the same chromosomal
section as APOE, a gene that is well known to be
associated with ageing and longevity related traits
[21,90,91]. ABCA7 has also been implicated recently in
cancer progression; [92,93]; the SNP itself has also
been previously associated with Alzheimer’s Disease
[94]. Finally, rs317913 is located within the ral guanine
nucleotide dissociation stimulator-like 3 gene (RGL3).
Both the SNP [95,96] and the gene have previously
been identified with cancer-related traits [97].

In the Kaplan Meier analysis; for rs11574358, in the full
data set (i.e. those diagnosed 50+), the WT genotype
patients have a significantly longer 5-year survival rate
(5YSR) than those with the variant (Var) genotype
(5YSR: WT: 70.1% (95% CI: 67.2-72.9%), Var: 40.1%
(95% CI. 31.8-50.6%), FDR= 3.45E-12). Similar
significant survival differences are observed in those
diagnosed 50 to 64 (FDR= 3.0E-4) and diagnosed 65 to
79 (FDR= 1.16E-7), but not in the diagnosed 80 plus
age bracket (FDR= 0.85) (Fig. 1, Table S2b).

A number of analysis repetitions were conducted to
ensure the robustness of the observations; these are
described in further detail in the Methods. First, in each
of the age categories, an equal number of wild type and
variant genotypes were randomly extracted, and the
analysis was repeated, statistically significant survival
patterns (FDR < 0.01) observed in all age groups except
those individuals diagnosed over the age of 80 (Table
S3al). However, in this case, although the number of
individuals is constant between the genotypes within
each age category, there are still different numbers of
individuals between the age categories. Thus, for the
larger AESC data set, 20 individuals were subsequently
elected at random for each genotype for all age
categories, and the analysis was repeated; this ensures
that the number of individuals remains constant per
genotype both within and between all age categories.
The Log Rank P Values are significant different in both
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those diagnosed 50 to 64 (P=3.94E-03) and those
diagnosed 65 to 79 (P=2.41E-03) (Table S3a). Dividing
the AESC data set up by sex and cohort, statistically
significant (FDR <0.05) survival differences are still
observed in all the age categories except those
diagnosed over 80 in the offspring (Table S3c) cohort,
and in males (Table S3d) and females (Table S3e¢); and
in the full data set and those diagnosed 65 to 79 in the
original cohort (Table 3b). Thus, we suggest that the
differences in survival patterns between the wild type
and variant genotypes between the different age
categories cannot be easily explained by the effects of
cohort, sex or sample size.

The genotypic and phenotypic distribution of the data

set used in the Cox Model is found in Table S3f. After
the Cox Model, that accounted for the effects of sex,
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cohort, comorbidities, tumour grade at diagnosis and
familial relationships, different survival patterns are still
observed in all of the age categories except those
diagnosed over the age of 80. The hazard ratio of the
risk allele in the full data set (i.e. diagnosed 50+) is 1.95
(95% CI: 1.47-2.58; FDR= 2.64E-05) indicating that
those individuals with the variant genotype (i.e.
heterozygous or rare homozygote) have a 1.95-fold
increased risk of death compared to those that possess
the wild type (common homozygote). The HR increases
to 4.65 (95% CI: 2.56-8.43; FDR= 6.01E-06) in the
diagnosed 50 to 64 age category, and decreases to 2.81
(95% CI: 1.77-4.46; FDR= 2.57E-04) for those
diagnosed 65 to 79 (Table 1, Table S3g). There are no
significant survival differences in those individuals
diagnosed >80 (FDR= 0.98). The Cox Model analysis
was repeated using slightly varying data sets to ensure
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Figure 1. Kaplan Meier survival estimates of overall cancer survival for rs11574358 among the Framingham Heart
Study according to a dominant genotype model for different age categories, in which the wild type is the dominant
homozygote, and the variant is the heterozygote and the minor homozygote. The full data set indicates all individuals
diagnosed with cancer over the age of 50; and subsequently each age category is the individuals diagnosed with cancer
in that particular age category. Solid lines indicate survival curve, dashed line indicates 95% confidence interval.

WwWw.aging-us.com

2120

AGING



robustness of observations; as described in the Methods.
First, the same significant age-dependent effects on
survival as described are observed by adjusting the Cox
model co-variates instead of stratifying (Table S3h).
Second, significant or marginally significant survival
differences in the same age categories are still observed
once the data set is separated by sex (Females: Table
S3i; Males: Table S3j) and offspring cohort (Table S31)
and in those diagnosed 65 to 79 in the original cohort
(Table S3k), or if an equal number of individuals
(AESC: N=176; AESSC: N=119) are randomly selected
from each age category and the analysis is repeated
(Table S8a).

