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INTRODUCTION 

Skin is the largest organ of human body and its 
physiological changes are affected by intrinsic or 
extrinsic factors [1, 2]. Aging is a biological process 
which occurs to every individual from the moment of 
one’s birth and it is one of “the factor” that causes 
changes in skin. In addition, among various factors, 
ultraviolet (UV) light is the most well-known extrinsic 
factor which enhances skin aging [1]. Majority of the 
organs are located internally in human body, however, 
in case of skin, it holds both sides of the coin; some 
parts are UV protected and some other parts are UV 
exposed.  

There are a few previous studies regarding the aging-
related gene expression changes in skin. Glass et al. 
examined the gene expression changes with age in 
various human tissues including skin [3]. They only 
suggested that a significant proportion of aging-related 
changes in gene expression profile are tissue specific. 
Furthermore, Yang et al. studied the aging-related gene 
expression alteration in multiple tissues [4]. However, 
in their study, skin did not show the aging-related 
changes. In addition, Kaisers et al. also reported that the 
aging-related gene expression changes were not 
displayed in skin [5]. Conversely, a study done by 
Kimball et al. demonstrated a few changes due to aging 
in skin [6]. In their study, down-regulated mitochondrial 
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ABSTRACT 
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and VEGFC), and matrix metalloproteinase (MMP2, MMP3, MMP8, MMP10, and MMP13) were up-regulated by 
UV exposure. Also, down-regulated lipid metabolism and mitochondrial biogenesis were observed in photo-
damaged skin. Moreover, wound healing process was universally down-regulated in suprapubic and lower leg 
with aging and further down-regulation of lipid metabolism and up-regulation of vasculature development 
were found as photo-aging signatures. In this study, dynamic transcriptomic alterations were observed in aged 
skin. Hence, our findings may help to discover a potential therapeutic target for skin rejuvenation. 
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function was illustrated as one of the signatures of aged 
skin. Additionally, increased cytokine production and 
immune responses with aging were also described.  
 
As mentioned above, although there are a few studies 
on the aging-related gene expression changes in skin, 
the results are still debatable. Moreover, a large-scale 
study on the gene expression changes of skin tissue 
according to UV exposure has not been reported yet. 
Therefore, elucidating the consequences of intrinsic- 
and photo-aging in transcriptomic level will expand our 
understanding on skin aging.     
 
In the present study, we used RNA sequencing data of 
skin from Genotype-Tissues Expression (GTEx) project 
[7, 8]. GTEx database provided a large number of 
transcriptome data of skin samples from two different 
origins, suprapubic (UV protected) and lower leg (UV 
exposed), which enabled us to identify the 
transcriptomic shift of skin tissues due to UV exposure 
and aging.  
 
RESULTS 
 
DEG analysis of gene expression changes upon UV 
exposure  
 
Principle component analysis revealed clear 
transcriptomic difference between suprapubic and lower 
leg tissues, possibly due to UV exposure (Figure 1A). 
Moreover, DEGs between two groups also showed the 
evident distinction of two tissues in transcriptome level 
(Figure 1B). Down-regulated DEGs included IL6 and 
IL33, which are involved in wound heading [9-11], in 
addition to several histone genes such as HIST2HBF, 
HIST1H2AE, HIST1H1C, HIST1H2BG, HIST1H2BD, 
and HIST2H2AA3. The down-regulation of histone 
genes by external stimuli, which corresponds to our 
result, was previously reported [12]. This might suggest 
the decreased histone genes in lower leg was affected 
by chronic UV exposure. In addition, HOXB13, plays a 
role in fetal skin development and cutaneous 
regeneration [13], and several matrix metalloproteinase 
(MMP) genes including MMP3, MMP13, MMP2, 
MMP8, and MMP10 were elevated in lower leg. In 
relation to MMP genes, their up-regulation in photo-
damaged skin is well-reported event which induces 
collagen fragmentation [1, 14].  
 
