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INTRODUCTION 
 

Cellular senescence (CS), a stable cell-cycle arrest, was 
initially observed that normal fibroblasts had a limited 
ability to proliferate [1]. This type of senescence is 
known as “replicative senescence” or “Hayflick limit”. 
Various external signals can also trigger CS, such as 
oncogene-induced senescence (OIS) and stress-induced 
premature senescence (SIPS) [2]. The senescent 

program has been widely recognized as a barrier to 
cancer due to its permanent growth arrest [3]. On the 
other hand, the accumulation of senescent cells might 
contribute to organismal ageing, and the clearance of 
senescent cells could delay ageing-associated 
phenotypes and extend healthy lifespan [4, 5]. Aside 
from cell cycle arrest, large-scale changes occurred in 
senescent cells at the cellular and molecular levels, 
including gene expression changes, as well as splicing 
alterations [6].  
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ABSTRACT 
 
Dysregulation of mRNA splicing has been observed in certain cellular senescence process. However, the 
common splicing alterations on the whole transcriptome shared by various types of senescence are poorly 
understood.  In order to systematically identify senescence-associated transcriptomic changes in genome-wide 
scale, we collected RNA sequencing datasets of different human cell types with a variety of senescence-
inducing methods from public databases and performed meta-analysis. First, we discovered that a group of 
RNA binding proteins were consistently down-regulated in diverse senescent samples and identified 406 
senescence-associated common differential splicing events. Then, eight differentially expressed RNA binding 
proteins were predicted to regulate these senescence-associated splicing alterations through an enrichment 
analysis of their RNA binding information, including motif scanning and enhanced cross-linking 
immunoprecipitation data. In addition, we constructed the splicing regulatory modules that might contribute to 
senescence-associated biological processes. Finally, it was confirmed that knockdown of the predicted 
senescence-associated potential splicing regulators through shRNAs in HepG2 cell line could result in 
senescence-like splicing changes. Taken together, our work demonstrated a broad range of common changes in 
mRNA splicing switches and detected their central regulatory RNA binding proteins during senescence. These 
findings would help to better understand the coordinating splicing alterations in cellular senescence. 
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Alternative splicing (AS) is a post-transcriptional 
process, during which a single gene can produce 
multiple different protein isoforms. It greatly increases 
the protein biodiversity. Dysregulations of mRNA 
splicing are emerging to be discovered as important 
players in organismal ageing, cellular senescence and 
ageing-related degenerative diseases [7]. For example, 
the upregulation of p44, a short isoform of TP53, could 
activate the insulin-like growth factor (IGF) signaling 
pathway in C. elegans, D. melanogaster and mice, and 
would accelerate ageing and growth arrest [8]. ING1 
gene encoded tumor suppressor proteins that affected 
cell growth, apoptosis and response to DNA damage 
[9]. It was reported that the ratio between its two 
splicing isoforms, ING1a and ING1b, increased in CS. 
Ectopic overexpression of ING1a in young cells would 
elicit senescence-associated phenotypes [9, 10]. The 
premature ageing disease Hutchinson–Gilford progeria 
syndrome was caused by a single-point mutation, which 
would lead to the mis-splicing of nuclear lamin A/C 
(LMNA) gene and a remarkable increase of progerin 
proteins [11].  
 
Proper expression of the splicing regulatory RNA-
binding protein (RBP) genes is necessary for the precise 
AS program [12]. The RBPs may interact with other 
proteins, as well as RNAs, and form the 
ribonucleoprotein complexes (RNPs) that mediate pre-
mRNA splicing of different exons or splice sites [13, 
14]. It was found that isoform ratios and gene 
expressions of RBPs changed with ageing. Harries et al. 
revealed that genes with expression alterations in 
advanced ageing were enriched in gene sets associated 
with mRNA splicing and other post-transcriptional 
pathways [15]. Holly et al. demonstrated that the 
expressions of key splicing RBPs were associated with 
age by analyzing blood samples from two human 
populations. This result was validated in human 
senescent fibroblasts and endothelial cells [16]. 
Furthermore, Lee et al. also revealed that certain post-
transcriptional alterations were associated with lifespan 
through a research on six mouse strains of different 
longevities. They inferred that correct regulations of AS 
might enhance lifespan in mice, and even in human 
[17].  
 
