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INTRODUCTION 
 
The adverse effects of maternal tobacco smoke on 
fetuses have been well documented for more than three 
decades and remains one of the main preventable causes 
of perinatal complications. Complications include low 
birth weight, preterm delivery, stillbirth, high perinatal 
mortality and birth defects of the offspring [1]. 
Cigarette smoke is composed of more than 4,000 
chemical compounds including hundreds of potential 
reproductive toxicants and carcinogens that have been 
associated with a variety of adverse reproductive out-
comes [2]. Evidence is accumulating that components 
present in cigarette smoke can affect the prenatal deve- 

 

lopment of the reproductive organs including the 
ovaries in exposed offspring [3-7].  
 
During the prenatal period critical processes involving 
female gametogenesis occur. In humans, around the end 
of the 3rd week of development, a small number 
(between 50-100) of gamete precursors known as pri-
mordial germ cells (PGCs) are set aside in an extra 
embryonic location, the yolk sac wall, and begin to 
migrate towards the gonadal ridges (GRs) [8]. After 
entering into the GRs (7-9 weeks gestation), PGCs, now 
called oogonia, undergo several rounds of mitotic 
division leading to a large increase in their numbers [9]. 
Mitotic divisions of oogonia end around the 18th week 
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ABSTRACT 
 
In the present paper, we found that human fetal ovaries (at ~16 weeks) express the transcripts for several 
subunits of the nicotinic acetylcholine receptor (nAChR). Exposure to the drug in vitro resulted in the marked 
increase of apoptosis in the ovaries in a time and dose-dependent manner. Evidence that adverse nicotine 
effects are potentially due to an increased level of reactive oxygen species (ROS) and consequent DNA damage, 
both in the ovarian somatic cells and germ cells, are reported. After 4 days of culture, exposure to 1 mM and 10 
mM nicotine caused a 50 % and 75 % decrease, respectively, in the number of oogonia/oocytes present in the 
fetal ovaries. These results represent the first indication that nicotine may directly cause apoptosis in cells of 
the fetal human ovary and may lead to a reduction of the ovarian reserve oocytes and consequent precocious 
menopause in mothers smoking during pregnancy. 
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of gestation, reaching a peak number of germ cells at 6-
7 million. From about 9th week, the first oogonia begin 
to enter meiosis [10]. By entering meiosis, female germ 
cells lose the ability to divide mitotically and are now 
termed oocytes. At 18-20 weeks, some oocytes, upon 
reaching the diplotene stage, are surrounded by flat-
tened pregranulosa cells to form primordial follicles, 
some of which soon develop into primary follicles. At 
birth the majority of oocytes are arrested at the 
diplotene stage and enclosed in a primordial follicle [11, 
12]. During late gestation a large number of oogonia 
and oocytes undergo cell death which reduces the germ 
cell population to ~1-2 million at birth. Therefore, the 
finite ovarian follicle pool, termed the ovarian reserve, 
is established before birth, resulting from the balance of 
oogonia proliferation and oogonia and oocyte death. All 
gametogenesis processes reported above are potentially 
vulnerable to environmental pollutants that can impact 
the fertility of females postnatally [13, 14].  
 
Concerning the exposure to cigarette smoke, a reduction 
of about 20% of the ovarian reserve [15] and precocious 
menopause in smoking women have been reported [4, 
16, 17]. In addition, in some patients a decrease in the 
number of oocytes and somatic cells in the ovary [3, 6, 
9], reduced fertility, and earlier menopause [18] have 
been associated with mothers smoking during preg-
nancy, although contradictory results have also been 
reported [5, 7].  
 
Several studies performed in animal models identified 
polycyclic aromatic hydrocarbons (PAHs) as the 
components of cigarette smoke causing adverse effects 
on female reproduction. In fact, it has been shown that 
in rodents that benzo[α]pyrene (BαP), a main com-
ponent of cigarette smoke PAHs, impairs follicular 
growth in vitro [19], while in vivo exposure of adult 
females leads to a loss of primordial follicles [16, 20-
22], through the induction of apoptosis [16]. Moreover, 
in utero exposure to BαP has been reported to result in a 
reduced pool of primordial follicles or infertility in mice 
[23-26]. Further evidence is provided through studies 
showing in vitro exposure of mouse embryonic ovaries 
to 9,10-dimethylbenzen(a)anthracene-3,4-dihydrodiol 
(DMMA-DHD), a PAH known to bind and activate the 
aromatic hydrocarbon receptor (AHR) present in 
ovarian somatic and germ cells of several species 
including human [27-30], induced apoptotic death of 
fetal germ cells through direct activation of Bax 
expression [31]. Interestingly, in chickens, the inter-
action PAH-AHR suppresses PGC meiosis indepen-
dently from Bax [32]. Finally, reduced germ cell 
proliferation was observed after exposure of first 
trimester human fetal ovaries to PAHs [8].  

