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INTRODUCTION 
 
Ovarian cancer, as one of the most lethal malignancies 
among females, had approximately 238,700 newly 

diagnosed cases each year worldwide [1, 2]. Due to its 
vague symptoms and lack of effective biomarkers, most 
patients were usually diagnosed at advanced stages [1, 
3-6]. Despite recent advancements in therapies, the 
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ABSTRACT 
 
Ovarian cancer yields the highest mortality rate of all lethal gynecologic cancers, and the prognosis is 
unsatisfactory with the major obstacle in resistance to chemotherapy. The generation of reactive oxygen 
species (ROS) in tumor tissues was associated with chemotherapeutic effectiveness by mediating cellular 
longevity. In this study, we screened the prognostic values of oxidative stress-related genes in ovarian cancer 
patients received platinum-based chemotherapy, and conducted a prognostic gene signature composing of 
three genes, TXNRD1, GLA and GSTZ1. This three-gene signature was significantly associated with overall 
survival (OS), but not progression-free survival (PFS), in both training (n=276) and validation cohorts (n=230). 
Interestingly, we found that the prognostic value of three-gene signature was reinforced in platinum-sensitive 
patients. Subgroup analysis further suggested that patients with elder age, higher pathological grades and 
advanced tumor stages in low-risk score group could benefit from platinum-based chemotherapy. Functional 
analysis showed that the inactivation of several signaling pathways, including cell cycle, insulin-like growth 
factor 1 (IGF1) /mTOR and Fas pathways, was affected by three genes. Collectively, our results provided 
evidence that a panel of three oxidative stress-related gene signature had prognostic values for ovarian cancer 
patients received platinum-based chemotherapy. 
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prognosis of ovarian cancer is still unsatisfactory with 
the major obstacle in resistance to standard platinum-
based chemotherapy. So far, combination of cyto-
reductive surgery and post-operative chemotherapy is 
the current standard treatment for advanced ovarian 
cancer. However, more than 70% patients developed 
resistance to the platinum-based chemotherapy after 
surgery within six months [7-9]. The clinical 
characteristics, such as histologic type, tumor grade, 
debulking status and CA-125 levels, did not achieve 
satisfied prognostic values for ovarian cancer patients 
[10]. Therefore, it is essential to explore promising 
prognostic biomarkers in ovarian cancer patients. 
 
During the past decade, great efforts have been made to 
explore the molecular mechanisms involved in the 
response to platinum-based chemotherapy in ovarian 
cancer patients. It has been well-demonstrated that 
chemotherapy-induced oxidative stress was associated 
with chemotherapeutic effectiveness [11]. Mechanistic 
investigations showed that the generation of reactive 
oxygen species (ROS) caused genomic instability in 
tumor cells and promoted cellular apoptosis, senescence 
or autophagy [12]. Thus, the intracellular balance of 
oxidants and antioxidants contributed to the therapeutic 
effectiveness in ovarian cancer patients received 
platinum-based chemotherapy. Indeed, several oxidative 
stress-related genes, such as ARHGEF6 [13] and 
ALDH1 [14], have been reported to be related to chemo-
resistance in ovarian cancer. However, effective 
molecular biomarkers accurately predicting clinical 
prognosis in ovarian cancer patients received platinum-
based chemotherapy have not yet been thoroughly 
explored. 
 
In this study, we performed comprehensive 
investigations to identify the prognostic gene signature 
from 99 oxidative stress-related genes. Using cox 
regression analysis, we developed a three-gene 
prognostic signature consisting of TXNRD1, GLA and 
GSTZ1, and validated this model in another independent 
cohort. Additionally, we also performed bioinformatic 
analysis to explore the potential molecular mechanisms 

underlying the different clinical outcomes of ovarian 
cancer patients. 
 
