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ABSTRACT

Matcha green tea (MGT) is a natural product that is currently used as a dietary supplement and may have
significant anti-cancer properties. However, the molecular mechanism(s) underpinning its potential health
benefits remain largely unknown. Here, we used MCF7 cells (an ER(+) human breast cancer cell line) as a model
system, to systematically dissect the effects of MGT at the cellular level, via i) metabolic phenotyping and ii)
unbiased proteomics analysis. Our results indicate that MGT is indeed sufficient to inhibit the propagation of
breast cancer stem cells (CSCs), with an IC-50 of ~0.2 mg/ml, in tissue culture. Interestingly, metabolic
phenotyping revealed that treatment with MGT is sufficient to suppress both oxidative mitochondrial
metabolism (OXPHOS) and glycolytic flux, shifting cancer cells towards a more quiescent metabolic state.
Unbiased label-free proteomics analysis identified the specific mitochondrial proteins and glycolytic enzymes
that were down-regulated by MGT treatment. Moreover, to discover the underlying signalling pathways
involved in this metabolic shift, we subjected our proteomics data sets to bio-informatics interrogation via
Ingenuity Pathway Analysis (IPA) software. Our results indicate that MGT strongly affected mTOR signalling,
specifically down-regulating many components of the 40S ribosome. This raises the intriguing possibility that
MGT can be used as inhibitor of mTOR, instead of chemical compounds, such as rapamycin. In addition, other
key pathways were affected, including the anti-oxidant response, cell cycle regulation, as well as interleukin
signalling. Our results are consistent with the idea that MGT may have significant therapeutic potential, by
mediating the metabolic reprogramming of cancer cells.

INTRODUCTION

Breast cancer is a leading cause of women’s cancers,
although a small fraction of men may also be affected
[1]. In this context, tumor recurrence [2] is particularly
lethal and in the advanced stages is associated with
treatment failure, due to therapy resistance [3, 4]. As
current treatment strategies often tend to be associated
with serious side effects, new non-toxic treatment stra-

tegies would fulfil an unmet medical need. As a
consequence, many translational scientists and cli-
nicians are actively involved in the search for novel
natural products, including spices and herbs, that may
have therapeutic value and confer patient benefit.

Interestingly, several recent studies have suggested that
Japanese green tea has anti-proliferative, anti-oxidant,
anti-bacterial, and chemo-preventive effects [5, 6]. In
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direct support of this notion, it has been demonstrated
that a key component of green tea, namely
epigallocatechin-3-gallate, behaves as an anti-oxidant
and shows anti-tumor effects against breast cancer cells
[7, 8]. Green tea may also interact with other com-
ponents of the diet, including those natural products
contained within soy and mushrooms [9, 10]. Con-
sumption of green tea could partially explain why
Asian-American women show a decreased risk for
developing breast cancer [11].

Recently, the therapeutic effects of green tea catechins
on breast tumorigenesis were evaluated out using pre-
clinical models, as well as clinical trials [12-15].
Furthermore, a meta-analysis of epidemiological studies
in 2006 suggested that green tea may lower the risk of
developing colorectal cancer [16]. Recently, it was
demonstrated that tea has other protective effects, such
as reducing the risk of mortality from heart disease and
stroke (cerebrovascular accident) [17].

A subsequent study, using green tea supplements,
supports the idea that green tea extracts could be used in
the chemo-prevention of metachronous colorectal
adenomas, in Korean patients [18] (ClinicalTrials.gov,
number NCT02321969). Finally, green tea has shown
positive benefits in reducing Acute Myeloid Leukaemia
(AML) risk [19] and prostate cancer [20]. Taken
together, these studies suggest that green tea or its com-
ponents, may be very useful as anti-cancer agents.

Several published preliminary studies in breast cancer
have also been conducted, to evaluate the mechanism of
action of green tea components. A broad-spectrum of
different mechanism(s) has been described. For exam-
ple, these data suggest that green tea components
display the following regulatory properties: i) anti-
angiogenic effects, mediated through the inhibition of
HIF1-0 and NF-kB [21]; and ii) anti-inflammatory
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effects, mediated by inhibiting the infiltration of Tumor-
Associated Macrophages and the secretion of IL-6 and
TNF-a [22]; iii)) as well as the up-regulation of
apoptosis and the down-regulation of cell proliferation
[23], among others.