Nicotine, the main active alkaloid component of 
cigarette tobacco, is considered a major teratogenic 
chemical able to perturb embryonic development [1, 33, 
34]. Nicotine can quickly cross the placenta to reach the 
embryo and accumulates in fetal blood and amniotic 
fluid [35]. Nicotine or its main metabolite cotinine exert 
their effects by activating nicotinic acetylcholine 
receptors (nAChRs), which are transmembrane ligand-
gated ion channels consisting of five subunits. When 
activated nAChRs have been shown to increase ion 
influx, mainly involving Ca2+ [36]. Elevation of 
intracellular Ca2+ concentration often has impacts on a 
variety of intracellular signaling and organelle functions 
[37]. For instance, though elevation of intracellular 
Ca2+, nicotine may increase the formation of reactive 
oxygen species (ROS) leading to oxidative stress in the 
cell. ROS has been demonstrated to be one of the major 
factors causing DNA damage and leading to apoptosis 
[34, 38-40]. Conversely, through activation of the 
protein kinase B (PKB/AKT) and extracellular 
regulated protein kinases (ERK) signaling pathways, 
nicotine also able to prevent apoptosis in certain cell 
types. The variety of effects of nicotine on adult 
physiology and tumorigenesis have been extensively 
studied [33, 41]. Some data from animal studies provide 
evidence that nicotine exposure potentially has adverse 
effects on female reproduction [42, 43]. For example, in 
utero exposure to nicotine causes impaired fertility, 
altered ovarian steroid hormone and protein levels, and 
an increased numbers of atretic follicles in adult female 
rat offspring [19, 44]. Of particular note, exposure to the 
drug during fetal, neonatal and adult age induces altered 
morphology and apoptosis in mouse and rat ovaries [44-
46]. Petrik and coll. (2009) [45], found nAChR-2 and 
nAChR-7 expression in ovarian tissues and isolated 
granulosa cells and suggested that one mechanism by 
which nicotine may cause the folliculogenesis defects 
observed in adult female rats was through the induction 
of apoptosis in granulosa cells and/or oocytes via 
activation of the receptors.  
 
The present study was designed to investigate whether 
exposure to nicotine induces direct toxicity during the 
development of human ovaries. To this aim, ovaries 
obtained from fetuses during the second trimester of 
pregnancy were cultured in vitro for four days in the 
presence of various nicotine concentrations and analyz-
ed for several morphological and molecular parameters 
in order to detect developmental defects. 
 
RESULTS 
 
Nicotine exposure induced cell apoptosis 
 
In a first series of experiments, we investigated the 
expression of nicotinic acetylcholine receptors 
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(nAChRs) in the ovary using qRT-PCR. The results 
showed that the ovaries expressed the transcripts of 
various subunits of nAChRs, and that exposure for 4 
days to 1 mM nicotine significantly increased the 
mRNA level of some subunits, namely nAChRα1, 2, 3 
and 9, in comparison to control, while 10mM nicotine 
caused, almost invariably, a decrease of the transcript 
levels of most of the subunits (Figure 1).  
 
Next, we found that whereas ovaries cultured in the 
presence of 1mM nicotine for 4 days did not displayed 
evident morphological alterations, those exposed to the 
10 mM drug showed loss of tissue integrity and smaller 
size (Figure 2A). Similarly, histological sections did not 
reveal morphological changes in the ovaries incubated 
in 1mM nicotine whereas in ovaries exposed to 10mM 
nicotine, most of the cells showed morphological 
alterations including an irregular shape and contracted 
and condensed cytoplasm, compatible with advanced 
stages of apoptosis and/or secondary necrosis (Figure 
2A). However, using immunofluorescence (IF) we 
found a significant 2-3 and 4-5 fold increase of the 
numbers of cells positive for activated Caspase 3, 
indicating ongoing apoptosis, in ovaries after 4 days of 
culture in the presence of 1mM nicotine and 10mM, 
respectively (Figure 2B, C and Figure S1-S2). As a 
note, only a few cells positive for activated Caspase 3 
were detected in the control ovaries (Figure 2B, C). The 
occurrence of apoptosis in the nicotine treated ovaries 
was supported by the increase of Bax/Bcl2 mRNA and 
protein ratio evaluated by qRT-PCR (Figure 2D) and 
WB (Figure 2E). In addition, we investigated the extent 
of apoptosis in ovaries cultured in the presence or 
absence of nicotine using TUNEL staining. The results  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

showed that the number of TUNEL positive cells in 1 
mM and 10 mM nicotine treated ovaries for 4 days were 
significantly increased in comparison with controls 
(Figure 3). 
 