RESULTS 
 
Construction of prognostic model based on oxidative 
stress-related genes in the training group 
 
Firstly, we employed 276 ovarian cancer patients to 
construct the prognostic model by using oxidative 
stress-related genes. All oxidative stress-related genes 
were listed in Table S1. By subjecting the genes 
expression data to Cox regression analysis, we 
identified a panel of three oxidative stress-related genes 
consisting of TXNRD1, GLA and GSTZ1, which were 
strongly correlated with patients’ overall survival (Table 
1, P<0.05). We then calculated the risk score for each 
patient in the training group by using the risk score 
formula. Using the median risk score as cut-off value, 
the patients in the training group were divided into low 
(n = 138) and high (n = 138) risk score subgroups 
(Figure 1A). As shown in Figure 1B, the expression 
patterns showed that the patients in high risk score 
group had higher TXNRD1 expression and lower GLA 
and GSTZ1 expression.  
 
Next, we analyzed the differences of clinical outcomes 
between high and low risk score groups (Figure 1C). 
Our data suggested that the mortality rate in high risk 
score group was significantly higher than low risk score 
group (Figure 1D, P=0.020). Moreover, we also 
analyzed the disease progression status in 139 patients 
who had tumor progression information (Figure 1E). 
Unexpectedly, we found there is no differences of 
tumor progression status between high and low risk 
score groups (Figure 1F). To further explore the 
association between the three-gene signature and 
survival, we performed the Kaplan-Meier curves to 
estimate the MST between two groups. As expected, 
patients in the high risk score group had significantly 
shorter overall survival time (MST=43.0 months) than 
those in the low risk score group (MST=65.0 months) 
[HR (95%CI) =1.54 (1.06-2.23); log-rank P 

Table 1. Three-genes signature associated with the OS of ovarian cancer patients received platinum-based 
chemotherapy. 

Symbol GeneBank HR 95%CI of HR Coefficient P-value 

GLA NM_000169 0.69 0.49-0.96 -0.38 0.027 

GSTZ1 NM_001513 0.70 0.51-0.97 -0.36 0.033 

TXNRD1 NM_003330 1.59 1.02-2.47 0.46 0.040 
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value=0.021] (Figure 2A). However, we find no 
significance in progression-free survival between the 
high and low risk score groups [15.0 months vs 16.0 
months; HR(95%CI) =0.98 (0.69-1.43); log-rank P 
value=0.911] (Figure 2B). 
 
Validation of the three-gene signature for survival 
prediction in the validation group 
 
To validate our findings, we calculated the risk score for 
ovarian cancer patients in an independent validation 
group (n = 230) using the same formula. Because the 
gene expression profiles in validation group were based 

on RNA-sequencing platform, which was different from 
the training group (Affymetrix Human Genome U133 
Plus 2.0 platform), we did not use same cut-off value as 
the training group, but selected the median value in 
training group as the cut off. The patients from the 
validation group were divided into low and high risk 
score groups and then subjected to survival comparison. 
Similar to the findings obtained from the training group, 
patients in the high risk score group had shorter overall 
survival time than patients in the low risk score group 
[43.8 months vs 51.9 months; HR(95%CI) =1.61(1.16-
2.25); log-rank P value=0.004] (Figure 2C). Similarly, 
there was no significance in progression-free survival 

 
Figure 1. The three-gene signature-focused risk score in prognosis of overall survival in the validation group. (A) The 
three gene-based risk score distribution. (B) The heatmap of the expression of three genes. (C) Patients’ overall survival status in 
training group. (D) The mortality rate in low- and high-risk score groups. (E) Patients’ progression-free survival status in training group. 
(F) The recurrence rate in low- and high-risk score groups.   
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between the two groups [15.4 months vs 16.1 months; 
HR (95%CI) =1.11 (0.87-1.47); log-rank P 
value=0.463] (Figure 2D). 
 