Some efforts have been devoted to the study of 
transcriptome in CS process. Recently, an integrative 
analysis of RNA-seq data focused on the heterogeneity 
across various types of senescent cells, and identified 
core gene signatures that were commonly differentially 
expressed in diverse senescent samples [6]. Likewise, it 
is necessary to characterize the consistent splicing 
alterations on the whole transcriptome and infer their 
potential splicing regulatory RBPs, which is poorly 
understood in cellular senescence. Extensive splicing 
changes were found in replicative senescence through 

splicing-sensitive microarray [18]. However, to the best 
of our knowledge, no systematic investigation of 
transcriptome-wide splicing alterations in CS has been 
reported before. 
 
In this study, we integrated publicly available RNA 
sequencing datasets of diverse human senescent 
samples and found that down-regulated genes in cellular 
senescence were significantly enriched with RBP genes, 
especially the major regulators in the biological 
processes associated with mRNA splicing. We 
identified common differential splicing events in CS 
across different induction methods and different cell 
types. Further investigations on these CS-associated 
differential splicing events through combining their 
RNA binding characteristics discovered that they were 
mainly regulated by these eight splicing regulatory 
RBPs: SRSF1, SRSF7, QKI, RBFOX2, PTBP1, 
HNRNPK, HNRNPM and HNRNPUL1. To clarify how 
these identified splicing RBPs contributed to the 
alternative splicing changes in cellular senescence, we 
inferred a splicing regulatory network through the RNA 
binding information. Finally, the roles in splicing 
regulation of these predicted RBPs in CS were validated 
through analyzing RNA-seq data with single-gene 
knockdown experiments collected from the ENCODE 
database. Taken together, our study provided a 
comprehensive understanding of the mechanism of the 
alternative splicing events and their regulatory 
relationships during CS from a global transcriptomic 
view. Our investigation highlighted the potential key 
CS-associated splicing regulatory RBPs through an 
integrative approach. 
 
RESULTS 
 
Down-regulated genes in cellular senescence are 
enriched with RBPs 
 
In order to identify genes that were consistently 
differentially expressed in diverse CS samples from 
different cell types with different induction methods 
compared with the samples in the growing state, we 
collected publicly available RNA sequencing data of 
human CS experiments, including five cell types 
(IMR90, WI38, HFF, BJ and astrocytes) and four 
senescent induction approaches (replicative senescence, 
and senescence respectively induced by RAS, drug and 
high-oxidation) (details shown in Table S1). 
Consistently differentially expressed genes in all these 
senescent experiments were identified through meta-
analysis, including 1082 up-regulated genes and 1073 
down-regulated genes (Table S2-3, Figure S1A). 
 
Functional roles of the differentially expressed genes 
were revealed via Gene Ontology (GO) enrichment 
analysis (Figure S1C, Table S4). As expected, top 
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enriched Biological Process (BP) GO terms were 
associated with ageing or cellular senescence. Down-
regulated genes were enriched in the processes of cell 
division, DNA replication, DNA repair, etc., while up-
regulated genes were enriched in the processes 
associated with proton transport, autophagy, etc. 
Interestingly, biological processes associated with 
mRNA splicing were listed among the top significantly 
enriched down-regulated ones. RBP genes, major 
controllers in regulating mRNA post-transcription, 
showed aberrantly expression in senescent samples 
compared with growing ones. Among the 192 RBPs, 
collected in this study (Materials and Methods), 22.1% 
were significantly down-regulated in senescent samples 
(p-value = 2.53e-19, odds ratio = 6.629) (Table S5). 
Taking PTBP1 and HNRNPUL1 as examples shown in 
Figure 1A, their gene expression levels are consistently 

down-regulated in senescent samples in multiple 
experiments. 
 
Furthermore, in order to infer the RBPs’ expression 
patterns in different types of CS, we performed 
clustering analysis of their normalized differential 
expression levels in fourteen CS experiments on both 
the experiment and RBP dimensions, respectively 
(Figure 1B). All experiments were separated into two 
clusters according to the senescence-inducing methods: 
replicative senescence (left), senescence induced by 
other methods (right). The collected 192 RBPs could be 
partitioned into four major groups according to their 
differentially expressed levels in fourteen experiments: 
common up-regulated (red), no regular patterns and no 
significant alterations in either of two clusters (orange), 
only significantly down-regulated in replicative 

 
 
 

Figure 1. Differential expression levels of RNA binding proteins (RBPs) in senescent samples compared with growing 
ones. (A) Taking two consistently down-regulated RBPs as examples, their gene expression levels (y-axis: log2 read counts) of 
senescent samples compared with growing ones in fourteen experiments (x-axis). (B) Heatmap using a rank-based visualization method 
to present the differential expression levels of collected RBPs in all experiments respectively. Each column represents an experiment 
and each row represents one gene. A normalized rank transform is performed on each individual experiment by sorting the p-values 
from the most down-regulated with the lowest 0 (blue) to the most up-regulated with the highest 1 (red). 
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senescence but not in other inducing condition (green), 
and consistently down-expressed in diverse experiments 
(blue). In summary, a significant proportion of RBPs 
were consistently down-regulated in diverse senescent 
cells (Figure S2A), and the common differentially 
expressed RBPs were treated as potential splicing 
regulators during CS.  
 