Degeneration of proteins and genes induced by 
nicotine in ovary cultured in vitro 
 
In order to better characterize the nicotine cell target, 
we performed IF staining of tissue sections of 4 day 
cultured ovaries with antibodies against the germ cell 
specific RNA binding proteins VASA and DAZL, and 
the meiotic proteins SCP3, MLH1 and RAD51. The 
results showed a marked reduction of the number of 
positive cells up to 50% and 75% in comparison to 
controls for 1 mM and 10 mM nicotine, respectively 
(Figure 4A, C and Figure S3; Figure 4B, C; Figure 5A, 
C; Figure 5B, C; Figure 6A, B), suggesting oocytes 
were affected by the nicotine exposure. Further 
supporting the negative effect of nicotine on oocytes we 
observed decreased levels of DAZL and RAD51 
proteins (Figure 6C, D) and of transcripts of Stra8, a 
gene encoding a protein crucial for entering into meiosis 
[47], and of Atm, Atr, Chk1, Chk2, Brca1 genes, 
encoding proteins involved in meiosis associated 
processes such as homologous recombination and/or 
DNA repair, in the ovaries cultured in the presence of 
nicotine (Figure 7). IF with antibodies against ɤH2AX, 
a marker for DNA damage and repair [48-51], showed a 
nicotine dose and time dependent increase in the 
number of positive cells up to 3-5 fold in the ovaries 
incubated for 4 days in the presence of the higher 
nicotine concentrations (Figure 2B, C, and Figure S2). 
Nicotine appeared to cause DNA damage in both germ  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. qRT-PCR analysis of nicotinic acetylcholine receptor (nAChRs) subunit mRNA in fetal ovaries 
cultured for 4 days in the presence of 1mM or 10mM nicotine. The expression levels were normalized to that of 
Gapdh gene as a control. All experiments were repeated at least three times. Results are presented as mean ± SD in 
comparison to control. (*) and (**) indicate significant (P < 0.05) and highly significant (P < 0.01) difference, respectively. 
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cells and somatic cells as IF double staining for VASA 
and ɤH2AX or for MLH1 or RAD51 and ɤH2AX, were 
not always overlapping (Figures 4A, 5B, 6A). IF double 
staining for MLH1 or RAD51 and ɤH2AX also showed 
that while the majority of the control MLH1 and 
RAD51 positive oocytes were negative for ɤH2AX, 
those remaining after exposure to nicotine were usually 
positive for the phosphorylated histone suggesting 
unrepaired DNA breaks. These results suggest that 
apoptosis in the ovarian cells was induced by nicotine 
due to increased DNA damage.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Nicotine increased the oxidative stress in ovary 
cultured in vitro 
 
Since nicotine has been reported to induce oxidative 
stress in several tissues [1, 34, 52-54], and reactive 
oxygen species (ROS) associated with this process are 
frequent causes of DNA damage, we looked for markers 
of oxidative stress in the nicotine treated ovaries. We 
found significantly lower levels of mRNA for genes 
encoding antioxidant enzymes such as superoxide 
dismutase (Sod), catalase (Cat), and glutathione pero- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Dose-dependent nicotine induction of apoptosis in fetal ovaries cultured for 4 days. (A) Ovaries cultured 
without (control) and with 1 mM or 10 mM nicotine; note altered ovary morphology at 10mM nicotine and representative H&E 
histological sections of the ovaries; (B) IF for Caspase3 and ɤH2AX in tissue sections of ovaries cultured without (control) and 
with 1mM or 10mM nicotine; (C) Relative percentage of Caspase3 and ɤH2AX positive cells in ovaries cultured without (control) 
and with 1mM or 10mM nicotine; (D) Bax/Bcl2 mRNA ratio in samples extracts from ovaries cultured without (control) and with 
1mM or 10mM nicotine. The expression level was normalized to that of Gapdh. (E) Increased BAX/BCL2 protein ratio in nicotine 
exposed ovaries in comparison with control. All experiments were repeated at least three times. Changes are presented as 
mean ± SD. (*) and (**) indicate significant (P < 0.05) and highly significant (P < 0.01) difference, respectively. 
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xidase (Gpx) in the nicotine treated ovaries cultured for 
4 days that could cause or exacerbate ROS production 
(Figure 8). Moreover, in these ovaries, the levels of 
SOD1 and CAT proteins, evaluated by WB, were also 
decreased in comparison to controls (Figure 8). In this 
regard, it is to be mentioned that a decrease in the 
activities of SOD, CAT and GPX resulting in the 
increased generation of ROS has been reported in the 
blood of nicotine administrated rats [55]. In addition, 
the western blot showed that the p38-MAPK was 
increased in the nicotine treated group compared with 
the control group. 
 