Prognostic values of three-gene signature for 
patients with different therapeutic response in 
validation group 
 
To further explore the prognostic values of three-gene 
signature for the platinum sensitive and resistant 
patients, we picked up platinum sensitive patients (n = 
161) and resistant patients (n = 69) from the validation 
group and conducted Kaplan-Meier curves separately. 
Interestingly, we found that the three-gene signature had 
a high accuracy to predict overall survival only in the 
platinum sensitive patients [HR (95%CI) =2.08 (1.35-
3.22); log-rank P value=0.001] (Figure 3A). There was 
no significant association between three-gene signature 
and overall survival in platinum resistant patients [HR 
(95%CI) =1.04 (0.62-1.75), log-rank P value=0.883] 
(Figure 3B). In addition, three-gene signature was found 
to be insignificantly associated with progression-free 

survival both in the platinum sensitive (Figure 3C) and 
platinum resistant patients (Figure 3D). 
 
Subgroup analysis of three-gene expression 
signature in predicting overall survival of platinum-
sensitive patients 
 
To explore the impacts of clinical risk factors on the 
prognostic values of three-gene expression signature, a 
set of predefined subgroup analysis was conducted. We 
stratified the platinum sensitive patients from the 
validation group (n=161) by four risk factors, including 
age, residual disease, pathological grade and tumor 
stage (Table 2). Kaplan-Meier curves were conducted to 
visualize the survival probabilities for the low risk score 
versus high risk score group. We found that overall 
survival time of low risk score group was longer than 
high risk score group in patients with elder age 
[HR(95%CI) =2.39 (1.21-4.70); log-rank P 
value=0.006], high pathological grade [HR(95%CI) 
=2.06 (1.25-3.37); log-rank P value=0.002] and 
advanced FIGO stage [HR(95%CI) =1.65 (1.01-2.72) 

 
Figure 2. The association between three-gene signature and survival in training and validation groups. (A) Kaplan-Meier 
survival curves were plotted to estimate the overall survival probabilities for the low-risk versus high-risk group in training group 
(n=276). (B) Progression-free survival was estimated by Kaplan-Meier curves in training group (n=276). (C) Overall survival and (D) 
progression-free survival were estimated in validation group (n=230).  
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for stage III and HR(95%CI) =3.87 (1.46-10.3) for stage 
IV; all log-rank P value <0.05) (Figure 4A-H). In 
addition, we found the association between three-gene 
signature and overall survival was not affected by 
residual disease status (Figure 4C and 4D). 
 
Prediction of the three-gene signature associated 
biological pathways 
 
To explore the biological processes and signaling 
pathways affected by the three-gene signature, we 
compared the genome-wide gene expression profile 
between high and low risk score groups in platinum 
sensitive patients by using GSEA. The significant 
KEGG and BIOCARTA gene sets were visualized as 
histogram bar charts. Six KEGG pathways and twenty-
two BIOCARTA pathways were predicted to be 
correlated with three-gene signature (Figure 5A and 
5B). Cell cycle pathway stood out in both of two gene 
sets, suggesting that the low risk score accompanied 

with down-regulation of cell cycle pathway (Figure 5C). 
In addition, two important signaling pathways, 
IGF1/mTOR and Fas pathways, were also shown to be 
negatively enriched in platinum sensitive ovarian cancer 
patients with low risk score (Figure 5D and 5E). Above 
findings provided evidence for molecular mechanisms 
affected by three-gene signature in ovarian cancer 
patients received platinum-based chemotherapy. 
 