Here, we investigated the potential therapeutic effects of
Matcha green tea (MGT), a natural product, on the
propagation of breast cancer stem cells, by using MCF7
cells as a model system. Our results indicate that MGT
effectively inhibits the propagation of CSCs, as measur-
ed using the mammosphere assay, with an IC-50 of 0.2
mg/ml. Importantly, previous studies have clearly
demonstrated that CSCs are involved in mediating
tumor recurrence, distant metastasis and therapy failure
due to chemo- and radio-resistance [24-26].

In this report, we focused on following the metabolic
effects of MGT on breast cancer cells, by using the
Seahorse XFe96 Analyzer, to quantitatively measure
metabolic flux. Our results directly show that MGT
reduces both mitochondrial metabolism, as well as
glycolysis, maintaining cancer cells in a more meta-
bolically quiescent state. Unbiased proteomics analysis
identified the mitochondrial proteins and glycolytic
enzymes that were down-regulated by MGT treatment.
Thus, MGT or its components, may possess significant
anti-cancer activity, by mediating the metabolic re-
programming of cancer cells.

RESULTS

Here, to dissect the effects of MGT at the phenotypic
cellular level, MCF7 cancer cells were treated in
adherent conditions with 0.2 mg/ml MGT, starting 24
hours after plating. MGT treatment showed only a slight
effect on the cancer cells in monolayer, reducing
viability of bulk cancer cells by 8% (Fig. 1A). Next, to
assess the stem cell activity and self-renewal, MCF7
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Figure 1. MGT treatment reduces stemness in MCF7 breast cancer cells. (A) The effects of 0.2 mg/ml MGT on cell
proliferation were tested on MCF7 cells in monolayer by SRB assay. Note that MGT only slightly reduced viability of bulk
cancer cells by 8%. (B) Importantly, MGT inhibited the sphere-forming ability of MCF7 cells by 50%. Bar graphs are shown as
the mean + SEM; t-test, two-tailed test. **p < 0.005, ***p < 0.0001.
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cells were cultured in low-attachment conditions in the
presence or absence of MGT. After five days of culture,
the ability of CSCs to survive and grow was evaluated
by counting the number of mammospheres. Intriguing-
ly, MGT treatment inhibited the sphere-formation
capacity of MCF7 cells by 50%, indicating that MGT
halts the propagation of cancer stem cells (Fig. 1B).

It is well known that the propagation of CSCs depends,
at least partially, on increased mitochondrial biogenesis
and metabolism [27, 28]. To evaluate a possible effect
of MGT on cellular metabolic features, we employed
the Seahorse XF Analyzer to measure oxygen
consumption rate (OCR) and extracellular acidification
rate (ECAR). Interestingly, a 72-hours treatment with
MGT significantly decreased basal respiration and ATP

180

production in MCF7 breast cancer cells, as compared to
untreated cells (Fig. 2). Moreover, MGT treated cells
displayed a reduction of glycolytic rate and glycolytic
capacity, the latter referred to as measurement of the
maximal capacity of the cells to respond to a higher
ATP demand (Fig. 3).

Afterwards, quantitative proteomic analysis was
performed on protein samples obtained from MCF7
cells treated with MGT (0.2 mg/ml) or with vehicle
alone (media). Noticeably, the mass spectrometry
analysis validated the results obtained by Seahorse
analysis. Indeed, data analysis demonstrated that the
expression of 57 mitochondrial-related proteins as well
as 6 glycolytic proteins were significantly down-
regulated by >1.2 fold, after MGT treatment (Fig. 4).
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Figure 2. MGT treatment reduces basal respiration and ATP production in MCF7 cells. MCF7 cells were
seeded at the density of six thousands cells in 96-wells plates. After twenty-four hours, filtered 0.2 mg/ml MGT was
added and incubated for seventy-two hours. Oxygen consumption rate (OCR) was measured by Seahorse XF Analyser.
Top panel: representative trace; bottom panel: bar graph with OCR quantification. Note that MGT treatment
significantly decreases the basal respiration and the ATP production as compared to control cells. Others parameters,
such as proton leak, maximal and spare respirations did not significantly change. Experiments were performed 3 times,
with six repeats for each replicate. Bar graphs are shown as the mean + SEM; t-test, two-tailed test. ***p < 0.0001.
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Previously, we published that treatment of MCF7 cells chondrial and glycolytic proteins, as assessed by