DISCUSSION 
 
In the present paper, we investigated the effect of 
nicotine on the human fetal ovary development in vitro, 
as there is limited information about this subject [56]. 
The in vitro ovary culture provides a useful and 
irreplaceable assay to obtain information about this 
crucial process during fetal oogenesis in human [8, 57, 
58].  
 
We found that the ovaries expressed the transcripts of 
various subunits of the nAChR and that exposure to 
nicotine for 4 day appeared to modulate the expression 
level of some of the transcripts in a significant manner 
(Figure 1). Receptors for nicotine including nAChRs are 
expressed by multiple cell types of diverse origins and 
functions including granulosa cells of adult rat ovaries 
and many of these cells synthesize and release 
acetylcholine [45, 59]. It has also been well documented  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

that up-or downregulation of nAChRs, following 
nicotine exposure, occurs in various cell types in a dose 
dependent manner (for a review, see Zhang et al., 2017) 
[59]. The unique functional and pharmacological 
properties of nAChRs are likely to contribute to highly 
specific local and tissue specific responses to circulating 
levels of nicotinic ligands. There are several ligands that 
through interacting with nAChRs potentially regulate 
the activity of specific nAChR subtypes. This allows 
regulation of a broad range of biological functions 
including cellular proliferation, apoptosis, migration, 
and signal transduction (for a review, see Zhang et al., 
2017) [59]. The significance and physiological 
functions of nAChR expression in the fetal ovaries, 
reported to our knowledge by us for the first time in the 
present paper, are at the moment only speculative. 
 
On the basis of the altered morphology observed in 
ovaries cultured in the presence of the higher 
concentration of nicotine (Figure 2), we hypothesised 
ongoing apoptosis in the ovarian cells. Nicotine has 
been shown to induce apoptosis in a variety of tissues 
[60] and exposure to the chemical during fetal, neonatal, 
and adult stages in female rats and mice induced altered 
morphology and increased apoptosis in the ovaries [44-
46]. 
 
In this paper, we used TUNEL as a cell apoptosis 
marker. TUNEL highlights breaks in DNA that occur 
during the later stages of apoptosis. It is not a specific 
marker of apoptosis, but may offer insights into the state 
of DNA in labelled cells [61]. TUNEL was used success- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Nicotine exposure increases apoptosis in cultured fetal ovaries. (A) TUNEL-stained ovarian 
tissues cultured in vitro for 4 days. (B) Percentages of TUNEL positive cells in ovary tissue sections. All experiments 
were repeated at least three times. Results are presented as mean ± SD. (*) and (**) indicate significant (P < 0.05) 
and highly significant (P < 0.01) difference, respectively. 
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fully as a correlate of cell death in human oocytes by 
Modi et al. who found that 3-7% of oocytes were 
apoptotic between weeks 13-23 in normal ovaries, 
rising to >50% in Turner’s syndrome 45XO ovaries,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

where extensive prenatal loss of oocytes occurs [62]. 
Albamonte et al. also observed low levels (≦10%) of 
TUNEL-positive germ cells throughout the early second 
trimester, but they found a higher incidence (~20%) at  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Dose-dependent decrease or increase of the number of germ cell (VASA, DAZL) and of 
γH2AX positive cells, respectively, in nicotine treated fetal ovaries cultured for 4 days. (A) 
Representative IF images of ovarian tissue sections for VASA and γH2AX; note that only a subset of the γH2AX 
positive cells were also VASA positive (arrow heads); (B) Representative IF images of ovarian tissue sections for 
DAZL; (C) Relative percentage of VASA and DAZL positive cells of ovaries cultured without (control) and with 1mM 
or 10mM nicotine. All experiments were repeated at least three times. (*) and (**) indicate significant (P < 0.05) 
and highly significant (P < 0.01) difference, respectively.  
 



www.aging-us.com 1562 AGING 

18-20 weeks [63]. Hartshorne et al. used TUNEL as a 
marker of cell apoptosis in oocytes at different stages of 
meiotic prophase I at known gestational ages [61]. In 
addition, Albamonte et al. demonstrates that apoptosis-
inhibiting Bcl-2 protein and apoptosis-inducing BAX  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