Using pathway enrichment analysis, the functional 
characteristics of up- and down-regulated genes were 
discovered (Figure 1C). Especially for the up-regulated 
genes, they were mostly enriched in skin/tissue 
development. In epidermis, a gene complex called the 
epidermal differentiation complex (EDC) regulates skin 
barrier function and it is composed of small proline-rich 

(SPRR) proteins, late cornified envelope (LCE) 
proteins, S100 family, and S100 fused type protein 
(SFTP) family [15]. SPRR genes were initially 
identified as UV responsive genes and LCE genes share 
the same property [16]. Here, 13 LCE genes were 
increased as well as three SPRR genes and one SFTP 
family gene upon UV exposure (Figure 1D).  
 
In case of down-regulated DEGs, they were mainly 
enriched in ‘response to external stimulus’, ‘regulation 
of cell proliferation’, and ‘lipid metabolic process’. 
Some of lipid metabolic genes discovered in our 
analysis were also reported as declined genes in patients 
with psoriatic (ACSBG1, ALOX15B, ELOVL3, FADS1, 
FADS2, and THRSP) [17] or atopic dermatitis 
(CYP4F8, ELOVL3, FADS1, FADS2, FAR2, and 
HAO2) [18] (Figure 1D). Additionally, LCE3D, 
SPRR2B, and SPRR2G which were reported as up-
regulated in psoriatic skin were also significantly 
increased in UV exposed lower leg in our analysis [17]. 
These results might suggest the increased susceptibility 
to skin disorders with UV exposure.   
 
Gene co-expression network changes by UV 
exposure  
 
Based on the above results, we hypothesized that UV 
exposure induces dramatic gene expression changes in 
skin, hence, performed in-depth subsequent comparison 
analysis between suprapubic and lower leg using 
WGCNA. Transcriptome profile was analyzed with 
constructed gene co-expressed networks that represent 
biologically related genes.  
 
We identified 17 modules with UV exposure, eight 
statistically significant modules were constructed, and 
top 10 most correlated genes from each module are 
listed on Supplemental Table 1. The most significant 
module, tan (R = -0.26 and Bonferroni-corrected P = 
3.6E-09), showed down-regulation with UV exposure 
(Figure 2A). Tan module was related to ‘oxidative 
phosphorylation’, ‘protein localization’, and 
‘organonitrogen compound biosynthetic/metabolic 
processes’ (Figure 2B). ‘Oxidative phosphorylation’ 
included numerous genes associated with mitochondrial 
function such as NADH dehydrogenase (e.g. NDUFA1 
and NDUFB1) and ATP synthase (e.g. ATP5C1), and 
cytochrome c oxidase (e.g. COX6C and COX7C). 
Moreover, organonitrogen compound related pathways 
contained genes associated with mitochondrial 
ribosomal proteins (e.g. MRPL22 and MRPL52). Down-
regulation of such genes may represent declined 
mitochondrial function which is previously reported as 
one of the signatures of aging across multiple human 
tissues [4, 6, 19]. To elucidate this phenomenon further, 
we   analyzed   mitochondrial   DNA   (mtDNA)   copy  



www.aging-us.com 1611 AGING 

   

 
 

