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ABSTRACT

DNA methylation (DNAm)-based biomarkers of aging have been developed for many tissues and organs.
However, these biomarkers have sub-optimal accuracy in fibroblasts and other cell types used in ex vivo
studies. To address this challenge, we developed a novel and highly robust DNAm age estimator (based on 391
CpGs) for human fibroblasts, keratinocytes, buccal cells, endothelial cells, lymphoblastoid cells, skin, blood, and
saliva samples. High age correlations can also be observed in sorted neurons, glia, brain, liver, and even bone
samples. Gestational age correlates with DNAm age in cord blood. When used on fibroblasts from Hutchinson
Gilford Progeria Syndrome patients, this age estimator (referred to as the skin & blood clock) uncovered an
epigenetic age acceleration with a magnitude that is below the sensitivity levels of other DNAm-based
biomarkers. Furthermore, this highly sensitive age estimator accurately tracked the dynamic aging of cells
cultured ex vivo and revealed that their proliferation is accompanied by a steady increase in epigenetic age. The
skin & blood clock predicts lifespan and it relates to many age-related conditions. Overall, this biomarker is
expected to become useful for forensic applications (e.g. blood or buccal swabs) and for a quantitative ex vivo

human cell aging assay.

INTRODUCTION

While our arsenal of potential anti-aging interventions
is brimming with highly promising candidates that
delay aging in model organisms, it remains to be seen
whether these interventions delay aging in humans. The
relatively slow pace of this stage is primarily due to the
fact that while efficacy of age-related interventions can
be reasonably tested in short-lived model organisms,
they are not quickly testable in humans, who live much
longer. Apart from the impractical measure of human
life-span, it is not immediately obvious how the efficacy
of an intervention on human aging can be ascertained.
To address this challenge, robust biomarkers of aging
that are equally effective in in vivo as well as ex vivo
studies are required. These biomarkers must be
applicable especially to widely used cell types that are
easily derived from accessible human tissues such as
blood and skin.

Such a potential biomarker that has gained significant
interest in recent years is DNA methylation (DNAm).
Chronological time has been shown to elicit predictable
hypo- and hyper-methylation changes at many regions
across the genome [1-5], and as a result, DNAm based
biomarkers of aging were developed to estimate chrono-
logical age [6-10]. The blood-based age estimator by
Hannum (2013) [9] and the pan-tissue estimator by
Horvath (2013) [6] produce age estimates (DNAm age)
that are widely used in epidemiological studies [11, 12].
Mathematical adjustment of these age estimates in
context of their corresponding chronological ages
produces a measure of the rate of epigenetic aging,
which is referred to as epigenetic age acceleration that
can take a positive or negative value. Positive values of
epigenetic age acceleration (indicative of faster epi-
genetic aging) have been repeatedly observed to be

associated with many age-related disecases and
conditions [11-24]. This indicates that epigenetic age is
more than an alternative measure of chronological age
but is instead an indicator of the state of health and as
such, of biological age.

As indicated by its name, the pan-tissue age estimator
applies to all sources of DNA (except for sperm) [6].
Despite its many successful applications, the pan-tissue
DNAm age estimator performs sub-optimally when
used to estimate fibroblast age [6]. This is particularly
perplexing because fibroblasts are widely used in ex
vivo studies of various interventions. As a case in point,
the Progeria Research Foundation provides fibroblast
lines derived from skin biopsies from patients with
Hutchinson Gilford Progeria Syndrome (HGPS) for use
in research. In spite of clear acceleration of clinical
manifestations of aging in HGPS, this is not mirrored in
epigenetic age measurements by current DNA methy-
lation-based estimators [6]. While this could be due to a
genuinely interesting distinction between epigenetic and
phenotypic aging, it is also possible that the current
epigenetic age estimators fail to capture aspects of aging
that are specific to fibroblasts and epithelial cells. The
discernment between the two possibilities requires an
age estimator that is well-suited for accurately
measuring the epigenetic age of fibroblasts. However,
an epigenetic age estimator that is highly accurate and
equally compatible with fibroblasts and other readily
accessible human cells is currently not available. Such
an epigenetic age estimator would be very valuable in
performing ex vivo experiments because it would allow
testing anti-aging properties of new compounds in
human cells and minimize the need to carry out such
tests in humans. Ex vivo studies often employ keratino-
cytes, fibroblasts and microvascular endothelial cells,
which can be readily isolated from skin biopsies.
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Here, we describe a novel powerful epigenetic age
estimator (called the skin & blood clock) that
outperforms existing DNAm-based biomarkers when it
comes to estimating the chronological ages of human
donors of fibroblasts, keratinocytes, microvascular
endothelial cells, skin cells, coronary artery endothelial
cells, lymphoblastoid cells, blood, and saliva samples.