protein have different patterns of expression in the 
developing human ovary, they found Bcl-2 was detected 
from week 12 to 17 and became undetectable thereafter. 
Strong BAX signal was detected in oogonia and oocytes 
from week 12 until term [63].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.  Dose-dependent decrease or increase of the number of meiotic germ cells (SCP3, MLH1) 
and of γH2AX positive cell, respectively, in nicotine treated fetal ovaries cultured for 4 days. (A) 
Representative IF images of ovarian tissue sections for SCP3; (B) representative IF images of ovarian tissue 
sections for MLH1 and γH2AX; (C) Relative percentage of SCP3 and MLH1 positive cells of ovaries cultured without 
(control) and with 1mM or 10mM nicotine. All experiments were repeated at least three times. (*) and (**) 
indicate significant (P < 0.05) and highly significant (P < 0.01) difference, respectively. 
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For detecting apoptotic cells in follicles formed in fetal, 
neonatal, prepubertal, and adult ovaries Tsoulis et al. 
used activated caspase-3 as a biomarker. They found 
there was a significant increase in the proportion of 
activated caspase-3 immuno-positive cells, indicative of 
increased apoptosis in the fetal ovary as a result of a 
maternal high-fat diet [64]. In order to get more accu-
rate results, we used TUNEL, Bcl-2/BAX and activated 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caspase-3 methods to investigate the extent of apoptosis 
in ovaries cultured with or without nicotine. Previously, 
nicotine has been shown to induce apoptosis in a variety 
of human tissues [60] and is associated with the 
activation of Caspase 3, TUNEL and increasing 
Bax/Bcl-2 [65, 66]. Consistent with our results, it has 
been shown that exposure to the nicotine during fetal, 
neonatal and adult age induces altered morphology and 

Figure 6. Dose-dependent decrease or increase of the number of meiotic germ cells (RAD51) 
and of γH2AX positive cell, respectively, in nicotine treated fetal ovaries cultured for 4 days.  
(A) Representative IF images of ovarian tissue sections for RAD51 and γH2AX; (B) Relative percentage of 
RAD51 positive cells of ovaries cultured without (control) and with 1mM or 10mM nicotine. (C) WB and 
relative densitometric analyses of DAZL amount in control and nicotine exposed ovaries. (D) 
Representative WB and relative densitometric analyses of RAD51 amount in control and nicotine exposed 
ovaries. All experiments were repeated at least three times. Results are presented as mean ± SD. (*) and 
(**) indicate significant (P < 0.05) and highly significant (P < 0.01) difference, respectively. 
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apoptosis in rodent ovaries. In particular, Petrik and coll 
[45] reported impaired folliculogenesis in the ovaries of 
offspring from mothers exposed to nicotine during 
pregnancy. 
 
In conclusion, the results reported in the present paper  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

support the notion that nicotine induced apoptosis, 
perhaps as a consequence of ROS induced DNA 
damage in the fetal ovarian cells, may be the cause of 
the reduction in the ovarian reserve and of the 
consequent precocious menopause in some patients 
associated with mothers smoking during pregnancy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7. Dose-dependent nicotine decrease of mRNAs of germ cell specific and meiotic genes 
in fetal ovaries cultured for 4 days evaluated by qRT-PCR. The expression level was normalized to 
that of Gapdh gene. All experiments were repeated at least three times. Results are presented as mean ± 
SD. (*) and (**) indicate significant (P < 0.05) and highly significant (P < 0.01) difference, respectively. 
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MATERIALS AND METHODS 
 
Ethics statement 
 
All procedures were approved by the Ethics Committee 
of Qingdao Agricultural University, and were in 
accordance with the agreement of the Ethics Committee 
at Qingdao Agricultural University (Agreement No. 
2013-16).  
 
Collection of fetal ovaries 
 
Human fetal ovaries at the second trimester (about 16 
weeks of gestation) were obtained following medical  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
termination of pregnancy. The informed written consent 
was obtained from all patients in accordance with natio-
nal guidelines. Mifepristone (200 mg) and misoprostol 
treatment (800 µg) were used for termination of the 
pregnancy. None of the terminations were for reasons of 
fetal abnormality and the women were not smoking 
during the pregnancy period. Gestational age was 
determined by ultrasound examination before termina-
tion and confirmed by subsequent direct measurement 
(Table S1). The collected fetal ovaries were: (i) 
processed for in vitro culture, (ii) processed for 
histology or (iii) snap-frozen and stored at -70 °C for 
subsequent analysis. 
 

Figure 8. Dose-dependent nicotine decrease of antioxidative enzyme gene transcripts in fetal ovaries 
cultured for 4 days. (A) qRT-PCR for Sod1, Cat and Gpx mRNA levels in control and nicotine treated ovaries. The 
expression levels were normalized to that of Gapdh gene. (B) Representative WB and relative densitometric analyses 
of SOD1 proteins in control and nicotine treated ovaries. (C) WB and relative densitometric analyses of CAT amount in 
control and nicotine exposed ovaries. (D) The results of p38MAPK WB and relative densitometric analyses in control 
and nicotine exposed ovaries. All experiments were repeated at least three times. Results are presented as mean ± 
SD. (*) and (**) indicate significant (P < 0.05) and highly significant (P < 0.01) difference, respectively. 
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Culture of fetal ovaries and experimental design  
 