Genes with differential splicing events in CS 
function in ageing-associated GOs  
 
We hypothesized that alterations on RBP gene 
expressions might cause alternative isoform changes 
during CS. To fully characterize the AS program 
difference between senescent and growing samples, we 

applied rMATS [19] on each dataset to identify 
differential splicing events and performed meta-analysis 
to find the common ones, which were defined as CS-
associated differential splicing events. The number of 
splicing events varied among these experiments, which 
might be affected by read length and sequencing depth 
(Table S6).  
 
We identified 406 CS-associated common differential 
splicing events (Table S7, Figure 2A).  The majority of 
splicing patterns were events of skipped exons. One 
differential splicing event of VCAN is shown as an 
example in Figure 2C. This gene was reported spliced in 
ageing and cellular senescence [15, 16]. The detected 
differentially spliced genes participated in functional 

 
 
 

Figure 2. Differential splicing analysis in cellular senescence. (A) Statistics of the differential splicing events from the integrating 
result. (Abbreviations: SE: skipped exon; A5SS: Alternative 5’ splice site; A3SS: Alternative 3’ splice site; MXE: Mutually exclusive exon; 
RI: Retained intron). (B) GO enrichment analysis for the genes with CS-associated differential splicing events. (C) An example of one 
alternative splicing event of gene VCAN. VCAN is located on Chromosome 5 and this event is a MXE type, and two mutually exclusive 
exons separately locate from 82815167 to 82818128, 82832825 to 82838087. This MXE event is shown in RNA-seq read coverage plot 
(left: showing three experiments) in the genome browser and percent spliced in (PSI) boxplot (right: * representing differential spliced 
in this experiment). 
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processes, including mRNA splicing, extracellular 
matrix organization, positive regulation of NF-kappaB 
signaling pathway, etc. (Figure 2B). These processes 
were discovered associated with cellular senescence or 
ageing [3, 20, 21].  In order to infer the potential 
associations between the splicing events and 
phenotypes, we mapped known single nucleotide 
variants (SNVs) to the CS-associated splicing event 
regions, and identified 1071 SNVs with phenotypic 
annotation in NCBI ClinVar database [22] (Table S10). 
These genomic variants were assigned to 50 genes, 
many of which were associated with degenerative 
disorders (Table 1). For example, Hutchinson-Gilford 

progeria syndrome (HGPS)-associated SNVs in LMNA, 
a well-known spliced gene, were found within the CS-
associated splicing event regions. In summary, these 
observations suggested that the identified common 
splicing alterations in diverse senescent samples might 
play important roles in the CS-related processes.  
 
Eight splicing regulatory RBPs were identified as 
key senescence AS regulators  
 
To predict the candidate RBPs that regulate differential 
splicing in CS, we performed an enrichment analysis of 
RBPs’ RNA binding sites around CS-associated 

Table 1. Examples of genes with differential splicing events that were annotated with degenerative 
diseases associated SNVs. 

GENE SYMBOL AS TYPES ASSOCIATED DISEASES 

ASPM SE Primary Microcephaly 

LAMP2 SE Danon Disease 

COL6A3 SE; MXE Collagen VI-related myopathy 

LMNA RI Hutchinson-Gilford syndrome, Cardiovascular phenotype 

TPM1 SE; MXE Dilated cardiomyopathy, Hypertrophic cardiomyopathy 

VCAN SE; MXE Wagner syndrome, Vitreoretinopathy 

 

 
 

 
 
 