RESULTS
DNA methylation data sets

We analyzed both novel and existing DNA methylation
data sets that were generated on the Illumina Infinium
platform (Table 1). DNA was extracted from human
fibroblasts, keratinocytes, buccal cells, endothelial cells,
blood, and saliva. We analyzed data from two Illumina
platforms (Infinium 450K and the EPIC array, also
known as the 850K array) to ensure that the resulting
estimator would apply to the latest Illumina platform
(the EPIC array).

The DNAm age estimator for skin and blood

To ensure an unbiased validation of the test data, we
used only the training data to define and construct the
DNAm age estimator. As detailed in Methods, a
transformed version of chronological age was regressed
on methylation states of CpGs using elastic net
regression [25], which automatically selected 391 CpGs
(Methods). We refer to the 391 CpGs as (epigenetic)
clock CpGs since their weighted average (formed by the
regression coefficients) amounts to a highly accurate
epigenetic aging clock.

The following description will demonstrate that the
resulting age estimator (referred to as skin & blood
clock) performs remarkably well across a wide
spectrum of cells that are most frequently used in ex
vivo studies. The new skin & blood clock even
outperforms the pan-tissue clock (Horvath 2013) [6] in
all metrics of accuracy (age correlation, median error) in
fibroblasts, microvascular endothelial cells, buccal epi-

Table 1. DNA methylation data. The rows correspond to Illumina DNA methylation data sets.

No. Data Source Use n Source Median Age
(Range)
1 existing, Portales-Casamar 2016, GSE80261
Train 216 | Buccal 11 (5,18)
2 existing, Berko 2014, GSE50759 Train 96 | Buccal 7 (1,28)
novel, blood methylation
Train 278 | whole blood 69 (2,92)
4 existing, Yang 2017, GSE104471
Train 72 | Epithelium 30 (24,74)
5 existing, Ivanov 2016, GSE77136
Train 21 | Fibroblast 33 (0.1,85)
existing, Wagner 2014, GSE52026 Train 10 | Fibroblast 37 (23,63)
novel fibroblasts Train 48 | Fibroblast 50 (0.42,94)
8 novel, Cell Applications
Train 11 | Fibroblast 56 (7,94)
9 existing, Borman 2016, SkinE-MTAB-4385
Train 108 | Skin 49.25 (18,78)
10 existing, cord blood, GSE79056
Train 36 | cord blood 0 (-0.28,0.04)
11 existing, Jessen 2016, GSE94876 Test 120 | Buccal 46 (35,60)
12 Lussier 2018, GSE109042
Test 53 | Buccal 10 (3.5,18)
13 existing, Vandiver 2015, GSE51954 Test 78 | Dermis+Epidermis 65 (20,92)
14 | novel, Kenneth Raj Test 23 | Endothelial 19 (19,19)
15 | novel, Kenneth Raj Test 44 | Endothelial 19 (17,26)
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16 | novel, Kenneth Raj

Test 48 | Fibroblast 0(0,0)
17 | novel, Kenneth Raj

Test 48 | Fibroblast 0 (0,0)
18 | novel, Progeria Research Foundation+ vendors

Test 88 | Fibroblast 8 (0,77)
19| novel, Junko Oshima Test 11 | Fibroblast 36 (0,62)
A | movel, Keumsth iy Test 43 | Keratinocyte 0(0,0)
21 | novel, Blood methylation Inf 450

Test 100 | Whole Blood 53 (19,82)
22 | novel, Lymphoblastoid cell

Test 100 | Lymphoblast 53 (19,82)
23 | novel, Saliva methylation

Test 120 | Saliva 44 (18, 81)
24 existing, Horvath 2015, GSE111223

Test 229 | Saliva 68 (36,88)
25 existing, cord blood, GSE62924 Test 38 | cord blood 0 (-.10,0.04)
26 | existing, cord blood, GSE80283 Test 183 | cord blood -0.22(-0.3,-0.1)