In total, 12 female fetuses (24 ovaries) were included in 
this study. Each single human fetal ovary was cut 
longitudinally and transversely into 4 pieces and a pair 
of human fetal ovaries were divided into 8 groups. 
Group 1 to 4 were treated with nicotine (Sigma 
Chemical Co., 613207, St. Louis, MO, USA) at the con-
centration of 0 (control), 0.01, 0.1 and 0.5 mM, 
respectively; group 5 to 8 were treated with nicotine at 
the concentration of 0 (control), 1, 10 and 20 mM, 
respectively. The ovarian pieces were cultured on cell 
culture inserts (Invitrogen) in serum free medium [α-
MEM supplemented with 1 × GlutaMAX and non-
essential amino acids (Applied Biosystem), 2mM 
sodium pyruvate, 3mg/ml BSA Fraction V (Sigma-
Aldrich, USA), and penicillin/ streptomycin/amphote- 
ricin B (Gibco, China)], as previously described [8, 58]. 
Nicotine doses were selected according to previous in 
vitro experiments performed by Sudheer et al. [34] and 
Kim et al. [65]. The nicotine was freshly added to the 
culture medium at the indicated concentrations. 
Nicotine was dissolved in medium and pH was adjusted 
to 7.4. All ovaries were cultured for 2 or 4 days in a 
CO2 incubator at 37 °C. Medium change was performed 
every 24 hours and fresh nicotine added at every 
change. Each experiment was repeated three times.  
 
Immunofluorescence 
 
Immunofluorescence (IF) was carried out on ovarian 
tissue sections as follows. Briefly, after fixation with 
4% paraformaldehyde for 12 h, according to the 
standard histological procedures the ovarian pieces were 
processed for paraffin sectioning. Serial 5µm sections 
were heated at 60 °C for 2 h. After this the slides were 
rehydrated with a series of graded ethanol and washed 
with PBS 0.01 M sodium citrate were used for antigen 
retrieval at 95°C. After blocking for 1 hr with 10% 
BSA, the slides were incubated overnight at 4 °C with 
primary antibodies, anti: VASA (Abcam, ab13840, 
USA), SCP3 (NOVUS, NB300-232), DAZL (Abcam, 
ab34139), ɤH2AX (Sigma, SAB4501369), RAD51 
(Abcam, ab202063), MLH1 (Abcam, ab92312), diluted 
to optimal concentrations. After thoroughly rinsing with 
TBS, secondary antibodies (CY3, A0516, Beyotime; 
FITC, A0568, Beyotime, China) diluted 1:200 were 
applied at 37 °C for 1h in the dark. After washing three 
times with PBS, the samples were incubated with 
Hoechst33342 (Solarbio, China) and observed under a 
fluorescence microscope. Positive cells were scored as 
previously described [67]. Negative controls were 
performed omitting the primary antibodies after the 
blocking procedure (not shown). 

Quantitative real-time PCR  
 
For quantitative real-time PCR ovarian pieces were 
collected. An RNA extraction kit was used for total 
RNA extraction according to the manufacturer’s 
protocol (TaKaRa, Dalian, China). After reverse 
transcription into cDNA (TransScript One-Step, 
Beijing, China), a quantitative real-time PCR 
experiment was done with SYBR Green I Master 
(Roche, 04887352001, Germany). Table S2 showed the 
primers (designed and purchased from Invitrogen, 
Shanghai). The gene expression were normalized to 
Gadph and analyzed using the formula: 2^-(target gene CT 

value –reference gene CT value).  
 
Western blotting 
 
For western blotting (WB) analysis of total protein 
extracts were obtained from tissues using RIPA lysis 
solution (Beyotime, P00113B). After separation by 
SDS-PAGE, the proteins were electrophoretically 
transferred onto a polyvinylidene fluoride membrane at 
200mA for 5 h using Trans-Blot apparatus. The 
membranes were blocked with 5% BSA at 4 °C for 12 
h, after washing with TBST three times they were 
incubated with the appropriate primary antibodies for1 
h at 37 °C, anti: DAZL (Abcam, ab34139), RAD51 
(Abcam, ab63801), BAX (Beyotime, AB026), Bcl-2 
(Beyotime, ab112-1), SOD1 (Abcam, ab20926), CAT 
(Abcam, ab16731), pMAPK (Abcam  ab197348). After 
washing as described above the membrane was 
incubated with the secondary antibodies (horseradish 
peroxidase (HRP)-conjugated goat anti-rabbit IgG 
(Beyotime, A0208) or goat anti-mouse IgG (Beyotime, 
A0126) for 1 h at 37 °C. Subsequently, the membrane 
was washed three times with TBST, and a BeyoECL 
plus Kit (Beyotime, P0018) was used for exposure. 
Densitometric analyses were performed using IPWIN 
software. 
 