DISCUSSION 
 
Ovarian cancer is the most common cancer with highest 
mortality rate among gynecologic cancers. Therefore, it 
is urgent to explore new prognostic biomarkers to 
predict the survival for patients with ovarian cancer. In 
this study, we firstly constructed a prognostic model 
consisting of a panel of three oxidative stress-related 
genes for ovarian cancer patients received platinum-
based chemotherapy. Next, we evaluated the prognostic 
values of the three-gene signature in an independent 

 
 

Figure 3. Kaplan-Meier estimates of the survival of patients with different platinum response in training group. (A) 
Kaplan-Meier survival curves were plotted to estimate the overall survival for platinum sensitive patients in validation group (n=161). 
(B) Kaplan-Meier survival curves were plotted to estimate the overall survival for platinum resistant patients in validation group (n=69). 
Progression-free survival was estimated by Kaplan-Meier curves for (C) platinum sensitive and (D) platinum resistant patients in training 
group. 
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group, and found that our risk model had high 
prognostic values in platinum sensitive patients. Finally, 
bioinformatic analysis suggested that the patients with 
low risk score was accompanied with down-regulation 
of cell cycle, IGF1/mTOR and Fas pathways.  
For decades, researchers have found that oxidative 
stress-related genes are involved in cancer progression 
and therapeutic response. In ovarian cancer, genome-
wide investigation also revealed that amount of 
oxidative stress-related genes were implicated in the 
carcinogenesis. Kajihara et al summarized the 54 highly 
up-regulated genes in ovarian cancer, and found 47 
(87%) of them were redox-related genes, including 
oxidative and detoxification enzymes [16]. In the 
present study, we, for the first time, identified a panel of 
three oxidative stress-related genes, including TXNRD1, 
GLA and GSTZ1, to predict overall survival for ovarian 
cancer patients. These findings provide evidence for 
conducting a panel of oxidative stress-related genes as 
prognostic biomarkers in ovarian cancer. 
 
TXNRD1, as a key regulation factor in oxidative stress 
control, was found to be associated with poor prognosis 
in breast cancer patients [17]. Saener Y et al identified 
four genes, including TXNRD1, were associated with 
clinical outcomes in patients treated with tremelimumab 
[18]. Recently, TXNRD1 was found to be a risk factor 

for patients with hepatocellular carcinoma [19]. 
However, the prognostic value of TXNRD1 in ovarian 
cancer has not yet been investigated. In our prognostic 
model, we identified TXNRD1 as a risk factor for 
ovarian cancer patients. Moreover, we also found the 
patients with high risk scores had increased TXNRD1 
expression, consistent with the findings in other cancer 
types.  
 
Glutathione S-transferases (GSTs) are a family of phase 
II isoenzymes that detoxify toxicant to lower toxic [20] 
and its dysfunction has been found to be closely related 
with response to chemotherapy [21-23]. GSTZ1 belongs 
to the zeta class of GSTs, and patients carrying GSTZ1 
variants had an increased risk of bladder cancer when 
exposed to trihalomethanes, a potential human 
carcinogen [24]. Mechanistic investigation suggested 
high levels of GSTZ1 expression conferred resistance to 
the effect of anti-cancer therapy of dichloroacetate in 
hepatocellular carcinoma cell lines. In this study, we 
found GSTZ1 might act as a protective factor in ovarian 
cancer, suggesting that altered GSTZ1 expression level 
might have impact on survival by affecting the toxic of 
chemotherapy. 
 
Moreover, in this study, we also found that several 
cancer-related   pathways,   such   as   cell  cycle,  IGF1- 

Table 2. Stratified analysis on the association between three-mRNA signature and OS of platinum-sensitive 
ovarian cancer patients in validating group. 

Variables Total number 
High risk score 

 

Low risk score 
HR (95%CI) P value 

Case   number MST 
(month) Case   number MST 

(month) 

Overall 161 81 49.7  80 67.2 2.08 (1.35-3.22) 0.001 

Age (years)         

< 60 90 46 49.7  44 63.8 1.59 (0.90-2.82) 0.112 

≥ 60 71 35 43.8  36 85.9 2.39 (1.21-4.70) 0.006 

Residual Disease         

Macrospcopic disease ≤1cm 108 51 48.6  57 63.8 1.81 (1.08-3.34) 0.021 

Macrospcopic disease >1cm 39 21 57.2  18 85.9 2.65 (1.12-6.29) 0.024 

Pathological grade         

2 25 16 60.7  9 85.9 2.23 (0.69-7.25) 0.262 

3 133 64 48.8  69 66.5 2.06 (1.25-3.37) 0.002 

FIGO stage, no (%)         