Figure 1. Transcriptome analysis of lower leg (UV exposed) and suprapubic (UV protected) skin samples. (A) Distinct 
separation of two groups was observed with principal component analysis. (B) Differentially expressed genes were displayed on the 
volcano plot. A few notable genes were marked. (C) Using differentially expressed genes, enriched pathways were shown in dot plot. 
Top 10 the most enriched pathways were used. Gene ratio = no. of genes that were enriched on the given pathway/ total no. of genes 
on the given gene set. q-value illustrated the significance. (D) Gene expression profiles of epidermal differentiation complex component 
genes (upper panel) and lipid metabolic process related genes (lower panel).  
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Figure 2. Weighted gene co-expression network analysis using all samples. (A) Module trait relationship of constructed 
modules. The statistically significant modules were marked with asterisk. The correlation values and Bonferroni-corrected P-values (in 
the bracket) were marked. (B) Pathway enrichment result for tan module. Top 10 the most enriched pathways were shown. (C) 
Estimated mitochondrial DNA copy number using mitochondrial RNA (mtRNA) expression level. Both tissues showed down-regulation 
of average mtRNA expression with aging (suprapubic: P for trend < 0.001 and lower leg: P for trend = 0.025). (D) Pathway enrichment 
result for blue module. Top 15 the most enriched pathways were used. (E) Relative gene expression levels of six angiogenesis related 
genes from blue module.  
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number changes as it is closely linked with 
mitochondrial biogenesis [20]. Since mtRNA 
expression and mtDNA copy number are highly 
correlated [19, 21], we estimated mtDNA copy number 
using mtRNA expression. As a result, UV induced 
mtDNA copy number defect was discovered (Figure 
2C, Mann Whitney test P < 0.001). Additionally, a 
trend of decrement was observed with aging in both 
tissues (suprapubic: P for trend < 0.001 and lower leg: 
P for trend = 0.029). 
 
There were three other significantly down-regulated 
modules with UV exposure: grey60 (R = -0.21 and 
Bonferroni-corrected P = 5.4E-06), greenyellow (R = -
0.18 and Bonferroni-corrected P = 1.8E-04), and brown 
(R = -0.13 and Bonferroni-corrected P = 0.04) 
(Supplemental Figure 1). Genes from grey60 module 
were mostly enriched with lipid metabolic related 
processes and showed decrement which was also 
observed in previous results [22, 23]. In particular, top 
10 most correlated genes from Grey60 included three 
fatty acid related genes such as FADS2, ELOVL3, and 
FADS1 (Supplemental Table 1). Down-regulated 
‘cellular response to stress’, ‘RNA/mRNA process’, 
‘protein localization’, and ‘cell cycle’ were also 
exhibited.  
 
The second most correlated module, magenta (R = 0.25 
and Bonferroni-corrected P = 1.8E-08), was associated 
with ‘skin development’, ‘keratinocyte differentiation’, 
and ‘keratinization’ (Supplemental Figure 1). In parallel 
with results from DEG analysis, many EDC 
components were elevated including LCE genes. LCE 
proteins function in the last step of cornification [15] 
and the cornified cells consist degraded organelles and 
eventually get detached from the skin layer [24-26]. The 
altered cornified envelope by UV exposure may induce 
a reduced barrier function of skin. Moreover, FLG2, 
one of well-known EDC genes, is found as top 10 most 
correlated genes (Supplemental Table 1) which again 
emphasized those genes from magenta module 
contributes to skin development pathway.  
 
Wrinkle is the most well-known characteristic of aged 
skin and it is reported that angiogenesis is closely 
associated with its generation [27-30]. Blue module (R 
= 0.23 and Bonferroni-corrected P = 1.8E-07) was 
enriched with various biological processes including 
‘vasculature development’, ‘circulatory system 
development’, and ‘regulation of anatomical structure 
morphogenesis’ (Figure 2D). Several genes that are 
involved in angiogenesis including FGF2, KDR, 
TGFBR1, TGFBR2, TGFBR3, and VEGFC were 
significantly increased in lower leg relative to 
suprapubic (Figure 2E).  

In addition, yellow (R = 0.15 and Bonferroni-corrected 
P = 7.2E-03) and purple (R = 0.13 and Bonferroni-
corrected P = 0.02) also displayed up-regulation in 
lower leg (Supplemental Figure 1). Many collagen 
genes were included in up-regulated modules including 
blue, yellow and purple. Collagen is a well-known 
component of skin layer and plays an important role in 
skin structure and, usually, collagen degradation is 
frequently observed in photo-damaged skin [31]. 
However, in our analysis, increment of those genes was 
exhibited, thus, we could assume that increased 
collagen genes can also alter skin structure upon UV 
exposure as well as degraded collagen genes [32] 
(Supplemental Table 3).  
 