Rs11574358 is a non-synonymous SNP in the Werner
(WRN) gene converting a serine to an alanine. SIFT, a
sequence homology-based tool that predicts deleterious

GPX4: Full Data set
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substitutions based on the degree of conservation of
amino acid residues based on alignments of closely
related sequences [98] predicts that this variant is
deleterious to protein function.

Rs4147918 in GPX4, and SIRT3, display patterns of
age-dependent differences in mortality

Each of the 880 SNPs in the analysis was assigned to a
gene +60kb of the SNP. There are 60 genes with one
SNP assigned to the gene, 54 genes with two SNPs
assigned to the gene, and 131 genes with more than two
SNPs assigned to the gene (Table S1f). The full set of
Kaplan Meier results for the gene analysis is in Table
S2c¢. There was one gene of interest with two SNPs per
gene; glutathione peroxidase 4 (GPX4) that had two
SNPs assigned to it: r1s4147918 and rs757232. In the KM
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Figure 2. Kaplan Meier survival estimates of overall survival for GPX4 among the Framingham Heart Study according to a
dominant genotype model, in which the wild type is the dominant homozygote, and the variant is the heterozygote and
the minor homozygote. The full data set indicates all individuals diagnosed with cancer over the age of 50; and
subsequently each age category is the individuals diagnosed with cancer in that particular age category. Solid lines
indicate survival curve, dashed line indicates 95% confidence interval.
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analysis, there are significantly different survival
differences between the genotypes in both the full data
set (FDR= 0.046) and in those diagnosed 65 to 79
(FDR= 0.013). In these two age categories, the average
S5YSR for those with a WT allele in the first SNP
position (i.e. a WT_WT or WT Var genotype) is at
least 17% higher than those with a variant allele in the
first position (i.e. a Var WT or Var_Var genotype; Fig.
2, Table S2d). There are no statistically significant
differences in survival between genotypes for those
diagnosed 50 to 64, or those diagnosed 80 plus (FDR=>
0.05). To examine the effects of sample size on the
observations, 20 individuals were subsequently
randomly selected from each of the genotypes per age
category and the analysis was repeated (Table S4a).
Similar to earlier observations, there are no statistically
different survival patterns between the genotypes in any
of the age categories except those diagnosed 65 to 79 (P

Val = 0.03). Similar observations were made once the
data set is divided by sex (Males: Table S4b, Females:
Table S4c) and in the original cohort once the data is
divided by cohort (Table S4d) but not in the offspring
cohort (Table S4e).

The genotypic and phenotypic distribution of the data
set used in the Cox Model is in Table S4f. In the
“diagnosed 65 to 79” age category, possessing the
“Var WT” genotype led 1.85-fold increased risk of
death compared to the “WT_WT” genotype (95%
CI=1.24-2.74; FDR = 0.02). In all other age categories
of the AESC data set, there was no statistically
significant difference in survival between genotypes
(Table S4g, Table 1). A similar pattern is observed
when variables are adjusted for rather than stratified in
the Cox model (Table S4h) and pre-FDR significance is
observed if the data set is divided by sex (Males: Table

Table 1. Summary of the significant SNP, genes and pathways of interest after the Cox model analysis.

Analysis WT Allele Risk Gene Age N in KM HR 95% CI P Value FDR
(HR = Allele Category analysis
1.0)
SNP Analysis
rs11574358 TT GT+GG WRN 50+ 1,133 1.95 1.47-2.58 2.83E-06 2.64E-05
50-64 378 4.65 2.56-8.43 6.40E-02 6.01E-06
65-79 558 2.81 1.77-4.46 8.65E-01 2.57E-04
80+ 197 1.16 0.56-2.17 0.27 0.98
Gene Analysis
GPX4 WT1_WT Varl W GPX4 1,035 1.25 0.94-1.47 0.12 0.48
2 T2 50+
50-64 351 1.32 0.54-3.22 0.53 0.82
65-79 504 1.85 1.85 (1.24- 2.3E-3 0.02
2.74)
80+ 180 1.40 0.72-2.69 0.32 0.74
SIRT3 High # Low # SIRT3 1,037 1.49 1.06-2.03 0.02 0.09
WT WT 50+
50-64 353 1.23 0.59-2.56 0.57 0.81
65-79 501 1.98 1.21-3.21 0.007 0.06
80+ 183 1.02 0.51-2.01 0.96 0.96
Pathway
Analysis
FoxO Pathway High # Low # - 1,146 1.13 0.85-1.51 0.39 0.39
WT WT 50+
50-64 382 1.31 0.72-2.38 0.37 0.39
65-79 564 1.90 1.13-3.11 0.014 0.058
80+ 200 1.52 0.69-3.37 0.29 0.39