III 128 63 51.8  65 63.8 1.65 (1.01-2.72) 0.043 

IV 24 12 45.6  12 89.1 3.87 (1.46-10.3) 0.004 
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Figure 4. Effects of SAMR1 and SAMP8 mice fecal microbiota transplant on behavior in pseudo germ-free mice. (A) 
Kaplan-Meier curves for younger patients (age<60 years). (B) Kaplan-Meier curves for older patients (age≥60 years). (C) Kaplan-Meier 
curves for patients with macroscopic disease ≤1cm. (D) Kaplan-Meier curves for patients with macroscopic disease >1cm. (E) Kaplan-
Meier curves for patients with pathological grade 2. (F) Kaplan-Meier curves for patients with pathological grade 3. (G) Kaplan-Meier 
curves for patients with FIGO stage III. (H) Kaplan-Meier curves for patients with FIGO stage IV. FIGO, International Federation of 
Gynecology and Obstetrics. 
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mTOR and Fas pathways, were related to three-gene 
signature. Cell cycle is a well-known critical factor that 
affects tumor progression. Many cell cycle regulators 
function as oncogenes that control proliferative and 
survival activities in chemo-response of ovarian cancer 
[7]. Our findings suggested that low risk score 
accompanied with down-regulation of cell cycle 
pathway, consistent with above knowledge. Moreover, 
we also found downregulation of IGF1/mTOR and Fas 
pathways in low risk score group. It has been have 
clearly demonstrated that IGF1/mTOR pathway took 
part in promoting cell proliferation [25] and affecting 
chemo-response [9, 26] in ovarian cancer. Additionally, 
Fas protein was considered as a key factor mediating 
cell cycle and chemotherapy sensitivity [27]. These 
results implied important functional roles of the three-
green signature in tumor progression and chemo-
response of ovarian cancer patients. 
 
In summary, using two independent cohorts and 
genome-wide gene expression profile, we systemically 
investigated the prognostic values of oxidative-stress 
related genes in ovarian cancer. We constructed a three-

gene prognostic signature consisting of TXNRD1, GLA 
and GSTZ1 which was associated with overall survival 
for ovarian cancer patients received platinum-based 
chemotherapy, especially in those with elder age, high 
pathological grade and advanced tumor stage. Further 
investigations are warranted to validate our findings. 
 
MATERIALS AND METHODS 
 
Sources of ovarian cancer patients 
 
Two independent cohorts, AOCS (Australian Ovarian 
Cancer Study) and TCGA-OV (The Cancer Genome 
Atlas - Ovarian Cancer), were used in this study. The 
gene expression data of AOCS cohort (GSE9891) was 
downloaded from the Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo). GSE9891 consisted 
of 285 ovarian cancer samples and was performed on 
the Affymetrix Human Genome U133 Plus 2.0 
platform. The gene expression data of TCGA-OV 
cohort was downloaded from the cBioPortal 
(http://www.cbioportal.org). TCGA-OV cohort 
consisted of 230 samples and was performed on the 

 
 

Figure 5. GSEA delineates biological pathways associated with risk score in the validation group. Significantly enriched 
KEGG pathways (A) and BIOCARTA pathways (B) of the co-expressed genes with three oxidative stress-related genes. GSEA validated 
downregulated activity of (C) cell cycle, (D) IGF1/mTOR and (E) Fas pathways in low risk score group. 
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Illumina RNA-sequencing platform. All analyses were 
firstly conducted using the training dataset (GSE9891) 
and then validated using the validation dataset (TCGA-
OV). Clinical characteristics of patients in the training 
and validation datasets were summarized in Table 3. 
 