Aging associated gene expression changes in UV 
exposed skin 
 
We also presented photo-aging signatures by 
performing WGCNA using only lower leg skin samples 
and 21 aging-related modules were constructed and four 
of them were statistically significant (Figure 3A). In 
addition, the top 10 genes with the highest connectivity 
from four significant modules are listed on 
Supplemental Table 2. The most correlated module was 
tan (R = -0.29, Bonferroni-corrected P = 1.1E-06) and it 
was mainly enriched with wound healing related 
pathways including ‘heparan sulfate proteoglycan 
biosynthetic process’, ‘wound healing’, and ‘response to 
wounding’ (Figure 3B). Heparan sulfate is a type of 
glycosaminoglycans, a group of long-chain 
carbohydrates with high molecular weight, that are 
sulfated [33] and proteoglycans play crucial roles in 
regulating several physiological processes including 
wound healing [34]. We found three genes, EXTL3, 
NDST1, and XYLT1, that were involved in ‘heparan 
sulfate proteoglycan biosynthetic process’ displayed 
decrement with aging in both tissues (Figure 3C). In 
particular, NDTS1 was one of top 10 most correlated 
genes found in this module (Supplemental Table 2). 
Also, there were nine genes discovered that were 
enriched in ‘wound healing’ and ‘response to 
wounding’ (Figure 3D). Those genes were also found in 
modules which were associated with aging in 
suprapubic (red and yellow modules; Supplemental 
Figure 2).  
 
In purple module (R = -0.2 and Bonferroni-corrected P 
= 4.4E-03), ‘skin/tissue development’, ‘lipid metabolic 
process’, and ‘regulation of water loss via skin’ were 
found (Figure 4A). Lipid metabolism and prevention of 
water loss are known to have roles in skin barrier 
function and often influenced by aging [35, 36]. Genes 
involved in lipid metabolism such as ERBB3, LIPK, 
LIPN, SGPL1, and SMPD3 were decreased with aging 
as well as several water loss regulation  genes  including  
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Figure 3. The common gene expression changes with aging in suprapubic and lower leg tissues. (A) Module trait 
relationship of constructed modules from lower leg. The statistically significant modules were marked with asterisk. The correlation 
values and Bonferroni-corrected P-values (in the bracket) were marked. (B) Pathway enrichment analysis of tan module. Top 10 the 
most enriched pathways were used. (C) The changes in gene expression level of three genes that play a role in heparan sulfate 
proteoglycan biosynthetic process in both tissues were shown. (D) Heatmap displays the expression level of nine genes that play a role 
in wound healing process in both tissues.  
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Figure 4. The gene expression alterations that are specific to lower leg. (A) Pathway enrichment analysis of purple and 
magenta modules. Top 15 the most enriched pathways were used. (B) Heatmap displays the gene expression changes with aging 
involved in lipid metabolism (top), water loss regulation via skin (middle), and vasculature development (bottom) in lower leg.  
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ABCA12, CLDN1, FLG, FLG2, and GBA (Figure 4B). 
Aforementioned genes were not found in statistically 
significant aging-related module in suprapubic (yellow, 
salmon, and pink modules; Supplemental Figure 2). In 
addition, 12 LCE genes were detected as down-
regulated with aging (Supplemental Figure 3). 
However, from suprapubic, those genes were enriched 
in salmon module which did not change statistically 
significant with aging (Supplemental Figure 2). 
 