Column “N in KM Analysis” is the number of individuals in the original Kaplan Meier Curve. The number of individuals per genotype in
the Cox Model is found in supplementary material. Column 5, “HR”, is the hazard ratio of the risk allele relative to the wild type. 95%
Clis the 95% confidence interval of this HR. P value represents the significance of the HR and FDR is the FDR (Benjamini-Hochberg)-
corrected P value.
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S4i, Females: Table S4j) and in the Original cohort
(Table S4k), but not the Offspring cohort (Table S41). A
similar  observation of age-dependent survival
differences between allele combinations with marginal
significance is made in both the AESC (N=347) and the
AESSC (N=287) data sets if an equal number of
individuals is randomly selected from all age categories;
Table S8b). Thus, the age dependent effects of this gene
are not easily explainable by sample size, cohort, sex,
familial relationship or tumour characteristic effects.

The data suggests that having a variant allele at the first
position (rs4147918) and a wild type allele at the
second position (rs757232) leads to an increased risk of
death for patients with cancer in an age-dependent
manner. SNPs were allowed to be +60kb of a gene in

SIRT3: Full Data set
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this data set. Thus, although the SNPs were technically
assigned to GPX4, rs4147918 (i.e. the variant) is located
in the nearby ABCA7 gene, while rs757232 (the wild
type) is in Histocompatibility (Minor) HA-1 gene
(HMHAI). Rs757232 did not display significantly
different survival patterns after the KM analysis in the
individual SNP analysis (Table S2a). However,
rs4147918 significantly affects survival in an age-
dependent pattern in the SNP-level KM analysis (Full
Data set FDR = 1.54E-04, Diagnosed 65 to 79= 9.51E-
06; Table S2b) and is located within a known cancer
and ageing related gene, as described in the previous
section.

A second gene of interest is NAD-dependent
deacetylase sirtuin-3, mitochondrial (S/RT3) that was
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Figure 3. Kaplan Meier survival estimates of overall survival for SIRT3 among the Framingham Heart Study according to a
dominant genotype model, comparing patients with a high number of wild types to those with a low number of wild
types. The full data set indicates all individuals diagnosed with cancer over the age of 50; and subsequently each age
category is the individuals diagnosed with cancer in that particular age category. Solid lines indicate survival curve, dashed

line indicates 95% confidence interval.
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assigned four SNPs: rs11246007, rs11246020,
rs1794108 and rs2280544. Each individual is
characterised depending on the number of wild type
alleles: “low” (one), “medium” (two) or “high” (three or
four) number of wild type alleles. In SIRT3, possessing
a high number of wild types led to at least 20% longer
5YSR in both the full data set (FDR=8.8E-07) and those
diagnosed 65 to 79 (FDR=8.8E-07; Fig. 3, Table S2e).

Similar to previous sections, the effects of sample size
were considered by randomly selecting 20 individuals
from both wild type and variant genotypes for each of
the age categories and repeating the analysis, thus
ensuring that the number of individuals per genotype is
constant both within and between all age categories. In
agreement with our observations, there were no
statistically significant survival differences in any of the
age categories except marginal significance for those
diagnosed between the age of 65 and 79 (Log Rank P
Val = 0.09; Table S5a). Similar age-dependent survival
differences between genotypes for this gene are
observed if the data set was divided by cohort (Original
Cohort: Table S5b, Offspring Cohort: Table S5¢) or sex
(Males: Table S5d, Females: Table S5¢).

The genotypic and phenotypic distribution of the data
set used in the Cox Model is found in Table SS5e. After
conducting a Cox Model analysis, individuals with a
low number of wild types that were diagnosed 65 to 79
have a 1.98-fold (95% CI=1.21-3.21; FDR= 0.06)
increased risk of death compared to those with a high
number of wild type alleles (Table S5g). A similar
observation are consistently observed if one adjusts for
the co-variates rather than stratifies (Table S5h), and
similar significant or pre-FDR significant or marginally
significant (in the case of original cohort) pattern is
observed once the data is split by cohort or sex (Tables
S5i-S51). Similar patterns are found with marginal
significance in the AESSC data set if an equal number
of individuals (N= 119) is selected from each age
category and the analysis is repeated; and in both AESC
(N=347) and AESSC (N=287) data sets if equal
numbers of individuals are randomly selected from the
full data set, those diagnosed 50 to 64 and those
diagnosed 65 to 79 age categories (Table S8).