Construction of prognostic signature 
 
We screened the gene expression profile with the 
corresponding clinical data, and filtered out samples 
without clinical survival information. The therapeutic 
response to platinum was defined according to Liu’s 
method [15]. In brief, platinum-resistance was defined 
if tumor progress or recurrence within 6 months, and 
platinum-sensitivity was defined if the progression-free 
survival was more than 6 months. We then created the 
prognostic model, a risk-score formula, according to the 
expressions of candidate genes for survival prediction. 
Three oxidative stress-related genes, which were 
significantly and consistently associated with patients’ 
survival, were selected. Every patient was then 
accumulated a risk score that is a linear combination of 
the expression levels of the significant three genes 
weighted by their respective Cox regression 
coefficients. The risk score was calculated as follows: 
Risk score = (-0.38× expression value of GLA) + (-0.36 

× expression value of GSTZ1) + (0.46 × expression 
value of TXNRD1).  
 
Survival analysis 
 
Based on this risk score formula, patients in the training 
group were divided into low-risk and high-risk groups 
using the median value. The Kaplan-Meier curves were 
conducted to estimate survival time for the training and 
validation groups. Differences in median survival time 
(MST) between the low-risk and high-risk groups were 
then compared using the two-sided log rank test. Hazard 
ratio (HR) and 95% confidence intervals (CI) were 
calculated by Cox proportional hazards regression 
model. 
 
Gene set enrichment analysis (GSEA) 
 
GSEA java software was downloaded from 
http://www.broadinstitute.org/gsea and analyzed using 
MSigDB C2 CP: BioCarta gene sets (217 gene sets 
available) and KEGG gene sets (186 gene sets 
available). Gene set with a P-value less than 0.05 was 
considered to be significantly enriched. Histogram bar 
charts and enrichment plots were used for visualization 
of the GSEA results. 

Table 3. Clinical features of ovarian cancer patients in the training and validating groups. 

Features Training group 
(n=276) 

Validating group 
(n=230) 

Age (years), (Mean±SD) 59.7±0.6 59.9±0.7 
Residual Disease, no (%)   

No macropscopic disease 82 (29.7) 43 (18.7) 
Macrospcopic disease ≤1cm  76 (27.5) 115 (50.0) 
Macrospcopic disease >1cm 66 (23.9) 56 (24.3) 
Unknown 52 (18.8) 16 (7.0) 

Pathological grade, no (%)   
1 19 (6.9) 0 (0) 
2 94 (34.1) 32 (13.9) 
3 160 (58.0) 194 (84.3) 
Unknown 3 (1.1) 4 (1.7) 

FIGO stage, no (%)   
I+II 41 (14.9) 10 (4.3) 
III 212 (76.8) 189 (82.2) 
IV 22 (8.0) 31 (13.5) 
Unknown 1 (0.4) 0 (0) 

Progression status, no (%)   
Progression 33 (12.0) 197 (85.7) 
Progression -free 106 (38.4) 33 (14.3) 
Unknown 137 (49.6) 0 (0) 

Vital status, no (%)   
Death 113 (40.9) 140 (60.9) 
Alive 163 (59.1) 90 (39.1) 
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Statistical analysis 
 
All data management and statistical analyses in the 
present study were conducted using R software with 
related packages (www.rproject.org). Categorical data 
was analyzed by Fisher’s exact test. The significance 
was defined as P values being less than 0.05. 
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SUPPLEMENTARY MATERIALS 
 

Table S1. List of oxidative stress genes. 