Moreover, magenta module (R = 0.19 and Bonferroni-
corrected P = 6.6E-03) was up-regulated with aging 
(Figure 4A). Intriguingly, ‘vasculature development’, 
which also showed increment with UV exposure, may 
be related to wrinkle generation, displayed aging-related 
up-regulation in lower leg. Well-known angiogenesis 
genes including NRP1, LOXL1 and THY1 were enriched 
in this pathway (Figure 4B) [37-41]. Especially, THY1 
and LOXL1 were found as top 10 most correlated genes 
in magenta module (Supplemental Table 2). However, 
the same pathway did not show clear down-regulation 
in suprapubic (darkred, turquoise, and tan; 
Supplemental Figure 2). Also, in magenta, collagen 
related pathways were found, for instance ‘extracellular 
structure organization’ [42] (Figure 4A). Here, a 
number of collagen genes including COL5A1, COL6A1, 
and COL13A1 were elevated which was only observed 
in lower leg, not in suprapubic (Supplemental Table 4).  
 
Lastly, genes from cyan module (R = -0.18 and 
Bonferroni-corrected P = 1.98E-02) were decreased 
with aging in lower leg. ‘Molting cycle’, 
‘skin/epidermis development’, and ‘aging’ were 
enriched and 69% of total analyzed keratin genes were 
discovered in this module (Supplemental Figure 4 and 
Supplemental Table 5). Those keratin genes were also 
found in tan module (R = -0.09, Bonferroni-corrected P 
= 1), constructed from suprapubic, however they did not 
show significant elevation with aging.  
 
DISCUSSION 
 
Every organ experiences aging in various ways. Skin 
aging can be categorized into three groups, intrinsic, 
photo, and hormonal aging [43-45]. In recent years, the 
interests in revealing the cause of aging in transcriptome 
level and how to prevent aging are increasing [3-6, 46-
48]. In the present study, we primarily focused on 
finding the consequences of intrinsic- and photo-aging 
of skin. Currently, there are several studies defined the 
consequence of acute UV exposure using in vivo or in 
vitro system whereas there are not many studies on 
finding the effect of chronic UV exposure, especially by 
using human tissue samples [27, 49-51]. Thus, 
performing in-depth analysis using human skin samples 
enables us to describe actual biological changes by UV 

exposure, hence may help to utilize the findings in our 
day-to-day life.   
 
In our analyses, down-regulated lipid metabolism and 
up-regulated vasculature development were highlighted 
as the characteristics of photo-aged skin. Moreover, 
decreased mitochondrial biogenesis and wound healing 
process were found as features of aged skin. In addition 
to aging, we elucidated the traits of sun exposed skin 
and discovered increased expression of EDC genes and 
MMP genes upon UV exposure.  
 
Aging induces the decline of various body functions and 
lipid metabolism is one of them [52]. There are a few 
reported studies describing the correlation between 
decreased lipid metabolism with skin aging [22, 23]. 
Lipid metabolism contributes to the protective function 
of skin and impaired lipid metabolism compromises the 
barrier function of the skin [35, 53]. In our result, ‘lipid 
metabolic process’ was remarkably decreased with 
photo-aging. Especially, genes that have role in 
epidermal barrier function including LIPN, LIPK, and 
SMPD3 showed dramatic decreased with photo-aging 
[24].  
 
The consequences of photo-aging are usually 
characterized by morphological changes including 
wrinkle formation or by histological changes in 
connective tissues [29, 30, 54, 55]. Increased wrinkle 
formation is the most common phenomenon of aging 
[56]. In order to generate more wrinkles, vasculature 
structures are needed to develop. Numerous reports 
suggested that angiogenesis plays a significant role in 
inducing wrinkle formation in photo-damaged skin [28, 
49, 54, 57, 58]. In our result, we discovered that 
‘vasculature development’ was increased with photo-
aging. Genes that functions critically in this process 
including TGFBR1, TGFBR2, TGFBR3, KDR, FGF2, 
and VEGFC showed a trend of increment with photo-
aging.  
 