with the antibiotic doxycycline significantly inhibited proteomics analysis [29]. Thus, proteomics results of
CSCs propagation and decreased the expression of mito- doxycycline-treated MCF7 cells were compared with
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Figure 3. MGT treatment inhibits glycolysis of MCF7 cells. MCF7 cells were seeded and treated with MGT as
described above. Extracellular consumption rate (ECAR) was assessed by Seahorse XF Analyser. Top panel:
representative trace; bottom panel: bar graph with OCR quantification. Importantly, the treatment significantly reduced
the glycolysis and the glycolytic capacity as compared to control cells. Experiments were performed in triplicate, six
repeats for each replicate. Bar graphs are shown as the mean + SEM, t-test, two-tailed test. *p < 0.05.
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Figure 4. Venn diagram of proteomics data of MGT-treated MCF7 cells versus doxycycline-treated MCF7
cells. Proteomic analysis validates the metabolic effects of MGT on breast cancer cells. (A) Venn diagram of
mitochondrial down-regulated proteins in MGT-treated cells versus doxycycline-treated cells. Note that, among the
mitochondrial down-regulated proteins by the two treatments, eight are commonly down-regulated. (B) Venn diagram
of glycolytic down-regulated proteins in MGT-treated cells versus doxycycline-treated cells. Note that the two different
treatments down-regulated several glycolytic proteins and four of those were in common among the two.
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proteomics results of MGT-treated MCF7 cells. Venn down-regulated proteins, eight were in common between

diagram analysis revealed that, among the mitochondrial the two datasets (Fig. 4). Moreover, among the glycolytic
Down-regulation Down-regulation
Symbol Gene description (fold change) (fold change)
MGT Doxycycline
PRKDC DNA-dependent protein 24 43 14.71

kinase catalytic subunit

Glycerol-3-phosphate
GPD2 dehydrogenase, 2.10 5.29
mitochondrial

ECI1 Enoyl-CoA delta isomerase

1, mitochondrial (oL 2
HSPD1 60 kDa h_eat shocl_( protein, 779 224
mitochondrial
UQCRC2 Siteaiee |0 6 el X 65.99 1.91
subunit 2, mitochondrial
SDHA Succinate dehydrogenase 14.98 188
complex subunit A
FASN Fatty acid synthase Infinity 1.83

ATP synthase, H+
ATP5F1 transporting, mitochondrial 3.52 1.57
FO complex, subunit b

Table 1A. Commonly down-regulated proteins in MCF7 cells after treatment with doxycycline or MGT.
List of down-regulated mitochondrial proteins and relative fold change.

Down-regulation Down-regulation
Symbol Gene description (fold change) (fold change)
MGT Doxycycline
L-lactate
LDHA dehydrogenase A 39.44 2.26
TPI1 TTEEERIEHHTELD 120 2.25
isomerase 1
ENO1 Enolase 1 1.29 1.71
LDHB Lalactate 1.30 153

dehydrogenase B

Table 1B. Commonly down-regulated proteins in MCF7 cells after treatment with doxycycline or MGT.
List of down-regulated glycolytic proteins and relative fold change.
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down-regulated proteins, four were in common between
the two datasets (Fig. 4). Intriguingly, MGT treatment
potently induced the down-regulation of mitochondrial
and glycolytic proteins, like doxycycline treatment
(Table 1A and Table 1B).