The table reports the data set number, relevant citation (first author and publication year), public availability (for example, Gene
Expression Omnibus identifier), sample size (n), source of the DNA (for example, tissue), median age, age range (minimum and

maximum age). The column ‘Use’ reports whether the data set was used as a training set or test set.

thelial cells, keratinocytes, and dermis/epidermis
samples (Figure 1 and Supplementary Figure 1). As
indicated by its name, the new skin & blood clock is
also a highly accurate age estimator of blood methyl-
tion data, where it provides more accurate age estimates
than the widely used estimators by Horvath (2013) [6]
and Hannum (2013) [9] (Figure 2A,D,G and Sup-
plementary Figure 2). Further, it outperforms the
Horvath and Hannum DNAm age estimators when
applied to lymphoblastoid cell lines (Figure 2B,E,H),
i.e. B cells that have been immortalized using EBV
transformation. Interestingly, the DNAm age of blood is
highly correlated with the DNAm age estimate of the
lymphoblastoid cell line collected from the same donor
at the same time (r=0.83, Figure 2C). The skin & blood
clock accurately estimates age in two different saliva
DNA methylation data sets (age correlations r=0.9 and
r=0.95) and outperforms the pan-tissue DNAm age
estimator in these data (Supplementary Figure 3). The
skin & blood clock also applies to cord blood samples
as can be seen from the fact that it accurately estimates
gestational age in three different data (with correlations
ranging from r=0.15 to r=0.66, Supplementary Figure 4).

Skin & blood clock applied to brain, liver, bone, and
other body parts

The skin & blood clock leads to DNAm age estimates
that strongly correlate with chronological age in a host

of different cell types and tissues including sorted
neurons and glial cells (Supplementary Figure 5), brain
samples (Supplementary Figure 6), liver samples
(Supplementary Figure 7), and trabecular bone samples
(Supplementary Figure 8). In the following, we provide
more details on the individual studies.

In sorted neurons, DNAm age correlates strongly
(r=0.83) with chronological age but the DNAm age
estimator is substantially lower than chronological age
(mean DNAmM Age=6 years in a group of people whose
mean chronological age is 31 years, Supplementary
Figure 5A). Interestingly, the DNAm age of glial cells
is significantly higher than that of neurons from the
same individual (p=0.00024, Supplementary Figure
5B,C). Chronological age is also highly correlated with
DNAm age estimates in different brain regions (r
between 0.67 and 0.96, Supplementary Figure 6) but the
age estimates tend to be systematically lower than
chronological age. In particular, the cerebellum ages
substantially slower than other brain regions echoing
previous results for the pan-tissue clock [17].

DNAm age of liver tissue is highly correlated with
chronological age (r=0.86, Supplementary Figure 7) and
the corresponding measure of epigenetic age acceleration
correlates with body mass index (r=0.27, p=0.027, Sup-
plementary Figure 7B). These results echo earlier results
obtained from the pan-tissue DNAm age estimator [13].

WWWw.aging-us.com

1761

AGING



DNAmAge (SkinClock) DNAmAge (SkinClock) DNAmAge(SkinClock) DNAmAge(SkinClock)

DNAmAge (SkinClock)

An analysis of 30 different body parts from a 112 year
old woman reveals a) that most body parts have roughly
the same age and b) that the cerebellum is substantially
younger (Supplementary Figure 9) which is consistent
with previous results [17].

Epigenetic age of fibroblasts from Hutchinson
Gilford Progeria fibroblasts

Previously, the use of the pan-tissue clock revealed
epigenetic age acceleration in segmental progeroid syn-
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dromes such as Down syndrome and Werner syndrome
[15, 24], but not in syndrome X, whose patients exhibit
dramatically delayed development (seemingly eternal
toddler-like state) [26]. The status of the epigenetic
aging rate in regards to HGPS and Atypical Werner
Syndrome (AWS) is less clear. These two conditions
can be caused by different progeroid mutations of the
LMNA gene (Figure 3). It is not yet known whether
HGPS patients, who generally appear normal at birth
but exhibit a “failure-to-thrive” syndrome, exhibit any
epigenetic age acceleration.
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Figure 1. Age estimation accuracy of the skin & blood clock in fibroblasts, keratinocytes, and microvascular endothelial
cells. The left and right panels relate chronological age (x-axis) to DNAm Age estimates (y-axis) from the skin & blood clock (A,C,E,G,I)
and the pan-tissue clock (Horvath 2013) (B,D,F,H,J) [6] respectively. Each row corresponds to a different tissue/cell type. DNA methylation
data from fibroblasts (A,B), microvascular endothelial cells (C,D), buccal epithelial cells (E,F), keratinocytes (G,H) and whole skin
(dermis/epidermis) samples (1,J). Each panel reports the Pearson correlation coefficient and the error (defined as median absolute