The trait of aged tissue can be described by showing 
declined mitochondrial biogenesis [59]. For several 
decades, many scientists suggested the involvement of 
mitochondria in aging process by showing 
mitochondrial dysfunction or mtDNA damage with 
aging [60-62]. In this study, we also demonstrated the 
correlative data displaying decreased mtDNA copy 
number with aging in UV-protected and -exposed skin. 
A clear trend of decrement was exhibited with aging 
which supported previous studies. 
 
Another decreased biological process due to aging in 
skin was ‘wound healing’. The correlation between 
weakened wound healing process and aging was 
previously reported [33, 63-65]. In particular, an in vivo 
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study demonstrated that the rate of wound healing was 
delayed 20% to 60% with aging [63]. Here, we 
illustrated the decrement of wound healing related 
genes including ADIPOR2, NOTCH2, PRKAR2A, 
PDPK1, MAKG, RXRA, C6orf89, AHNAK2, and 
CELSR1 with photo-aging together with intrinsic-aging. 
Moreover, three key genes, NDST1, EXTL3, and 
XYLT1, that play roles in ‘heparan sulfate proteoglycan 
biosynthetic process’ which is involved in wound 
healing also exhibited decrease with aging in UV-
protected and -exposed skin which strengthened our 
result. 
 
In addition, we identified the increased expression level 
of EDC genes in photo-damaged skin which play an 
important role in epidermis maturation [16, 66]. Jackson 
et al. described that group 3 LCE genes showed 
magnificent elevation upon acute UV exposure, 
especially LCE3C which also displayed similar trend in 
our analysis. We have also presented that increased 
levels of many EDC genes including LCEs, SPRRs, and 
FLG with UV exposure. Additionally, it is well-known 
that several MMP genes are up-regulated in photo-
damaged skin [14, 67]. Quan et al. and Waldera et al. 
showed increment of MMP genes with UV exposure 
such as MMP2/3/9/11 and MMP1/3/10/14, respectively. 
These findings corresponded to our result as MMP2, 
MMP3, MMP8, MMP10, and MMP13 also displayed 
increased expression level in photo-damaged skin. 
Increased expression of MMP genes disrupt collagen 
structure in skin which then leads to impaired skin 
condition [68]. Interestingly, in our result, a few 
collagen genes showed up-regulation which suggests 
that there are a lot more to explore in regards to 
collagen synthesis and aging.  
 
The era of big data has opened its chapter and biological 
research using big data can strengthen the outcome in 
various ways. Sometimes, in experimental research, an 
experiment is usually performed targeting single or a 
small number of genes only. Assigning a small number 
of genes to in-depth study may miss the fact that the 
functional result of assigned genes might be involved in 
more than one pathway. As much as the validation of a 

gene’s biological function is important, transcriptome 
research, especially with co-expression network 
analysis, allows us to investigate a group of genes with 
similar function that regulate a biological pathway in 
question. Therefore, with aid of experimental data, we 
believe that our study may further expand the 
understating of human aging process and facilitate the 
development of therapeutic targets for skin 
rejuvenation.   
 
MATERIALS AND METHODS 
 
Study subjects 
 
GTEx database (V6 release) provided 606 skin samples 
from suprapubic (n = 250) and lower leg (n = 356) [7, 
8]. The age groups are from 20s to 70s and they are 
from both genders and all skin tissue samples were 
obtained by rapid autopsy from donors. Among them, 
22 samples with hair or hair follicles were disregarded 
to the analysis. Also, seven samples with solar elastosis 
were eliminated to the analysis to focus on the gene 
expression changes of normal skin. Therefore, 228 
suprapubic and 349 lower leg samples were used (Table 
1).  
 
Differentially expressed gene analysis 
 
We discovered differentially expressed genes (DEGs) 
using DESeq2 [69]. Here, genes with q-value < 0.05, 
|Log2(fold-change)| ≥ 0.6, and baseMean ≥ 100 were 
determined as DEGs. Multiple testing was performed by 
Benjamini-Hochberg method [70]. 
 