Additionally, proteomics data were subjected to a
bioinformatic analysis with the Ingenuity Pathway
Analysis (IPA) software to identify metabolic pathways
affected by MGT treatment and deepen our under-
standing of the altered cellular pathways upon MGT
treatment. Fig. 5 depicts the main pathways altered by
MGT treatment, which fall under four main areas, as
described below.

Metabolism

One of the pathways mostly altered by MGT treatment
is the mTOR signaling pathway, a key regulator of
cellular metabolism. Fig. 6 and Supplementary Table S1
show indeed that several genes in the mTOR pathway
are differentially expressed in MGT-treated cells
compared to control cells. Notably, MGT treatment
induces a relevant decrease in numerous proteins of the
small ribosomal subunit 40S, with a likely compensato-
ry up-regulation of eukaryotic translation initiation
factors. This imbalance may lead to decreased protein

synthesis. Moreover, PPP2R5C, a key player in cell
proliferation, differentiation, and transformation [30,
31], is infinitely down-regulated. PPP2R5C is a regula-
tory B subunit of protein phosphatase 2A (PP2A), which
is one of the main serine-threonine phosphatases in
mammalian cells, and it maintains cell homeostasis by
counteracting most of the kinase-driven intracellular sig-
naling pathways [32]. Consistent with infinite PPP2R5C
down-regulation, our findings demonstrate inhibition of
CSCs proliferation upon treatment with MGT.

We have shown above that MGT treatment of MCF7
cells decreased mitochondrial respiration, resulting in a
reduced basal respiration and ATP production, as well
as glycolysis and glycolytic capacity (Figs. 3 and 4).
Consistently, IPA analysis confirmed the down-
regulation of several proteins involved in all oxidative
phosphorylation complexes (Fig. 7). In particular, cyto-
chrome ¢, which plays a central role in the electron
transport chain in the mitochondria, was infinitely
down-regulated (Supplementary Table S2). Complex I1I
is particularly affected by the treatment with MGT (Fig.
7). These results are consistent with recently published
study from our group, showing that the anti-malaria
drug atovaquone, which specifically inhibits mito-
chondrial complex III, halts the propagation of MCF7-
derived CSCs [33]. Finally, the expression of several

INGENUITY PATHWAY ANALYSIS (IPA)
Canonical pathways
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Figure 5. Canonical pathways affected by MGT in MCF7 cells. Ingenuity pathways analysis
(IPA) showed the cellular pathways most significantly (p<0.05) affected by MGT treatment. The p
value for each pathway is represented with a bar and reported as the negative log of the p value.
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enzymes in the tricarboxylic acid cycle (TCA)
(Supplementary Table S3) and in the mitochondrial
dysfunction pathway were found altered (Supplementary
Table S4), with a distinct up-regulation of complex V
subunits, very likely a compensatory mechanism in
response to the MGT-induced inhibition of complex III.
Altogether, these data strongly suggest that MGT impairs
mitochondrial respiration in MCF7 breast cancer cells.

IPA analysis also revealed significant alterations in the
glycolytic pathway (Fig. 8 and Supplementary Table
S5). Notably, the expression of some enzymes involved
in the initial preparatory phase of glycolysis (glucose
conversion to glyceraldehyde 3-phosphate) is affected

by MGT treatment. Indeed, enzymes that catalyze
reversible reactions, such as aldolase and phospho-
glucose isomerase, are up-regulated as compared to
untreated cells. However, fructose-bisphosphatase 1 and
2 (FBP1 and 2) are up-regulated by 16 fold after MGT
treatment. FBP is a key enzyme of gluconeogenesis,
catalyzing the conversion from fructose 1,6- bisphos-
phate to fructose 6-phosphate, the opposite reaction of
phosphofructokinase (PFK), the key regulatory and
irreversible step of glycolysis, suggesting that glyco-
lysis might be blocked at the PFK step in MGT-treated
cells. Indeed, two PFK isoforms (PFKL and PFKP) are
significantly down-regulated after MGT treatment
(Supplementary Table S5).
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Figure 6. IPA analysis: Schematic representation of mTOR pathway. IPA analysis revealed changes in the
expression of proteins involved in mTOR signalling after MGT treatment for 48 hours. In this map, the 40S ribosome was
indicated as dramatically down-regulated (intense green colour), suggesting likely inhibition of protein translation.
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Figure 7. Impairment of mitochondrial functions uncovered by IPA analysis. Depicted is the map of oxidative
phosphorylation. All the mitochondrial complexes are affected by the treatment, particularly complex Ill is dramatically down-

regulated, as indicated by the intense green colour.