SNPs were allowed to be =60kb of a gene in this data
set. Rs11246007 is an intron variant in SIRT3.
Rs11246020 is a missense mutation in SI/RT3 that
converts a valine to an isoleucine. Rs2280544 is a UTR
Variant 3° SNP in the BET1 Golgi Vesicular Membrane
Trafficking Protein Like (BETIL) gene. Interestingly,
rs1794108 is one of four SNPs that consistently
demonstrated survival differences in the initial Kaplan
Meier SNP analysis, as described earlier (Table S2a).

SNPs in the FoxO pathway display age-dependent
patterns of mortality

Six of the eighteen putative ageing-related pathways
(Rapl signalling, FoxO signalling, Cell Cycle, p53
signalling, Fc epsilon signalling and TNF signalling)
displayed marginally significant (FDR < 0.10) survival
differences in the KM analysis between two genotype
groups (i.e. having a low and high number of wild
types) in different age groups (Table S2f). Un-
surprisingly, these pathways are known to be involved
in cancer-related processes; e.g. p53 signalling, Cell
Cycle and Rapl signalling (Table S2f). There is one
pathway of interest after the Cox Model that will be
discussed in detail: FoxO signalling. There 29 genes
(Table S6a) and 108 SNPs (Table S6b) assigned to the
FoxO pathway. In the KM analysis, there is
significantly different survival patterns observed in
those diagnosed 65 to 79 (FDR=0.058; Fig. 4, Table
S2g). In this case, having a high number of wild type
alleles confers a protective effect on survival. Unlike
all of the other SNPs and genes, the same pattern is not
replicated once equal numbers individuals per genotype
per age category are extracted and the Kaplan Meier
analysis is repeated (Table S6c¢). In the diagnosed 65 to
79 age category, significantly different survival
patterns between genotypes are observed in the
original cohort (Table S6d) and in females (Table S6g)
but not in the offspring cohort (Table S6e) or in males
(Table S6f).

The genotypic and phenotypic distribution of the data
set used in the Cox Model is in Table S6h. After the
Cox model, possessing a low number of wild types
leads to 1.90 (95% CI: 1.13-3.11; FDR=0.058)
increased risk of death compared to possessing a high
number of wild types in those diagnosed 65 to 79 (Table
S6i; Table 1). Subsequently, a similarly significant
increased hazard ratio is observed for those with a low
number of wild type alleles in the diagnosed 65 to 79
age category if the Cox model is adjusted for co-
variates rather than stratified (Table S6j), and similar
pre-FDR significance is observed if the analysis is
conducted on each sex separately (Table S6k, S61) and
in original cohort (Table S6m), but not in the offspring
cohort (Table S6n). Post-FDR significantly different
survival is also observed in the AESC (N=349) and
AESSC (N=139) data sets if an equal number of
individuals are selected from each age category and the
analysis is repeated (Table S8d). The three most
common types of the effects for the SNPs in the FoxO
pathway are intron variants (38%), non-coding
transcript variants (17%) and mis-sense variants
(11%).

WWWw.aging-us.com 2124

AGING



Foxo Pathway: Full Data set

24 <o High
7 === Low

Overall Survival (Probability)

0 10 20 30 40

Time (Years)

Foxo Pathway: Diagnosed 65 To 79

2. - High
- ---- Low

Overall Survival (Probability)

Time (Years)

Foxo Pathway: Diagnosed 50 To 64

2 B = R ---- High
- ---- Low
.::‘; :,1 E
3 3
L 2 S TP
Ke]
°
£ o
I L T 5= MW S
2
= s S
S5 3
334 T
s
14 o
> 3
<! i
° ] T T T T
0 10 20 30 40
Time (Years)
Foxo Pathway: Diagnosed 80 Plus
24 ---- High
- Low
5 21
©
o)
°
SR
©
2
z .
> S
(%]
I
(OIS .
g
(@]
° ] T T T

Time (Years)

Figure 4. Kaplan Meier survival estimates of overall survival for FoxO pathway among the Framingham Heart Study
according to a dominant genotype model, comparing patients with a high number of wild types to those with a low
number of wild types. The full data set indicates all individuals diagnosed with cancer over the age of 50; and
subsequently each age category is the individuals diagnosed with cancer in that particular age category. Solid lines
indicate survival curve, dashed line indicates 95% confidence interval.