Weighted gene co-expression network analysis  
 
Weighted gene co-expression network analysis 
(WGCNA) identified the associations of the gene 
expression changes in skin with UV exposure status or 
aging [71]. The variance stabilizing transformed 
expression values from DESeq2 were used for the 
analysis [69, 72]. Briefly, pairwise correlations between 
the expression of each gene were used to construct 
modules which denote the co-expression network. The 

Table 1. Sample information. 

Tissue type 20s 30s 40s 50s 60s 70s Total 

Suprapubic 
(UV protected) 

14 
(6.14%) 

18 
(7.89%) 

42 
(18.42%) 

79 
(34.65%) 

72 
(31.58%) 

3 
(1.32%) 228 

Lower leg 
(UV exposed) 

29 
(8.31%) 

29 
(8.31%) 

58 
(16.62%) 

117 
(33.52%) 

111 
(31.81%) 

5 
(1.43%) 349 
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module eigengene is characterized as the first principal 
component of each module. To identify the relationship 
between the modules and the clinical characteristics, the 
correlations between module eigengenes and clinical 
traits were determined using the Pearson correlation 
coefficient. For determining the significance of modules 
generated from WGCNA, Bonferroni-corrected P-
values were used [73]. Using module membership 
(MM) values, which indicate the high intra-module 
connectivity within each module, top 10 most correlated 
genes from each module were listed on Supplemental 
Tables.  
 
Pathway enrichment analysis 
 
The pathway enrichment analysis computed 
biologically meaningful pathways using the Molecular 
Signatures Database (MSigDB) version 6.0.[74] The 
gene ontology (GO) biological process database from 
MSigDB was used in this study [74]. To illustrate the 
pathway enrichment result, clusterProfiler was used 
[75]. The significance was determined by the color 
using q-value and the gene ratio stands for the ratio of 
enriched genes in each gene set.  
 
Mitochondrial DNA copy number estimation   
 
To estimate mitochondrial copy number, 16 
mitochondrial genes (MT-RNR1, MT-RNR2, MT-ND1, 
MT-ND2, MT-CO1, MT-TS1, MT-CO2, MT-ATP8, MT-
ATP6, MT-CO3, MT-ND3, MT-ND4, MT-ND4L, MT-
ND5, MT-ND6, MT-CYB) with the average mapped 
reads higher than 100 were subjected to the analysis. 
We calculated mitochondrial copy number by averaging 
16 mitochondrial RNA (mtRNA) expression values. 
The association between aging and mtRNA expression 
were measured by one-way ANOVA and test for 
Linearity using IBM SPSS Statistics Version 23.0.  
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Please browse the links in Full Text version of this manuscript to see Supplementary Tables. 
 

 

 
 

Supplemental Figure 1. Pathway enrichment result for other six significant modules. Grey60, greenyellow, and brown 
modules were down-regulated in lower leg. Magenta, yellow, and purple modules are up-regulated in lower leg. 
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Supplemental Figure 2. Module trait relationship for suprapubic samples. 
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Supplemental Figure 3. Heatmap illustrated gene expression profiles of LCE genes found in purple module constructed 
from lower leg.  
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Please browse the links in Full Text version of this manuscript to see Supplementary Tables. 
 
Supplemental Table 1. Top10 most correlated genes in each significant module constructed from all skin 
samples. 
 
Supplemental Table 2. Top10 most correlated genes in each significant module constructed from lower leg skin 
samples. 
 
Supplemental Table 3. Up-regulated collagen genes upon UV exposure. 
 
Supplemental Table 4. Collagen genes from magenta module constructed from lower leg. 
 
Supplemental Table 5. Keratin genes from cyan module constructed from lower leg. 
 
Supplemental Table 6. Top10 most correlated genes in each significant module constructed from suprapubic 
skin samples. 

 

 
 

Supplemental Figure 4. Pathway enrichment result for cyan module which was down-regulated with aging in lower leg. 
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