deviation between DNAm age and chronological age).
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Figure 2. Comparison of DNAm age estimators in whole blood and lymphoblastoid cell line data. The rows correspond to 3
different age estimators: (A,B,C) the novel skin & blood clock (D,E,F), the pan-tissue clock (Horvath 2013) [6], (G,H,l) Hannum clock 9].
Panels in the first and second column report the accuracy in blood (A,D,C) and lymphoblastoid cell lines (B,E,H), respectively. Panels in
the third column (C,F,I) report the relationship between DNAm age estimates in blood (x-axis) versus those in lymphoblastoid cell lines (y-
axis). Panels report Pearson correlation coefficient and the estimation error, which is defined as median absolute deviation between the
DNAm age estimate and chronological age. The lymphoblastoid cell lines were generated from the same individuals for whom whole

blood was assessed, which facilitated the comparison in the third column.

HGPS is associated with many clinical manifestations
of accelerated aging including loss of subcutaneous fat,
joint contractures, and a striking aged appearance
during the first to third years of life [27]. Virtually all
HGPS patients die of myocardial infarction at a median
age of 14.6 years [28]. Classic HGPS is caused by a
recurrent heterozygous pathological variant, ¢.1824C>T
in exon 11 of the LMNA gene, which activates a cryptic
splice site and causes a 50-amino acid in-frame deletion
(A50) [29]. The resulting abnormal protein, termed
progerin, lacks the proteolytic site for an essential but
transient  post-translational modification by the
ZMPSTE24 metalloprotease. This causes retention of
the C-terminal farnesylated moiety, resulting in aberrant
nuclear structure and function [29]. Non-classical
HGPS mutations at the exon 11 and intron 11 boundary,

including ¢.1968+1G>A [30] and ¢.1968+2T>C [31],
can also activate the cryptic splice site, leading to the
accumulation of progerin and an infantile-onset HGPS
phenotype. Biallelic ZMPSTE24 mutations also cause
accumulations of farnesylated lamin A and a varying
degree of progeroid phenotypes, depending on the
residual enzymatic activity of ZMPSTE24 [32, 33]. In
rare instances, a homozygous amino acid substitution of
lamin A can present with a phenotype similar to HGPS
or mandibuloacral dysplasia, as described in cases with
[p-Met540Thr; p.Met540Thr] [34] and [p.Thr528Met;
p-Met540Thr] [35].

A small subset of cases of Atypical Werner syndrome
(AWS) (those with some features of Werner syndrome,
without mutations in WRN or altered expressions of the
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WRN protein) may be caused by accumulations of low
levels of progerin [36, 37]. Pathological lamin A
variants found in some patients with AWS include
¢.1968G>A and ¢.1968+5G>A [36]. While there is a
general genotype-phenotype correlation between the
amount of progerin and the severity of the disease, the
amounts and structures of progerin can vary among
those who carry the same LMNA splice mutation, and
the severity of the disease can vary among patients
within the same family [36, 37]. The median age of
death of classic HGPS is ~14.6 years [38], while the
range in AWS patients with low levels of progerin is 37
to 60 years [36].

The original pan-tissue DNAm age estimator did not
detect any age acceleration in HGPS individuals
(Supplementary Table 1). By contrast, the application of
the novel skin & blood clock showed that while DNAm
age is highly correlated with chronological age in
normal fibroblasts, those from HGPS cases exhibited
accelerated epigenetic aging (Figure 4). The correlation
between age and DNAm age in HGPS children (<10
years old) is substantially lower (r=0.71) than that of

control children (r=0.71, Figure 4B). The epigenetic age
acceleration effects become particularly pronounced
after adjusting for differences in cell population
doubling levels and when the analysis was restricted to
children who are younger than 10 years old (p=0.00021,
Table 3). There is a non-significant trend of increased
DNAm age in Atypical Werner Syndrome cases with
low levels of progerin. It is perhaps not unexpected that
AWS, which presents with a lower progerin
concentration (Figure 3) is not significantly associated
with greater magnitude of epigenetic age acceleration.