Figure 3. Pipeline of identifying RNA binding proteins (RBPs) regulating the senescence-associated alternative splicing 
events. For each RBP, the enrichment of RNA binding information of the Alternative Splicing Event (ASE) regions compared with the 
non-ASE regions through combining the methods of motif scanning and eCLIP peaks. Only the differentially expressed RBPs with 
significantly enriched RNA binding information were defined as the potential senescence-associated regulators (right scatter plot). x-
axis is the p-value of down-regulations of the RBPs, y axis is the combined enrichment p-value. Red point is the detected eight splicing 
RBPs.  
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differential splicing exon regions. Both approaches of 
scanning known RNA binding motifs [23] and the 
significant peaks of the eCLIP data [24] were applied to 
infer the RBPs’ RNA binding information (Figure 3, 
Table S8, Materials and Methods). Twenty RBPs were 
identified to have significant enrichment in RNA 
binding sites within the CS-associated differential 
splicing event regions. Only eight of these RBPs were 
significantly differentially expressed in diverse 
senescent samples, and all of them were consistently 
down regulated. These eight RBPs, namely, SRSF1, 
SRSF7, QKI, RBFOX2, PTBP1, HNRNPK, HNRNPM 
and HNRNPUL1, were predicted as the potential key 
AS regulators in cellular senescence. 
 
Identifying cellular senescence-associated splicing 
regulatory modules  
 
We assigned the differential splicing events to each 
identified potential senescence splicing regulatory RBP 
to build the splicing regulatory network. The role of 
each RBP was revealed through GO enrichment 
analysis of its targeting genes with differential splicing 

events. The splicing network uncovered that these RBPs 
controlled widespread splicing changes and affected a 
number of genes known to participate in each biological 
process during senescence (Figure 4A). For example, 
PTBP1 and RBFOX2 were predicted as the main 
splicing regulators in the process of cell-cell adhesion. 
It was discovered that reduction of PTBP1 and PTBP2 
induced glioma cells to decrease proliferation and 
migration and to increase cell adhesion [25]. In 
addition, the splicing alterations involved in the NF-
kappaB signaling pathway were predicted to be mainly 
targeted by RBFOX2 (Figure 4A and 4C). Taken 
together, the splicing regulatory network unveiled the 
potential functional roles for the identified regulatory 
RBPs in CS. 
 
Knocking down splicing regulatory RBPs induced 
CS-associated splicing events  
 
To further validate the potential regulatory roles of 
these detected CS-associated splicing regulatory RBPs, 
we compared the overlap between differential splicing 
events identified from RBP knockdown experiments 

 
 
 

Figure 4. Validation of identified potential splicing regulatory roles of RNA binding proteins’ (RBPs) in cellular 
senescence (CS)-associated splicing events and their regulatory modules. (A) GO enrichment result of the identified candidate 
regulatory RBPs’ targeting genes. The size of the dot represents the log10 the enrichment p-values. (B) Gene set enrichment analysis 
(GSEA) plot for the detected eight splicing RBPs and the pre-ranked RBPs. The Y-axis gives the enrichment score for the enrichment of 
single factor knockdown-induced ASEs with CS-associated ASEs in the top panel. The X-axis refers to the rank of collected RBPs 
according to the enrichment. Each vertical line in the bottom panel of the figure refers to hit position of the eight splicing RBPs in the 
ranked list. HNRNPK, SRSF1 and QKI were identified as the top three enriched RBPs. (C) NF-kappa B signaling (left) and cell-cell adhesion 
(right) pathways intensively regulated by the CS-associated RBPs. 
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and the CS-associated differential splicing events. First, 
we collected 121 groups of individual RBP knockdown 
RNA-seq data of HepG2 cell line from ENCODE 
project [26]. Then, we identified the differential splicing 
profiles upon single RBP knockdown and compared the 
overlap between the RBP knockdown-induced splicing 
alterations with the 406 CS-associated differential 
splicing events. RBPs were ranked according to their 
overlap enrichment statistics for 121 RBPs. Finally, 
Gene Set Enrichment Analysis (GSEA) [27] result 
showed that eight predicted CS-associated splicing 
regulatory RBPs were among the top-ranked RBPs 
(Figure 4B, Table S9). It should be noted that, the most 
top three enriched RBPs, namely, QKI, SRSF1 and 
HNRNPK, were among our predicted CS-associated 
splicing controllers.  
 
All of QKI, SRSF1 and HNRNPK played critical roles 
in CS-associated phenotypes with multiple evidence. 
Quaking (QKI) belongs to STAR (Signal Transduction 
and Activation of RNA) protein family. Its 
dysregulation contributed to many genetic diseases, 
such as increasing injury in diabetic heart and 
schizophrenia [28, 29]. QKI was detected to mediate the 
alternative splicing of the Histone Variant MacroH2A1 
[30], one of whose splicing isoform microH2A1.1 was 
found to regulate the SASP genes during the process of 
oncogene-induced senescence [31]. The second 
example is SRSF1 (serine/arginine-rich splicing factor). 
Recent research demonstrated its regulatory role in cell 
proliferation and migration. Its overexpression 
enhanced the proliferation of vascular smooth muscle 
cells (VSMCs), while its knockdown suppressed 
VSMCs’ growth [32]. Telomere shortening, as a result 
of replication, was a marker of replicative senescence 
and a senescence-inducing approach [33, 34]. 
Meanwhile, it was discovered that homologues of the 
human hnRNP K in yeast could maintain the telomere 
length and the structural and functional organization of 
telomeric chromatin [35]. 
 