Consistent with this notion, some glycolytic enzymes
were dramatically down-regulated by MGT treatment.
Phosphoglycerate mutase expression was decreased by
250 fold. Glyceraldehyde 3-phosphate dehydrogenase
(GAPDH), which catalyzes the conversion of
glyceraldehyde 3-phosphate to 1,3-bisphosphoglycerate,
was infinitely down-regulated in MGT-treated cells.
Importantly, it was previously shown that vitamin C
selectively and potently inhibits glycolysis by targeting
GAPDH [34]. We have also shown that vitamin C halts
the propagation of highly glycolytic doxycycline-
resistant CSCs [35]. Thus, the current results suggest
the intriguing possibility that MGT might similarly act
as a glycolysis inhibitor, via GAPDH inhibition. More-
over, IPA analysis suggests that there was no pro-
duction of lactate from pyruvate since key enzymes
involved in the fermentation of pyruvate to lactate were
remarkably down-regulated (Supplementary Table 5S).
Altogether with the functional data of Seahorse
analysis, these results suggest that MGT effectively
inhibits the glycolytic pathway.

Interestingly, the Pentose Phosphate Pathway (PPP) is
activated (Fig. 9 and Supplementary Table S6). Tea
cathechins may act both as anti-oxidant and as pro-
oxidants [36]. As a consequence, upon exposure to
MGT, cells may need to regenerate large amounts of the

antioxidant cofactor NADPH. In the cytosol, NADPH is
normally reduced from NADP+ during the PPP
oxidative phase, which serves as a major source of
NADPH. Indeed, Supplementary Table S6 shows that
the 3 key enzymes of the PPP oxidative phase are
upregulated by MGT treatment. MGT causes decreased
expression of GAPDH (Supplementary Table S5),
likely re-routing the metabolic flux from glycolysis to
PPP, to allow the cells to generate more NADPH.

Finally, MGT-treated cells display an increase in the
beta-oxidation pathway (Supplementary Table S7),
most likely in an attempt to compensate for the
decreased mitochondrial respiration and glycolysis. In
fact, several enzyme involved in beta-oxidation are
elevated, including ECHSI (enoyl-CoA hydratase),
HADH (Hydroxyacyl-CoA dehydrogenase), ACAA
(acetyl-CoA acyltransferase), respectively catalyzing
the second, third, and fourth step of beta-oxidation.
Consistent with an increase in beta-oxidation, the
enzymes involved in the Acetyl-CoA biosynthesis (Sup-
plementary Table S8-A) are also increased. Moreover,
Supplementary Table S8-B shows that BDH1 (3-
hydroxybutyrate  dehydrogenase)  expression  is
remarkably increased after MGT treatment. Upon fatty
acid degradation, large amounts of acetyl-CoA are
generated and in the absence of functional mitochon-
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drial metabolism, acetyl-CoA maybe converted to beta-
hydroxybutyrate in a 3-step pathway that critically
involves BDHI. Importantly, beta-hydroxyburyrate is
regarded as a metabolic marker of lipid oxidation [37,

( > Punlose Phosphate Patway |
f-D-glucose-phosphate

glucose-G-phasphale isomerase

| - — i
phosphate ADP
=i
fructose-1,6 Espﬁosoha«:
fnuctose-bisphosphate aldolase
Ve .
dihydroxyacvione D-qlyneraidehylie-3-phosphate