Although non-classic HGPS patients often present at
later ages, they can nevertheless be diagnosed at ages
that are slightly younger than patients with classic
HGPS [27]. It should indeed be noted that the cases
examined in this study (see Methods for mutation
details), have exceptionally early manifestations — as
early as birth or younger than 5 months of age.
Interestingly, their DNA methylation age acceleration is
comparable and consistent with that of classic HGPS,
which as mentioned, is an early onset progeria condition
(Figure 4D).

Figure 3. LMNA mutations in progeria patients. The diagram shows the structure of lamin A. It
consists of globular head domain, linker regions, a.-helical coiled coil domain and globular tail domain. Locations
of the progeria LMNA mutations in this study were shown with molecular mechanism of mutant lamin A protein
and clinical phenotype, as previously reported in [34] (p.Met540Thr), [29] (c.1824C>T), [30] (c.1968+1G>A), [31]
(c.1968+2T>C), and [36] (c.2968G>A and c.1968+5G>A). A50 indicates the region of deletion in progerin, also
present in ZMPSTE24 mutant progeria [32]. Photos were reproduced with permission.
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Table 2. Epigenetic clock results for fibroblast samples from The Progeria Research Foundation.

Cell-line ID Progeria Mutation Sex | Age DNAmAge | AgeAccelS
SkinClock | kinClock

PSADFNO086 NonClassic | LM Exon 11 ¢.1968+1G>A m 0.58 0.39 -3.49

PSADFN257 NonClassic | LM Exon 10 homozygous ¢.1619 m 1.83 4.44 -0.51
T>C (p-Met540Thr)

PSADFN257.re | NonClassic | LM Exon 10 homozygous ¢.1619 m 1.8 4.84 -0.08

plicate T>C (p.Met540Thr)

PSADFN317 NonClassic | ZMPste24 Exon 6 heterozygous m 3.8 8.86 2.23
¢.743C>T(p.Pro248Leu)and Exon 10
heterozygous c.1349G>A
(p-Trp450Stop)

PSADFN318 NonClassic | ZMPste24 Exon 6 heterozygous m 0.4 7.48 3.75
c.743 C>T(p.Pro248Leu)and Exon
10 heterozygous ¢.1349G>A
(p-Trp450Stop)

PSADFN392 NonClassic | LM Exon 11 ¢.1968+2T>C m 7.3 21.61 11.99

HGADFNO003 Classic LM Exon 11 heterozygous m 3.39 -1.70
c.1824C>T

HGADFN169 Classic LM Exon 11 heterozygous m 8.5 23.73 13.08
c.1824C>T

HGADFN143 Classic LM Exon 11 heterozygous m 8.8 15.61 4.71
c.1824C>T

HGADFEN167 Classic LM Exon 11 heterozygous m 8.4 17.88 7.32
c.1824C>T

HGADFN271 Classic LM Exon 11 heterozygous m 1.3 10.73 6.24
c.1824C>T

HGADFN164 Classic LM Exon 11 heterozygous f 4.66 10.64 3.28
c.1824C>T

HGADFN178 Classic LM Exon 11 heterozygous f 6.92 4.36 -4.93
c.1824C>T

HGADFN122 Classic LM Exon 11 heterozygous f 5 6.96 -0.70
c.1824C>T

HGADFN127 Classic LM Exon 11 heterozygous f 3.8 2.10 -4.53
c.1824C>T

HGADEFN155 Classic LM Exon 11 heterozygous f 1.1 0.59 -3.73
c.1824C>T

HGADFN188 Classic LM Exon 11 heterozygous f 23 1.23 -4.11
c.1824C>T

HGADFN367 Classic LM Exon 11 heterozygous f 3 17.10 11.16
c.1824C>T

The columns report the cell line identifier, the disease status, mutational analysis, sex, age, DNAm age estimate
(based on the skin & blood clock), and the measure of age acceleration (defined as residual from a regression line).
Classic HGPS cases exhibit the following mutation: LMNA Exon 11, heterozygous c¢.1824C>T (p.Gly608Gly). By