DISCUSSION 
 
Increasing evidence suggests that dysregulation of 
splicing factors and the production of key splice 
variants may attribute to cellular senescence or ageing-
associated phenotypes [7]. However, a global 
transcriptomic landscape of AS program and the 
splicing regulatory factors are still largely unknown in 
CS. The rapid accumulation of RNA-seq data in public 
databases makes it possible to perform meta-analysis on 
transcriptomes across studies related with CS.  
 
In order to identify consistent alterations in cellular 
senescence, we collected multiple RNA-seq datasets, 
and performed an integrative analysis of differential 

expression and alternative splicing. Regardless of their 
heterogeneous transcriptomes, we observed that a 
significant proportion of RBPs were consistently down-
regulated in human senescent cells. This kind of 
expression changes of spliceosomal components and 
splicing regulatory factors might alter splicing profiles 
during CS. We uncovered consistent senescence-
associated splicing patterns, detected corresponding 
regulatory RBPs through enrichment analysis of RNA 
binding sites in differential splicing event regions and 
predicted senescence-associated splicing regulatory 
modules.  
 
Our work detected 406 consistently CS-associated 
differential splicing events in various types of senescent 
experiments. A number of known SNVs around these 
splicing regions were associated with degenerative 
disorders (Table 1, Table S10). For example, mutations 
of LMNA gene could result in different isoforms and 
cause a range of accelerated ageing and peripheral nerve 
disorders, including Hutchinson-Gilford progeria 
syndrome and Charcot-Marie-Tooth disease [36]. 
VCAN and LAMP2 were reported with related changes 
in isoform ratios with advancing age [15, 16]. VCAN, 
encoding chondroitin sulfate proteoglycan 2, was a key 
factor in cell adhesion, migration and inflammatory 
response [11, 37]. Novel mutations and unbalanced 
alternative splicing were reported to associate with 
Wagner vitreoretinal degeneration [38]. LAMP2 
encodes lysosome-associated membrane protein 2, one 
of the lysosome-associated membrane glycoproteins. Its 
deficiency resulting from splicing defects might lead to 
the Danon disease reported with clear degenerative 
features [39]. Moreover, some genes known to be 
spliced in cellular senescence were also identified. 
CD44, a senescence-induced cell adhesion gene [40], 
was identified with three differential splicing events in 
our work.  
 
Our research elucidated that a group of RNA binding 
proteins were significantly down-expressed in cellular 
senescence. They played crucial roles in post-
transcriptional processing of RNAs, especially in 
mRNA splicing. The disruptions to these RBP gene 
expressions in CS might lead to a global aberrant 
mRNA stability and differential splicing patterns. We 
took further study to perform an enrichment analysis of 
the RNA binding information within the differential AS 
event regions and to predict eight splicing regulatory 
RBPs. Apart from senescence-associated phenotypes, 
the detected RBPs’ importance has also been implicated 
in the process of aging and age-related degenerative 
diseases [41]. Three of them, namely, SRSF1, 
HNRNPK, HNRNPM, were characterized by their 
significant negative correlations with age in several 
population studies of human peripheral blood [16, 42]. 
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PTBP1 (down), in parallel with HNF4A (up), was 
identified as the most significant blood biomarkers in 
Parkinson’s Disease through transcriptomic and 
network-based meta-analysis [43]. In addition, there 
were twelve enriched RBPs without significantly 
differential expression. Two of them, namely, PCBP2 
and HNRNPC, were differentially spliced but without 
alterations on gene expression levels, whose regulatory 
ability might change on the post-transcriptional levels. 
 