Symbol Description GeneBank 

   

AKR1C2 
Aldo-keto reductase family 1, member C2 (dihydrodiol dehydrogenase 2; bile 
acid binding protein; 3-alpha hydroxysteroid dehydrogenase, type III) NM_001354 

ALB Albumin NM_000477 

ALOX12 Arachidonate 12-lipoxygenase NM_000697 

AOX1 Aldehyde oxidase 1 NM_001159 

APOE Apolipoprotein E NM_000041 

ATOX1 ATX1 antioxidant protein 1 homolog (yeast) NM_004045 

B2M Beta-2-microglobulin NM_004048 

BAG2 BCL2-associated athanogene 2 NM_004282 

BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3 NM_004052 

CAT Catalase NM_001752 

CCL5 Chemokine (C-C motif) ligand 5 NM_002985 

CCS Copper chaperone for superoxide dismutase NM_005125 

CYBB Cytochrome b-245, beta polypeptide NM_000397 

CYGB Cytoglobin NM_134268 

DHCR24 24-dehydrocholesterol reductase NM_014762 

DUOX1 Dual oxidase 1 NM_175940 

DUOX2 Dual oxidase 2 NM_014080 

DUSP1 Dual specificity phosphatase 1 NM_004417 

EPHX2 Epoxide hydrolase 2, cytoplasmic NM_001979 

EPX Eosinophil peroxidase NM_000502 

FHL2 Four and a half LIM domains 2 NM_001450 

FOXM1 Forkhead box M1 NM_021953 

FTH1 Ferritin, heavy polypeptide 1 NM_002032 

GCLC Glutamate-cysteine ligase, catalytic subunit NM_001498 

GCLM Glutamate-cysteine ligase, modifier subunit NM_002061 

GLA Galactosidase, alpha NM_000169 

GPX1 Glutathione peroxidase 1 NM_000581 

GPX2 Glutathione peroxidase 2 (gastrointestinal) NM_002083 

GPX3 Glutathione peroxidase 3 (plasma) NM_002084 

GPX4 Glutathione peroxidase 4 (phospholipid hydroperoxidase) NM_002085 

GPX5 Glutathione peroxidase 5 (epididymal androgen-related protein) NM_001509 

GPX6 Glutathione peroxidase 6 (olfactory) NM_182701 

GPX7 Glutathione peroxidase 7 NM_015696 
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Symbol Description GeneBank 

GSR Glutathione reductase NM_000637 

GSS Glutathione synthetase NM_000178 

GSTP1 Glutathione S-transferase pi 1 NM_000852 

GSTZ1 Glutathione transferase zeta 1 NM_001513 

GTF2I General transcription factor IIi NM_001518 

HGDC Human Genomic DNA Contamination SA_00105 

HMOX1 Heme oxygenase (decycling) 1 NM_002133 

HPRT1 Hypoxanthine phosphoribosyltransferase 1 NM_000194 

HSP90AA1 Heat shock protein 90kDa alpha (cytosolic), class A member 1 NM_001017963 

HSPA1A Heat shock 70kDa protein 1A NM_005345 

KRT1 Keratin 1 NM_006121 

LHPP Phospholysine phosphohistidine inorganic pyrophosphate phosphatase NM_022126 