Replication of results in an independent population

A replication population was selected based on the
combination of two cohorts; Atherosclerosis Risk in
Communities Study and Cardiovascular Health Study;
the assembly of these data sets is described in detail in
the methods. We attempted to replicate our results in
this combined replication population; however the
Framingham Heart Study is quite unique; both in terms
of the large amount of data collected over a long period
of time and the SNPs that were genotyped on its unique
custom Human Gene Focussed Affy 50K array.
Unfortunately, although this replication population has
been invaluable in the past in investigating various traits
associated with ageing and longevity (for example,
[12,99]), there was a low overlap in the SNPs (16 SNPs)
out of all of the SNPs of interest in the SNP/gene/path-

way analysis in this study and the ARIC/CHS arrays.
Only two SNPs of interest could be considered further
in our analysis; however, rs11574358; a key SNP of
interest in our analysis had a minor allele frequency of 0
in both the ARIC and CHS data sets and so could not be
considered further. Thus, the replication study purely
focussed on 154147918 (MAF of 0.036 and 0.044 in
CHS and ARIC, respectively).

For rs4147918, 92% (N=1,808) of the data set was
assigned as wild type (i.e. homozygous dominant for
this polymorphism), while 8% (N=140) were con-
sidered as variants. The cancer phenotype available for
this study in ARIC/CHS included cancers at all sites
because there was no information on cancer without
skin in ARIC. Comorbidity phenotype was defined as
the score counting presence of the following diseases in
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an individual (each disease was coded as 1; no disease
was coded as 0): heart failure, diabetes, stroke, and/or
myocardial infarction. A Kaplan Meier analysis
indicated that there were significantly different survival
patterns only in the Full Data set (P=0.03) and not in
any of the specific age categories, although the
difference was marginally significant in those diagnosed
65 to 79 (P=0.06; Table S7). Thus, there were no
significant results of note after the Cox Model and the
relationship between survival between the different age
categories could not be considered using this population
(Table S7).

DISCUSSION

The investigation described herein is the first systematic
study to address how the ageing process impacts the
effect that single nucleotide polymorphisms have on
cancer survival; a field that could greatly affect the
possibility of individualising cancer prognoses and
treatments in the post-genomic era. There were two
SNPs (rs11574358 and rs4147918), one gene (SIRT3)
and one pathway (FoxO signalling) that may be of
interest for further consideration.

Rs11574358 is a non-synonymous SNP in the Werner
(WRN) gene. WRN is responsible for the progeroid
Werner Syndrome, characterised by the accelerated
appearance of features associated with ageing [100—
102]. This syndrome is well established to be associated
with an elevated risk of cancer [103,104]. Some of the
most common co-occurring chronic co-morbidities
among cancer patients include ischemic heart disease,
hypertension and hyperlipidemia [58]. Rs11574358 was
recently identified to be associated with traits related to
ageing, including cardiovascular disease prevalence,
systolic blood pressure, cancer prevalence, total
cholesterol and cystatin C in serum (chronic kidney
disease) [42,105]. Since we know that rs11574358 is
associated with traits such as cardiovascular disease
prevalence and systolic blood pressure and the
polymorphism converts a serine to an alanine residue,
and has been suggested to abolish the phosphoserine
structure of the protein and potentially affect protein
function [106]; it is possible that this SNP may exert an
age-dependent effect on mortality by contributing to the
effect or severity of the most common cancer co-
morbidities. Alternative hypotheses could be that the
polymorphism may be associated with cancer
aggressiveness, tissue susceptibility to cancer invasion
or to changes in other ageing processes that contribute
to mortality.

The second SNP of interest was rs4147918; this SNP
was assigned to the GPX4 LAG in this analysis, but as
SNPs were allowed to be +60kb of a LAG, the SNP is

actually located within the nearby ABCA7 (Entrez ID:
10347), a member of the superfamily of ATP-binding
cassette transporters that transport various molecules
across extra- and intra-cellular membranes. Rs4147918
induces a glutamine-to-arginine change in an exon of
the ABCA7 gene. Although this SNP is considered
tolerated (i.e. not considered deleterious to function),
even a variant that can be tolerated, or a synonymous
change that appears not to affect amino acid selection at
all, could still affect protein function and disease
susceptibility, particularly when combined with the
ageing process [107-110]. ABCA7 is on chromosome
19p13.3, the same chromosomal section as APOE, a
gene that is well known to be associated with ageing
and longevity related traits [12,21,91,111,112]. In
ABCA7, seven SNPs (including rs4147918) are
cholesterol-related and showed a significant association
with Late Onset Alzheimer’s Disease [21], although
little else is reported on the clinical effects caused by
this polymorphism. Thus, it is possible that similar to
rs11574358, if some of the most common chronic co-
morbidities among cancer patients include ischemic
heart disease, hypertension and hyperlipidemia [58];
and rs4147918 is known to be cholesterol-related and
associated with the ageing process, then it is possible
that this polymorphism may exert an effect on age-
dependent mortality by changing the severity of
particular co-morbidities.