We also looked into the expression alterations of eight 
predicted CS-associated RBPs in the quiescence 
condition. We collected two datasets of cell quiescence 
of the non-immortal cell lines (Table S1), namely, BJ 
and IMR90, and examined the differential expression 
levels (Table S11). Among the eight predicted RBPs, 
some were also down-regulated in quiescence. For 
example, SRSF1 and SRSF7 showed significant down-
expression in both of two quiescent datasets, while 
PTBP1 and HNRNPM were identified down-regulated 
in only one dataset. We hypothesized that these RBPs 
down-regulated in both quiescence and senescence 
conditions might be associated with cell cycle arrest per 
se. Meanwhile, some other RBPs like HNRNPK, 
HNRNPUL1, RBFOX2 and QKI were not significantly 
changed in quiescence condition. They were likely to be 
associated with senescence-inducing changes of gene 
expression and to participate in senescence-specific 
biological processes. For example, QKI [30, 31] and 
HNRNPK [35, 44] were found to regulate SASP genes 
and to maintain telomere function, respectively. 
 
In summary, our work provides systematically genome-
wide evaluation of splicing alterations through an 
integrative meta-analysis and uncovers the splicing 
regulatory relationships with candidate RBPs during 
cellular senescence. Previous work showed that some of 
our identified splicing genes or RBPs influenced CS-
associated phenotypes and multiple age-related 
diseases. Our finding is the first time to identify 
potential splicing regulatory RBPs and to build the main 
splicing regulatory modules of CS. The restrictions of 
our study include the unbalanced sample size of cell 
types and the data we used were only on the mRNA 
levels. Facing such an essential role for isoform 
splicing, the current challenge is to elucidate how 
specific splicing changes contribute to senescence with 
functional impact. The critical role of the upstream 
RBPs and their relationships with splicing events need 
to be investigated in the further studies. 
 
MATERIALS AND METHODS 
 
Figure S3 shows the pipeline of data processing. The 
data sets and tools used in this study are presented in 
this section. 

Data collection 
 
RNA-seq datasets in SRA format were collected from 
Gene Expression Omnibus (GEO) database [45] by 
searching with keywords “cellular senescence” and 
“senescent” (Table S1). Only datasets on non-immortal 
cell lines with at least two biological replicates and 
accompanied with information of senescence tests (such 
as growth curve and senescence-associated beta-
galactosidase (SA beta-gal) activity) were remained. In 
total, we collected 51 senescent samples and 44 
growing samples. 
 
SRA data were converted into fastq format by using 
fastq-dump from SRA Toolkit 2.8.1. We performed 
individual differential analysis for consideration of 
different cell lines or induction methods in the 
following study. For example, as dataset SRP062872 
contained two type of induction methods, we classified 
senescent samples into two groups, namely, RAS-
induced senescence and drug-induced senescence. Then, 
we compared them with the growing samples 
respectively to perform the individual differential 
analysis. 
 
We collected two RNA-seq datasets of quiescent 
samples from GEO database (Table S1). Only the 
datasets on non-immortal cell lines with at least two 
biological replicates were used in our analysis. 
 
We collected 241 known human RBPs from ATtRACT 
[46] and ENCODE project 
(https://www.encodeproject.org/) [24, 26]. 192 RBP 
genes with RNA binding information (either high 
confident motifs or eCLIP data) and expressed in at 
least one dataset were took into further study. 
 
RBPs’ eCLIP-seq data (Table S12) and RNA-seq data 
(Table S13) treated with shRNA knockdown against 
single individual RBP (and control shRNA against no 
target) were downloaded from ENCODE [26].  
 
Differential expression analysis 
 
Reads were mapped to human reference genome hg19 
using tophat (v2.1.1) [47]. Raw read counts were 
calculated using HTSeq [48] for the following 
differential expression analysis.  
 
Three methods were combined to make meta-analysis. 
First, we pooled all samples from ten datasets together 
and performed t-test to estimate the differential 
expressed levels of genes between senescent samples 
and growing ones. Second, differential expression 
analysis in each individual experiment was made via 
using DESeq2 and p-values in all comparison were 
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combined through Fishers’ combining method. Third, 
inverse-normal method was used to combine p-values 
from the second method, weighing by sample size in 
each data set. We performed multiple test corrections in 
all three methods. For the first method, the significance 
threshold of p-value was calculated through a 
permutation procedure to control family-wise error rate 
(FWER) at 0.05. For each permuting step, we shuffled 
all sample labels randomly and generated p-values as 
described above. The smallest p-values from individual 
shuffling steps were remained to estimate the 
distribution under null hypothesis and were sorted 
increasingly. We set the 50th p-value as the threshold 
among the 1000 times of shuffling. For the other two 
methods, we adjusted p-value through Bonferroni 
correction and set the threshold as 0.01. Only genes that 
found significantly differentially expressed in all three 
approaches were defined as differentially expressed 
genes in CS. 
 