LPO Lactoperoxidase NM_006151 

MB Myoglobin NM_005368 

MBL2 Mannose-binding lectin (protein C) 2, soluble NM_000242 

MGST3 Microsomal glutathione S-transferase 3 NM_004528 

MPO Myeloperoxidase NM_000250 

MPV17 MpV17 mitochondrial inner membrane protein NM_002437 

MSRA Methionine sulfoxide reductase A NM_012331 

MT3 Metallothionein 3 NM_005954 

NCF1 Neutrophil cytosolic factor 1 NM_000265 

NCF2 Neutrophil cytosolic factor 2 NM_000433 

NCOA7 Nuclear receptor coactivator 7 NM_181782 

NOS2 Nitric oxide synthase 2, inducible NM_000625 

NOX4 NADPH oxidase 4 NM_016931 

NOX5 NADPH oxidase, EF-hand calcium binding domain 5 NM_024505 

NQO1 NAD(P)H dehydrogenase, quinone 1 NM_000903 

NUDT1 Nudix (nucleoside diphosphate linked moiety X)-type motif 1 NM_002452 

OXR1 Oxidation resistance 1 NM_181354 

OXSR1 Oxidative-stress responsive 1 NM_005109 

PDLIM1 PDZ and LIM domain 1 NM_020992 

PNKP Polynucleotide kinase 3'-phosphatase NM_007254 

PRDX1 Peroxiredoxin 1 NM_002574 

PRDX2 Peroxiredoxin 2 NM_005809 

PRDX3 Peroxiredoxin 3 NM_006793 

PRDX4 Peroxiredoxin 4 NM_006406 

PRDX5 Peroxiredoxin 5 NM_181652 

PRDX6 Peroxiredoxin 6 NM_004905 

PREX1 Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1 NM_020820 
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Symbol Description GeneBank 

PRNP Prion protein NM_183079 

PTGR1 Prostaglandin reductase 1 NM_012212 

PTGS1 
Prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and 
cyclooxygenase) NM_000962 

PTGS2 
Prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and 
cyclooxygenase) NM_000963 

PXDN Peroxidasin homolog (Drosophila) NM_012293 

RNF7 Ring finger protein 7 NM_014245 

RPLP0 Ribosomal protein, large, P0 NM_001002 

SCARA3 Scavenger receptor class A, member 3 NM_182826 

SEPP1 Selenoprotein P, plasma, 1 NM_005410 

SFTPD Surfactant protein D NM_003019 

SIRT2 Sirtuin 2 NM_012237 

SLC7A11 
Solute carrier family 7 (anionic amino acid transporter light chain, xc- system), 
member 11 NM_014331 

SOD1 Superoxide dismutase 1, soluble NM_000454 

SOD2 Superoxide dismutase 2, mitochondrial NM_000636 

SOD3 Superoxide dismutase 3, extracellular NM_003102 

SPINK1 Serine peptidase inhibitor, Kazal type 1 NM_003122 

SQSTM1 Sequestosome 1 NM_003900 

SRXN1 Sulfiredoxin 1 NM_080725 

STK25 Serine/threonine kinase 25 NM_006374 

TPO Thyroid peroxidase NM_000547 

TRAPPC6A Trafficking protein particle complex 6A NM_024108 

TTN Titin NM_003319 

TXN Thioredoxin NM_003329 

TXNRD1 Thioredoxin reductase 1 NM_003330 

TXNRD2 Thioredoxin reductase 2 NM_006440 

UCP2 Uncoupling protein 2 (mitochondrial, proton carrier) NM_003355 

VIMP Selenoprotein S NM_203472 

 
 


	Firstly, we employed 276 ovarian cancer patients to construct the prognostic model by using oxidative stress-related genes. All oxidative stress-related genes were listed in Table S1. By subjecting the genes expression data to Cox regression analysis,...
	Validation of the three-gene signature for survival prediction in the validation group
	To validate our findings, we calculated the risk score for ovarian cancer patients in an independent validation group (n = 230) using the same formula. Because the gene expression profiles in validation group were based on RNA-sequencing platform, whi...
	To further explore the prognostic values of three-gene signature for the platinum sensitive and resistant patients, we picked up platinum sensitive patients (n = 161) and resistant patients (n = 69) from the validation group and conducted Kaplan-Meier...
	Subgroup analysis of three-gene expression signature in predicting overall survival of platinum-sensitive patients
	To explore the impacts of clinical risk factors on the prognostic values of three-gene expression signature, a set of predefined subgroup analysis was conducted. We stratified the platinum sensitive patients from the validation group (n=161) by four r...
	Prediction of the three-gene signature associated biological pathways
	To explore the biological processes and signaling pathways affected by the three-gene signature, we compared the genome-wide gene expression profile between high and low risk score groups in platinum sensitive patients by using GSEA. The significant K...
	mTOR and Fas pathways, were related to three-gene signature. Cell cycle is a well-known critical factor that affects tumor progression. Many cell cycle regulators function as oncogenes that control proliferative and survival activities in chemo-respon...