There was one gene of interest for further analysis;
SIRT3, with four SNPs (although the SNPs are in
SIRT3, and two closely-related genes PSMDI3 and
BETIL). Interestingly, SIRT3 is known to be involved in
both the cancer and ageing processes [113—115]. In
addition, PSMD13 and SIRT3 share a promoter [116],
and PSMD13, a proteasome subunit, is involved in the
degradation of abnormal proteins, cellular senescence
[85] and ageing [86] and variants in this gene have
previously been associated with the onset of various
cancers [87-89]. Thus, it is plausible that having a high
number of variants in closely related genes could impact
cancer progression in an age-dependent manner.

There was one pathway of interest for potential further
investigation, FoxO signalling. The ability of FoxO
factors to induce cell cycle arrest, DNA repair and
apoptosis makes them attractive candidates as tumour
suppressors [117,118]. In addition, members of the
FoxO pathway are known to affect ageing and longevity
[117-119]. Thus, since having a high number of
variants appears to negatively affect cancer survival and
the pathway is known to play an important role in the
aetiology of cancer and the ageing process, perhaps a
high level of variation in this pathway affects mortality
in an age-dependent manner; which should be
considered further.
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There are a number of limitations to this investigation.
First, it was not possible to identify an ideal replication
population, as the Framingham Human Gene Focussed
Affy 50K array is a unique custom array. We did not
consider cancer-specific deaths in this instance; due to
lack of data (In the AESC full data set, there were 663
causes of deaths recorded, 47 of these had cancer as a
primary cause of death). Although all-cause mortality is
a common end-point for many successful survival
analyses [18,49,50,55], we acknowledge that the
absence of data on cancer-specific deaths versus all
other causes of death limits our ability to interpret our
observations, and leads to more questions. It would be
interesting in the future to do similar investigations with
cancer-specific death data available, in order to tease
apart the specific contribution that variants such as
those described in this research are contributing to
specifically cancer survival.

As with all polymorphism-trait studies, it is possible
that our SNPs of interest do not exert effects on
mortality themselves, but are in high linkage
disequilibrium with the ungenotyped SNPs of interest.
Some of the effects observed in this analysis would
appear to be quite modest; for example, the gene and
pathway analyses exhibit modest effects (~2 fold
increased risk of death in particular age groups).
However, similarly-sized effects have been reported in
other analyses which have provided fascinating insight
into the impact of genetic variants on various survival
patterns [12,18,74,120,121]. In addition, given the
complex nature of longevity and ageing as traits and the
known difficulties in identifying SNPs and genes
associated with these traits in even much larger human
studies that do not account for the ageing process [122],
the identification of SNPs that display even modest
effects on cancer survival differently with age warrant
further attention. Finally, it is not clear why age-
dependent survival effects are generally observed in
those diagnosed 65 to 79, rarely in those diagnosed 50
to 64 and never in those diagnosed over the age of 80.
To eliminate potential bias caused by unequal sample
size, the Kaplan Meier curves were repeated, using the
same number of individuals per genotype between and
within age categories, and the Cox Model analyses were
divided by sex and cohort. One potential reason for a
lack of observation in diagnosed >80 group could be
that the overall mortality rate in the older population is
such that more individuals die of unrelated causes, and
so die with cancer but not due to cancer. However, this
does not explain the lack of observation in the
diagnosed 50 to 64 group. In addition, Kulminski et al.
(2014) similarly demonstrated that there is a significant
adverse effect of the e4 allele on survival that is limited
to women with a moderate lifespan (70-95 years); i.e.
an effect was also not observed in the young (<70 years)

or extremely old (>95 years) age categories. They
suggested that possible reasons for these observations
could include the buffering mechanisms by other genes
[123] and/or the environmental modulations of genetic
effects [124]. Therefore, an interesting open question
arising from this work is why some variants affect
survival in certain age groups, but not in others.