To remove batch effect in the sample merging method, 
we normalized read counts of each data set separately 
through DESeq2 [49] and performed quantile 
normalization of the log-transformation of the 
normalized read counts across all. Genes with positive 
read counts in at least one sample were remained in the 
following analysis. In order to evaluate the success of 
batch effect removal in the method of pooling all 
samples together, growing samples were visualized in a 
Principal Component Analysis (PCA)-plot. The first 
component separated the samples according to tissue 
origins despite of datasets origins (Figure S2B). In the 
plot, samples were grouped into three clusters: foreskin 
fibroblasts (BJ and HFF), lung fibroblasts (IMR90 and 
WI38) and astrocytes. PCA of all samples revealed that 
both tissue origins and cellular states (senescence or 
growing) accounted for most variance (Figure S2C). 
PCA was performed using R-package labdsv [50]. 
 
We characterized the similarity between experiments by 
clustering normalized ranks of p-values. For each 
individual experiment, DESeq2 with one-sided test was 
used to detect differentially expressed levels of genes. 
Then, p-values from the one experiment were 
normalized through order statistics [51, 52]. For the 
global comparison, only the top 2000 up-
regulated/down-regulated genes in at least one 
individual analysis were used for the comparison 
(Figure S1B).  
 
GO enrichment analysis 
 
Online tool DAVID was used to identify enriched Gene 
Ontology (GO) terms [53]. Due to the large number of 
GO terms significantly enriched with differentially 
expressed genes, it was necessary to cluster them to 

remove redundant ones. If two GOs shared similar set 
of genes, they might be related. Kappa statistics was 
used to measure the similarity between two any GO, 
which was just the same as in DAVID [54] . Any GO 
pair with kappa value more than 0.05 was classified as 
the same class. And for each class of GOs, only top 
three GOs are shown in Figure S1C and top two ones 
are shown in Figure 2C. 
 
Alternative splicing analysis 
 
rMATs (v3.2.5) [19] is a hierarchical model to identify 
alternative splicing events with an associated change in 
exon inclusion levels , also known as Percent Spliced In 
(ΔPSI), from replicate RNA-seq data. We used rMATs 
to compare senescent samples with growing ones in 
each individual dataset. We ran it by using parameter c 
0.0001 and reads mapped to the exon body as well as 
splicing junctions to detect the differences in exon 
inclusion levels. Splicing events with average combined 
read counts (inclusion plus skipping reads) in either 
senescent samples or growing samples less than five 
were filtered out. In each experiment, the splicing 
events with fdr adjusted p-value <0.1 and |ΔPSI|≥0.05 
were detected differentially spliced. In order to identify 
consistently alternative splicing events in multiple 
datasets, both naive vote counting method and Fisher’s 
combined p-value method were applied in our study. 
Only events significantly differential splicing in more 
than three experiments and with combined fdr adjusted 
p-value <0.05 were defined as CS-associated 
differential splicing events. 
 
Motif enrichment analysis of alternative splicing 
event regions with RBPmap 
 
In order to identify RBPs’ RNA binding sites that were 
significantly enriched in AS event regions, we collected 
known motifs from a RBP-motif database, ATtRACT 
[46] and performed motif scan by using a web server, 
RBPmap [55]. CS-associated differential splicing events 
were defined as Alternative Splicing Events (ASEs). 
Control events, also named as non-ASEs, with the same 
number of ASEs of each type were randomly selected 
from the background, namely, other not differential 
splicing events. We scanned every motif for its 
occurrence in both of the ASEs and non-ASEs with a p-
value threshold at 0.05. Event regions were defined as 
the alternatively spliced exon body (defined as intronic 
regions that are 250 bp upstream or downstream of this 
exon), similar as previous research by Xing Lab [56]. 6 
bp upstream of the 5’ splice site and 20 bp downstream 
of the 3’ splice site in intronic regions were excluded. 
We assigned each motif to its associated RBPs and 
performed enrichment analysis by comparing its 
frequency of occurrences in ASEs and non-ASEs via 
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Fisher’s exact test (one-sided test). For the RBPs with 
multiple motifs, the one with smallest p-value was 
remained.  
 