phosphate  ‘ricse-phosphate isomerase N

neos || we

oo o

Or »
ohosphate NADH

1, 3-bisphaspio-D-glyceraa
ADP

phosphoglycrate Kinase

-

3-phospho D-glycerate

o ATP
[ Scrine Biosyrihosis <

phosphoglycerste mutase

2-pnospha - ycerate

phosphogyruvdte hydratase

/Mﬁovcro my\rum\

[ 0 —
AP / e ADP \
{
o ey

Ji  phosphate i
pyruvata. vialer dikinase F!“'“""fﬁ kinase

- ) X
Amino Acid Biosynihesis

38]. Note that lipid synthesis pathway is likely
inhibited, given that one of the most important enzyme,
i.e. fatty acid synthase (FASN) was infinitely down-
regulated (Supplementary Table S9).
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Figure 8. Modifications in the expression of glycolytic enzymes. Schematic representation of glucose metabolism
upon MGT treatment. Green tea exposure causes an evident impairment of glycolytic pathway. Proteins down-regulated

(in green) or up-regulated (in red) are shown.
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Figure 9. Changes in the expression of proteins implicated in the pentose phosphate pathway. MGT treatment up-
regulates the expression of proteins involved in the PPP pathway (red colour).

Cell cycle regulation

IPA analysis of our proteomics data detected alterations
in cell cycle regulation after treatment with MGT (Fig.
10 and Supplementary Table S10). The p53 tumour
suppressor protein, which is a transcription factor
stabilized and activated in response to a range of cellu-
lar stresses including hyper-proliferation, DNA damage
and shortage of glucose, was significantly up-regulated
(by 5.9 fold) as compared to untreated cells (Sup-
plementary Table S10). Phosphorylation of p53
necessary for its activation occurs normally by the
action of two proteins, namely ATM and ATR protein
kinases. Supplementary Table S10 shows that the ATR
protein kinase is infinitely up-regulated. This finding
suggests that MGT may promote a p53-induced cell-
cycle arrest or programmed cell death. Furthermore, the
tumor suppressor retinoblastoma protein (RB1) is
significantly up-regulated by MGT treatment, likely
inhibiting cell cycle progression (Supplementary Table
S10). In addition, it is well known that the RB1 attracts
histone deacetylase 1 (HDACI1) to the chromatin,
reducing transcription of S-phase promoting factors,
further suppressing DNA synthesis [39]. Consistent
with this notion, Supplementary Table S10 shows the
up-regulation HDAC1, upon MGT treatment. Cyclins/
CDKs-mediated hyper-phosphorylation of RB1 serves
to inactivate RBI1, allowing cell cycle progression.
Interestingly, MGT treatment reduces the levels of
cyclins/CDKs, presumably activating RB1 and hinder-
ing the progression of cell cycle (Supplementary Table

S10). Lastly, MGT treatment down-regulates by 18-fold
SKP1 (S-phase kinase-associated protein 1), a protein
involved in the ubiquitination of cell cycle proteins
(Supplementary Table S10). Although the role of this
protein during tumorigenesis remains unclear, it is
known that SKP complex targets CDK inhibitor p27 for
degradation [40] and it has been recently published that
in non-small cell lung cancers elevated levels of SKP1
was associated with poor prognosis [41]. Altogether,
these data suggest that MGT inhibits cells cycle
progression by up-regulation of p53 and RBI. These
data are consistent with previously published findings
showing that green tea polyphenols display anti-tumors
activities of MCF7 cells, by inducing cell cycle arrest
and mitochondrial-mediated apoptosis [42].

Antioxidant response

This study demonstrates that treatment with MGT up-
regulates the enzymes of the oxidative branch of the
pentose phosphate pathway, which is responsible for the
production of the antioxidant NADPH (Fig. 9 and
Supplementary Table S6). Moreover, IPA analysis
revealed that several proteins implicated in the NRF2-
stress-related pathway were significantly altered
(Supplementary Table S11). In particular, note the in-
crease of glutathione S transferases, enzymes involved
in detoxification processes. Similarly, catalase, thiore-
doxin, NQOI and superoxide dismutase, which all play
important roles in anti-oxidant responses [43, 44], were
all found up-regulated after MGT treatment.
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Cyclins and Cell Cycle Regulation
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Figure 10. MGT treatment affects cell cycle regulation in MCF7 cells. Schematic representation of cell cycle
regulation upon treatment with green tea. Proteins down-regulated (in green) or up-regulated (in red) are shown.