In summary, this investigation suggests that the APOE
variant identified by Kulminski et al. [12] may not be
the sole variant that affects cancer survival in an age-
dependent manner. This study is the first exploratory
systematic investigation to identify SNPs, genes and
pathways that differentially affect mortality depending
on the age of diagnosis, whose findings need to be
independently validated in a suitable population, once
such a population arises in the future. If corroborated,
such information would provide potential targets for
further exploration as prognostic biomarkers and
individualised therapies in the post-genomic era. Given
that we live in a greying population, and the majority of
tumours are diagnosed in aged patients, such knowledge
will be an invaluable tool advancing the field of
geriatric oncology.

MATERIALS AND METHODS
Study population: the Framingham Heart Study

The Framingham Heart Study (FHS) [36] comprises
5,209 respondents aged 28-62 at baseline who have
been biennially examined for almost 60 years. The
Framingham  Heart Study Offspring (FHSO)
respondents (N=5,124) aged 5-70 at baseline were
biological descendants (N=3,514), their spouses
(N=1,576) and adopted offspring (N=34) of the FHS
participants who were examined about every four years
at nine visits. The study design has been detailed
previously [39,40]. Phenotypic data was collected
through FHS clinic examinations, hospital admission
surveillances and monitoring death  registries.
Biospecimens were mostly collected in the late 1980s
and through the 1990s from surviving participants [12].
The FHS data are available from the NIH SHARe
through dbGaP [41] (accession number
phs000007.v29.p10).

Assembly of cancer and comorbidity phenotypic
data set

As described in the Results, two cancer data sets were
assembled based on tumour topography for all patients
that were first diagnosed with cancer over the age of 50
and were not diagnosed solely via death cert: (1) All
cancer except skin cancer (AESC; n=1,194) and (2) All
cancer except skin and sex cancer (AESSC; n=867).
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Skin cancer is commonly not considered in similar
analyses (for example, [12,42]) due to accurate
diagnosis difficulties that may affect survival times [43—
48]. Sex-related cancers were subsequently also
removed to examine survival differences from cancers
that are common to both sexes, as conducted in [12].
All-cause mortality is being considered in this analysis,
this has been a common end-point for many successful
survival analyses [17,49,50]. The data was right-
censored for the Kaplan Meier analysis. If date of death
was not available, the date of last contact was used.

Factors that may affect survival were considered.
Comorbidities (i.e. additional diseases that co-occur
with a primary disease of interest) can affect cancer
diagnosis [51], treatment [52—54] and prognosis [55—
57]. The co-morbidities included in our analysis were:
cerebrovascular disease, diabetes, congestive heart
failure, dementia, myocardial infarction and subsequent
cancer diagnoses; some of which are the most common
co-morbidities in cancer [2,58,59]. Each individual was
classified as having a low (0-2), medium (3-4) or high
(5-6) number of co-morbidities. A tumour grade (1-4)
was also assigned to each tumour.

Assembly and quality filtering of the genetic data set

The FHS Affymetrix 50K Human Gene Focused
microarray was employed in this study. Quality control
filtering was conducted as in [42] using PLINK v. 1.9
[60]: SNPs were removed if they exhibited Hardy
Weinberg P values <107, >10% missingness, >2%
Mendel errors, <2% Minor Allele Frequency (MAF) or
were located on a sex chromosome. Using PLINK, a
LD analysis was also conducted between SNPs by
calculating pair-wise r* statistics for founders only,
SNPs in high LD (i.e. r*> 0.9) were removed.

A set of 298 human LAGs (http://genomics.senescence.
info/genes/human.html; Table S1b) and 83 human
homolog to mouse genes (http://genomics.senescence

.info/genes/models.html; Table Slc) were obtained
from GenAge Build 17 [65]. Once the two data sets (i.e.
human, and human homolog to mouse) were combined
and redundant genes were removed, 316 putative LAGs
remained (Table S1d). The location of each gene was
retrieved from Ensembl [66], and SNPs located within
+60kb of each putative LAG were extracted, similar to
[42,67]. 880 SNPs were putatively identified as ageing-
related using this method, covering 245 of the 316
genes in the data set (Table Sle). SNPs were
subsequently assigned to the 245 LAGs; as described in
the Results, a LAG could have one, two or more than
two SNPs assigned to it. Third, SNPs were assigned to
LAG pathways. A set of 69 pathways considered related
to ageing process given their known involvement in

ageing related processes were extracted from the KEGG
database v. 74 [70] and 18 pathways that had at least 10
genes and 10% overlap between the pathway genes and
the set of longevity associated genes in this analysis
were extracted [70] (Table S1g).