Enrichment analysis of alternative splicing event 
regions with ENCODE eCLIP-seq data 
 
The binding peaks with format of “bed narrowPeak”, 
defined by CLIPper [57], of eCLIP-seq data were 
extracted from ENCODE. First, only significantly 
enriched peaks, with fold enrichment ≥3 and p-value 
≤10-5, were retained for the following analysis. Second, 
the ASEs and non-ASEs (defined in motif enrichment 
analysis section) were overlapped with filtering peak 
results respectively by using BEDTools [58]. Finally, 
two groups of events with or without high-confidence 
peaks were counted separately to determine the 
enrichment for each RBP via Fisher’s exact test (one-
sided test). Fisher’s combining method was used to 
integrate the p-values of the enrichment result of motif 
scanning and eCLIP peaks to assess the RNA binding 
ability of each RBP. We applied fdr adjustment to the 
combined p-value and set the threshold as 0.05. Only 
the RBPs observed with significant q-values in both of 
two combination methods were defined as enriched 
ones. 
 
Validating the regulatory roles for the predicted CS-
associated regulatory RBPs  
 
We colleted 121 groups of RBP knockdown RNA-seq 
data fom ENCODE. For each group of RBP gene 
knockdown experiment, we also used rMATs to detect 
the differential splicing events between knockdown 
samples and controls with the same parameter as above. 
Threshold of fdr adjusted p-value and |ΔPSI| were set as 
0.05 and 0.1 respectively. The enrichment analysis was 
performed on the knockdown induced differential 
splicing events and the CS-associated splicing events 
through Fisher’s exact test (Table S8). RBPs were 
ranked increasingly according to the p-value from the 
enrichment analysis. Then, pre-ranked gene set 
enrichment analysis tool GSEA [27] with weighted 
mode was used to validate enrichment of the pre-ranked 
RBP set and our predicted eight CS-associated splicing 
regulatory RBPs. 
 
SNV annotation 
 
We used ANNOVAR [59] to map known SNVs to the 
CS-associated differential splicing event regions (as 
defined above). The associations between SNVs and 
phenotypes were annotated according to the NCBI 
ClinVar database [22]. 
 

Constructing the splicing regulatory modules 
 
First, we assigned the detected differential splicing 
events to the candidate splicing RBPs according to the 
corresponding RNA binding information, which was 
obtained through analysis of scanning motif and eCLIP 
peaks. For each candidate RBP, only differential 
splicing events with either significant enriched motifs or 
eCLIP peaks were taken as its targeting events. Then, 
GO enrichment analysis was performed for the RBPs’ 
targeting genes with splicing events respectively to infer 
their potential biological functions. 
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SUPPLEMENTARY MATERIAL 
 

 
 
 

Figure S1. Differentially expressed results of cellular senescence. (A) The venn plot of the identified differentially expressed 
genes in three approaches. (B) Heatmap of genes with one vote in at least one experiment. Down-regulated results (left); up-regulated 
results (right). Heat map was used a rank-based visualization method to present the differential expression levels of genes ranked top 
2000 down/up regulated genes in at least one dataset. Each column represents an experiment and each row represents one gene. A 
normalized rank transform is performed on each individual experiment by sorting the p-values from the smallest with the lowest 0 (blue) 
to the largest with the highest 1 (red). (C) GO enrichment of DE genes, we clustering the GO terms with the intersection of genes within 
pairwise GO terms. For the each of clustering, we only showed the top three GOs. Enriched GO of down-regulated genes (left); enriched 
GO of up-regulated genes (right). 
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Figure S2. Differentially expressed results of cellular senescence. (A) Differential expression levels of the identified down-
regulated RBPs. (B,C) PCA plot of growing samples and all samples with read counts. PCA plot of all growing samples (B). The 
samples were separated according to the tissue origins. PCA plot of all samples together (C). The main variance is associated with tissues 
and cell state (senescent or growing).  
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Figure S3. Processing pipeline of our research. It provides the main tools and analysis structure in our differential 
expression analysis and differential splicing events analysis. 



www.aging-us.com 1505 AGING 

Please browse the Full Text version to see the data of Supplementary Tables 
 
Table S1 Collected RNA-seq datasets of cellular senescence and quiescence in detail 

Table S2, 3 DE gene list (up, down) 

Table S4 All GO enrichment results of differentially expressed genes (up, down) 

Table S5 Differential expression levels for RBPs with RNA binding information 

Table S6 The statistics of the identified ASEs from each dataset 

Table S7 Meta-analysis result of splicing events identified in multiple experiments 

Table S8 Enrichment results of RNA binding information  

Table S9 Enrichment results of the single RBP knockdown experiments  

Table S10 Phenotype-associated SNVs within the CS-associated differential splicing event regions 

Table S11 Differential expression levels of predicted eight RBPs in quiescence 

Table S12 eCLIP data collected from ENCODE 

Table S13 Single RBP knockdown RNA-seq data collected from ENCODE 
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