Interleukin pathways

IPA analysis showed that treatment with MGT affected
the IL-8 pathway. IL-8 signaling is involved in
angiogenesis, proliferation and increment of the
migratory capacity of cancer cells. A decrease in the
expression of most of the proteins involved in the
pathway is observed after MGT treatment (Supplemen-
tary Table S12). Interestingly, VCAM 1 and the
transcription factor NF-kB (encoded by the RELA
gene) are both down-regulated. NF-kB is implicated in
many cellular processes, including inflammation,
metabolism and chemotaxis, and VCAM 1 mediates
pro-metastatic tumor-stromal interactions [45]. These

findings suggest that MGT may inhibit: i) IL-8-
mediated induction of VCAMI1 by blocking ERK1/2
(note that many MAPKs are down-regulated); and ii)
NF-kB signaling pathway, leading to a reduction of the
inflammatory process, invasion and metastasis.

Moreover, the IPA analysis suggests an impairment of
the PI3K/Akt signaling pathway. Note that PIK3C2B (a
PI3K family member) is down-regulated by 8.49 fold,
likely leading to impaired phosphorylation and
activation of AKT and promoting pro-apoptotic events.
Consistent with this notion, the expression of the
apoptosis regulator BAX protein expression is in-
creased.
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EFFECTS OF MATCHA GREEN TEA
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Figure 11. Overview of the metabolic and cellular processes affected by MGT. Note that MGT
treatment inhibits cellular metabolism (glycolysis, mitochondrial respiration, fatty acid synthesis) with a

likely compensatory increase in fatty acid breakdown.

DISCUSSION

Over the past years, the anti-cancer properties of green
tea or its components have been investigated. Its effect-
tiveness is reported across several types of tumor.
Importantly, previous studies have reported that green
tea and epigallocatechin gallate (EGCG), one of the
main components of green tea, suppresses cancer stem-
like cells (CSCs) properties in a variety of cellular
models [46-48]. Here, we aimed to investigate if the
inhibitory efficacy of MGT on CSCs is associated with
inhibition of cellular metabolism. The results presented
in this paper demonstrate that MGT preferentially
inhibits CSC proliferative expansion derived from
MCF7 breast cancer cells. Furthermore, MGT treatment
overall reduced cellular metabolism, including mito-
chondrial respiration and glycolysis, as assessed by
Seahorse analysis. These phenotypic results were
integrated with proteomic analysis data obtained from
MGT-treated cells. Bioinformatics analysis through
Ingenuity Pathway Analysis (IPA) showed that MGT
not only affected mitochondrial respiration and
glycolysis, but also fatty acid synthesis, validating
results already described in the literature. It has been
reported that EGCG reduces in vivo the expression of

several hepatic enzymes, including fatty acid synthase
(FASN) [49]. FASN is an enzyme overexpressed in
many cancer types that plays a key role in tumori-
genesis [50]. Consistently, our results demonstrate that
MGT treatment dramatically decreased FASN expres-
sion, as compared to control cells. Furthermore, we also
found that gluconeogenesis was down-regulated by
MGT treatment, concordantly with in vivo and in vitro
results on human colon carcinoma Caco-2 cells treated
with EGCG [51]. The metabolic changes observed in
MCF7 upon treatment with MGT are summarized in
Fig. 11.

IPA analysis indicates that MGT may have broad and
profound effects on a variety of cellular processes.
Indeed, our findings suggest that MGT may affect cell
cycle progression and the oxidative stress response in
MCF?7 cells. These effects have been already described
in different cancer types [52, 53]. Furthermore, MGT
treatment may decrease inflammation and angiogenesis,
as well as may inhibit the mTOR pathway (target of
rapamycin), impairing protein synthesis. This raises the
intriguing possibility that the natural compound MGT
can be used as inhibitor of mTOR, instead of chemical
compounds, such as rapamycin.
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Lastly, analysis of our proteomic data revealed that
MGT displays overlapping effects in targeting
mitochondria with the antibiotic doxycycline. Thus, the
natural compound MGT may help prevent tumor recur-
rence and metastases, reducing the side effects of the
anti-cancer therapy, similarly to what has been proposed
for doxycycline [54].