TUNEL and Activated Caspase 3 staining 
 
Apoptosis was evaluated in paraffin tissue sections of 
ovaries using the Bright Red Apoptosis Detect Kit for 
terminal deoxynucleotide transferase dUTP nick end 
labelling (TUNEL) (Vazyme, A113-02, Nanjing, 
China). Briefly, the ovary sections were heated at 60 °C 
for 2 h and after washing with xylene passed through a 
graded series of ethanol for rehydration and washed in 
PBS. Sections were incubated in Proteinase K for 15 
min, then washed twice with PBS. The samples were 
incubated in the dark for 60 min at 37 °C in 100 μl 
TUNEL reaction mixture and counterstained with 
Hoechst33342. 
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Activated Caspase 3 was identified used Immuno-
fluorescent staining and the ovaries were processed as 
described above. Briefly, after blocking for 1 hr with 
10% BSA, the slides were incubated overnight at 4 °C 
with primary antibodies, anti: Caspase3 (Abcam, 
ab2302), diluted to optimal concentration. After 
thoroughly rinsing with TBS secondary antibodies 
(CY3, A0516, Beyotime) diluted 1:200 were applied at 
37 °C for 1h in the dark. After washing three times with 
PBS, the samples were incubated with Hoechst33342 
(Solarbio, China) and observed under a fluorescent 
microscope.  
 
Statistical analysis  
 
Results are represented as mean ± SD. Statistical 
significance among means was determined with 
GraphPad Prism analysis software (Graph-Pad 
Software, San Diego, CA, USA) by Student’s t-test or 
ANOVA followed by Tukey test for multiple com-
parisons. Comparisons were considered significant at P 
< 0.05 and highly significant at P < 0.01. 
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Supplementary Table S1. Fetal characteristics examined in this study. 
Fetal characteristics (n=12) Measurements 

Age (weeks) 16.4±0.6 

Weight  (g) 126±8 

Biparietal diameter （mm） 35.1±4.9 

Femur length (mm) 22±4.2 

Abdominal circumference (mm) 105.2±17.2 
Fetal head circumference (mm) 123±9 

 

Supplementary Table S2. Primers Used for Quantitative Real-Time PCR. 
Genes Sequences of primers Production 