Statistical analyses: the Kaplan Meier Estimator and
Cox Proportional Hazards Model

A KM curve was constructed for each
SNP/gene/pathway of interest using the “survival”
package v. 2.38 [71] in R v. 3.2.2 [72]. A Log Rank
Test [73] subsequently examined the null hypothesis
that there is no difference between the populations in
the probability of an event (in this case, death)
occurring at a time point. Robustness of the constructed
Kaplan Meier curves were examined by repeating the
analysis twice: (1) Using equal number of wild type and
variant genotypes and (2) Once the data set was divided
by cohort (i.e. original and offspring cohorts) and sex
(i.e. males and females).

The KM Estimator and Log Rank Test do not allow
other explanatory variables to be considered when
estimating the survival differences between two groups.
Thus, for SNPs, genes and pathways that displayed
initial survival differences using the KM approach, a
Cox Proportional Hazard Regression Model modelled
survival as a function of genotype, sex, comorbidity
status, cancer grade and cohort, implemented in the
“coxme” package v. 2.2.3 [71] in R v. 3.2.2 [72].
Schoenfield residuals were used to test whether the
proportional hazards assumption of the model were met,
and only models with P values >0.05 were considered
valid. As a result of non-proportionality, the models
were stratified by sex, comorbidity status, cancer grade
and cohort, similar to what has been conducted in other
studies [74—76]. Genotypes were treated as categorical
variables. In addition, a multivariate kinship frailty
model implemented in the kinship package
(http://cran.r-project.org/web/packages/kinship/) in R
was incorporated to account for any familial
relationships within the FHS [39,77]. Missing grade
and genotypic information was imputed with the widely
used multiple imputation method [78—81], implemented
in MICE v. 2.25 [82]. For the Cox Model, in the SNP
analysis, the hazard ratio (HR) describes the increase
(or decrease) risk of death in the Var allele, compared to
the WT allele. In the gene-level analysis, the risk of
each genotype group is being compared to either the
WT WT allele (for those genes with two SNPs) or
possessing a high number of WT alleles (for those
genes with >2 SNPs). In the pathway analysis, the risk
of each genotype group is being compared to those
individuals with a high number of WT alleles.
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To examine the robustness of the Cox Model, we
repeated the analysis twice: (1) By adjusting the model
for all of the factors instead of stratification (i.e. cohort,
sex, grade, co-morbidities and, for the SNP analysis,
other SNPs of interest from the Kaplan Meier analysis)
and (2) Once the data was split by sex (i.e. male and
female) and cohort (i.e. original and offspring), and
using an equal number of individuals per genotype and
age category. A Benjamini-Hochberg False Discovery
Rate (FDR) was calculated across the AESC and
AESSC data sets, all age brackets and all SNPs, genes
or pathways of interest. In addition, once the data was
divided based on cohort (i.e. original and offspring) or
sex, the FDR was conducted across all conditions (i.e.
male, female, original and offspring). A FDR <0.05 was
considered statistically significant.

Replication analysis in an independent population

A replication population was selected based on the
combination of two cohorts. In the Atherosclerosis Risk
in Communities Study (ARIC) [83], the study
participants (aged 45-64 at baseline in 1987) were
randomly selected and recruited at four field centres
across the U.S. We used data from four available
examinations. Genotyping in 12,771 ARIC participants
(N=9,633 Caucasians) was conducted using Affymetrix
6.0 array (1,000K SNPs). For the Cardiovascular Health
Study (CHS) [84], the main cohort of the CHS
participants (N=5,201 Caucasians) aged 65+ years at
baseline in 1989 was examined annually through 1999.
The CHS clinic exams ended in June 1999. After June
1999 two phone calls per year to participants collected
information on incidence of diseases and death. Deaths
also were ascertained through surveillance and at semi-
annual contacts. SNPs for the present study were
selected from the Candidate Gene Association Resource
(CARe) that included records for 5,531 CHS
participants. This investigation combined the two
studies to carry out our analyses, restricting to partici-
pants of European descent.

Availability of data and materials

The data generated during this study (for example
survival study results) is available in the supplementary
material. The Framingham SHARe data used for the
analyses described in this manuscript were obtained
through dbGaP

(accession number phs000007.v29.p10). The URL for
this study is: https://www.ncbi.nlm.nih.gov/projects/
gap/cgi-bin/study.cgi?study id=phs000007.v29.p10&
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