CONCLUSIONS

In summary, we found that the natural compound
Matcha green tea mechanistically targets oxidative
phosphorylation and therefore CSC propagation.
Importantly, we demonstrated that MGT effectively
down-regulated oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR). Moreover,
MGT treatment impaired others cellular metabolic
pathways, and several cell signaling pathways such as
cell cycle regulation, antioxidant response and inflam-
mation. Altogether, these findings strongly propose
MGT as a natural compound that may help to overcome
cancer cell resistance to chemotherapy. Surely, more
molecular studies and clinical trials are warranted.

MATERIALS AND METHODS
Materials

MCF7 were purchased from ATCC. Media for cell
cultures was DMEM (D6546, Sigma-Aldrich). Cell
culture media (DMEM/F12) for spheroid culture was
purchased from Life Technologies. Sulforhodamine B
(SRB), 1x Trypsin-EDTA, 2-hydroxyethylmethacrylate
(poly-HEMA) were purchased from Sigma-Aldrich.
Matcha green tea (MGT) powder was a generous gift
from OMGTea, Inc. (UK). The exact chemical compo-
sition of the product is available upon request from the
manufacturer [Contact Katherine Swift (Founder,
OMGTea); Email: katherine@omgteas.co.uk].

Tumour-spheroids culture

A single cell suspension was prepared using enzymatic
(1x Trypsin-EDTA) and manual disaggregation (25
gauge needle) [55]. Five thousand cells were plated
with  spheroids medium (DMEM-F12/B27/EGF-
20ng/ml/PenStrep), in non-adherent conditions, in six
wells plates coated with poly-HEMA. After five days of
culture, the number of spheres with diameter >50 pum
per well were counted.

Seahorse analysis
Extracellular acidification rates (ECAR) and oxygen

consumption rates (OCR) were analysed using the
Seahorse XFe96 bioenergetic analyser (Seahorse

Bioscience, MA, USA). Six thousand MCF7 cells were
seeded per well, into XF96-well cell culture plates, and
incubated at 37°C in a 5% CO2 humidified atmosphere.
MCF7 cells were maintained in DMEM supplemented
with 10% FBS (Fetal Bovine Serum), 2 mM GlutaMAX,
and 1% Pen- Strep. Twenty-four hours from the plating,
cells were incubated with/without filtered MGT at the
concentration of 0.2 mg/ml (dissolved in water). After
seventy-two hours, cells were washed in pre-warmed XF
assay media as previously described [56]. ECAR and
OCR measurements were normalized by cellular protein
content (SRB). Data set was analyzed by XFe-96
software and Excel software, using Student’s t-test
calculations. All experiments were performed in
sextuplicate, three times independently.

SRB assay

Cells were subjected to SRB colorimetric assay for
cytotoxicity, based on the measurement of cellular
protein content. Briefly, MCF7 cells in monolayers
were first fixed with 10% trichloroacetic acid and then
washed with 1% acetic acid. The OD determination at
510 nm using a microplate reader was done after the
dye dissolution in 10mMTris base solution [57].

Quantitative proteomic analysis

Cell lysates, obtained after treatment with MGT for 48
hours, were subjected to quantitative proteomic analysis
as previously described [29]. Data were analyzed using
the Mascot search engine. Five technical replicates were
made for each sample (untreated and MGT-treated cells).
Statistical analyses were performed using ANOVA and
only fold-changes in proteins greater than 1.2, with a p-
value less than 0.05 were considered significant.

Ingenuity pathway analyses

Ingenuity Pathway Analysis (IPA) (Ingenuity systems,
http://www.ingenuity.com) was employed to analyze
pathways and functions in the proteomics datasets. IPA
aids the interpretation of the proteomics data, by
organizing differentially expressed proteins into noted
functions and pathways.

Statistics

All data are presented as means + SEM. Student’s t test
was used. P< 0.05 was considered statistically
significant.
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