(bp) 
Genbank 

Sod1 F:5′-GGGGAAGCATTAAAGGACTGA-3′ 124 NM_001005735.1 
 R:5′-CCACCGTGTTTTCTGGATAGA-3′   
Cat F:5′-GCTCCAAATTACTACCCCAACA-3′ 141 NM_001752.3 
 R: 5′-ATAGAATGCCCGCACCTGA-3′   
Gpx1 F: 5′-AGTCGGTGTATGCCTTCTCG-3′ 145 NM_000581.2 
 R:5′-AGCTCGTTCATCTGGGTGTAGT-3′   
Atr F: 5′-GCTCTTTTGGATGTGCTTGG-3′ 218 XM_011512927.1 
 R:5′-TCCTCAGTCTGTTTTGGTGCT-3′   
Brca1 F: 5′-CACAGTCGGGAAACAAGCA-3′ 288 NM_007294.3 
 R: 5′-CTGACCAACCACAGGAAAGC-3′   
Rad51 F: 5′-CCCATTTCACGGTTAGAGCA-3′ 289 NM_001164269.1 
 R:5′-TCTCAATTCCACCTGTAGTCCC-3′   
Atm F: 5′-GACAATCATCACCAAGTTCGC-3′ 269 XM_011542846.1 
 R:5′-TCGCAGATAGGGCTACAGGA-3′   
Bax F: 5′-GTCGCCCTTTTCTACTTTGC-3′ 184 XM_006723314.2 
 R: 5′-GGGACATCAGTCGCTTCAGT-3′   
Bcl2 F: 5′-TTGAGTTCGGTGGGGTCAT-3′ 194 NM_000633.2 
 R:5′-CAGCCAGGAGAAATCAAACAG-3′   
Mlh1 F: 5′-GAGGAAGGGAACCTGATTGG-3′ 167 XM_011533727.1 
 R: 5′-CGGATGGAATAGAACATAGCG-3′   
Vasa F: 5′-AGCTGGGACATTCAATTCGAC-3′ 220 NM_001166534.1 
 R:5′-GTTTGGCTGCGTTCCTTTGAT-3′   
Scp3 F: 5′-AAATCTGGGAAGCCGTCTGT-3′ 207 NM_001177949.1 
 R:5′-AACTCCAACTCCTTCCAGCA-3′   
Chk1 F 5′-CCTTTGTGGAAGACTGGGACT-3′ 109 NM_001244846.1 
 R:5′-ACAATCTTCACTGCGACTGCT-3′   
Chk2 F:5′-AAAGTGCTGGGATAAGAGGTGT-3′ 181 NM_001005735.1 
 R:5′-TCCCTGAAAATCCGAAAGTG-3′   
Dazl F:5′-GACTAATCCAAACACTGAAACTTAT-3′ 221 NM_001190811.1 
 R:5′-TACAGTGGTAGTTAACAGCTGAATA-3′   
nAChR-α1 F:5′-GCTCTGTCGTGGCCATCAA-3′ 40 NM_000079.3 
 R:5′-CCGGAAAGCGACCAGCCAGA-3′   
nAChR-α2 F:5′-GTGGAGGAGGAGGACAGA-3′ 156 NM_000742.3 
 R:5′-CTTCTGCATGTGGGGTGATA-3′   
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nAChR-α3 F:5′-CAGAGTCCAAAGGCTGCAAG-3′ 149 NM_000743.4 
 R:5′-AGAGAGGGACAGCACAGCAT-3′   
nAChR-α4 F:5′-CTCACCGTCCTTCTGTGTC-3′ 110 NM_000744.5 
 R:5′-CTGGCTTTCTCAGCTTCCAG-3′   
nAChR-α5 F:5′-CTTCACACGCTTCCCAAACT-3′ 187 NM_000745.3 
 R:5′-CTTCAACAACCTCACGGACA-3′   
nAChR-α6 F:5′-TCCATCGTGGTGACTGTGT-3′ 126 NM_001199279.1 
 R:5′-AGGCCACCTCATCAGCAG-3′   
nAChR-α7 F:5′-GTACGCTGGTTTCCCTTTGA-3′ 139 NM_000746.4 
 R:5′-CCACTAGGTCCCATTCTC-3′   
nAChR-α9 F:5′-GAAAGCAGCCAGGAACAAAG-3′ 157 NM_017581.2 
 R:5′-GCACTTGGCGATGTACTCAA-3′   
nAChR-α10 F:5′-ACACAAGTGCCCTGAGACCT-3′ 160 NM_020402.2 
 R:5′-TCCCATCGTAGGTAGGCATC-3′   
nAChR-β1 F:5′-CTACGACAGCTCGGAGGTCA-3′ 479 NM_000747.2 
 R:5′-GCAGGTTGAGAACCACGACA-3′   
nAChR-β2 F:5′-GGCATGTACGAGGTGTCCTT-3′ 200 NM_000748.2 
 R:5′-CACCTCACTCTTCAGCACCA-3′   
nAChR-β3 F:5′-AACAGTTCCGTTTGATTTCACGAT-3′ 41 NM_000749.3 
 R:5′-CCCTGATGACCAAGGTCATC-3′   
nAChR-β4 F:5′-TCCCTGGTCCTTTTCTTCCT-3′ 160 NM_000750.3 
 R:5′-TGCAGCTTGATGGAGATGAG-3′   
nAChR-γ F:5′-CGCCTGCTCTATCTCAGTCA-3′ 547 NM_002046.3 
 R:5′-GGAGACATTGAGCACAACCA-3′   
Gapdh  F:5′-GAGTCAACGGATTTGGTCGT-3′ 238 NM_002046.4 
 R:5′-TTGATTTTGGAGGGATCTCG-3′   
 

 

Supplementary Figure S1. Relativer ration of Caspase3 positive cells in ovaries after 48 h or 96 h incubation in the 
presence of different concentrations of nicotine. Results are presented as the mean± SD. All experiments were repeated 
at least three times. (*) and (**) indicate significant (P<0.05) and highly significant (P < 0.01) difference, respectively. 
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Supplementary Figure S2. Representative IF images of tissue sections for active Caspase 3 and ɤH2AX of ovaries cultured 
for 4 days (A) and 2 days (B) in the presence of increasing nicotine concentrations. (C) Relativer ration of ɤH2AX positive cells 
after 4 days of culture; (D). Relativer ration  of ɤH2AX positive cells after 2 days of culture. All experiments were repeated at 
least three times. (*) and (**) indicate significant (P < 0.05) and highly significant (P<0.01) difference, respectively. 
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Supplementary Figure S3. Representative IF images of tissue sections for VASA positive cells (germ cells) in human fetal 
ovaries cultured for 4 days (A) and 2 days (B) in the presence of increasing nicotine concentrations. (C) Relativer ration of VASA 
positive cells after 4 days of culture; (D) Relativer ration of VASA positive cells after 2 days of culture. All experiments were 
repeated at least three times. (*) and (**) indicate significant (P<0.05) and highly significant (P<0.01) difference, respectively. 
 

 