contrast, non-classic HGPS cases exhibit mutations elsewhere in the LMNA gene.
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new skin & blood clock was used to estimate DNAm age (y-axis) in fibroblasts from HGP individuals and controls. (A) All individuals. (B)
Children younger than 10 years old. Dots are colored by disease status: red=classical progeria, green=non-classical progeria,
black=controls. The grey line corresponds to a regression line through control individuals. The epigenetic age acceleration effect for each
individual (point) corresponds to the vertical distance to the black regression line. The fact that red and green points tend to lie above the
grey line indicates that HGP cases exhibit suggestive accelerated epigenetic aging effect. (C) Mean epigenetic age acceleration (y-axis)
versus HGP status. By definition, the mean age acceleration measure in controls is zero. (D) Epigenetic age acceleration (y-axis) versus
disease status in individuals younger than 10. (E, F) report results for fibroblast samples from atypical Werner syndrome cases (low
progerin) provided by co-author Junko Oshima. (E) DNAm age versus chronological age for atypical Werner syndrome samples (colored in
red) and controls (colored in black). (F) Epigenetic age acceleration versus disease status. The title of the bar plots also reports a P-value
from a nonparametric group comparison test (Kruskal Wallis test). Each bar plot reports the mean value and one standard error.

Table 3. Multivariate regression model analysis of HGPS based on the novel skin & blood clock.

Outcome: DNAmAge (SkinClock)

Data: All, n=88 Data: Age<10, n=44
Covariate Coef St. Error | P-value Estimate SE P-value
Intercept -3.55 2.99 2.39E-1 7.34 2.97 1.84E-2
Age 1.64 1.29E-1 3.44E-20 -5.90E-1 8.33E-1 4.84E-1
Age”2 -1.07E-2 |  2.08E-3 2.14E-6 2.40E-1 9.58E-2 1.70E-2
Fibroblast
Population Doubl.
Level 4.46E-1 1.65E-1 8.52E-3 -1.20E-1 1.32E-1 3.71E-1
HGP.Disease 481 2.27 3.76E-2 5.18 1.25 2.12E-4

DNAm age is regressed on chronological age, the square of age, the population doubling level of the
fibroblast cell culture, and HGPS disease status. The table reports estimates of the regression coefficients and
corresponding standard errors, Wald test P-values. The left panel and right panel report the results for all
n=88 fibroblast samples and for n=44 samples from children (younger than 10 years old), respectively.

Detailed results for the lines of skin fibroblasts provided
by The Progeria Research Foundation are presented in
Table 2 and Supplementary Table 2. The skin & blood
clock provides marginally significant evidence
(p=0.062) that fibroblasts from boys with classic HGPS
are epigenetically older than those from girls with
classic HGPS, but this gender effect is not apparent

when classic and non-classic HGPS samples are pooled
for analyses (Supplementary Figure 10).

It is to be further noted that the epigenetic age
acceleration of HGPS fibroblasts revealed by the skin &
blood clock escaped detection when measurements were
carried out with the pan-tissue clock; indeed, the opposite

WwWw.aging-us.com

1766

AGING



appears to be the case (Supplementary Figure 11C,
Supplementary Table 2). Evidently, the ability to detect
such epigenetic age changes in fibroblasts is dependent
upon the choice of the DNAm age estimator that is used.

EXx vivo studies of anti-aging interventions

While it may appear obvious that the skin & blood
clock is superior in terms of compatibility with
fibroblasts, it was still necessary to verify and validate
this deduction by applying this clock to non-progeria
fibroblasts and other cell types. To this end, fibroblasts
derived from non-progeria neonatal foreskins are ideal

(A) Skin & Blood clock
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as they pose minimal to no confounding factors that
could alter their age. While the skin & blood clock
correctly estimated the neonatal fibroblast cells to be of
ages close to zero years, the pan-tissue age estimator
leads to age estimates that are greater than 10 years
(Figure 5SA and B). Analyses of other skin cell types
namely, keratinocytes and microvascular endothelial
cells derived from neonatal foreskins also demonstrated
greater accuracy of the skin & blood clock over the
other age estimators. This conclusion continues to hold
true even when the analyses were extended to isogenic
skin cells derived from adult tissues (Supplementary
Figure 1).

Pan-tissue clock
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Figure 5. DNAm age versus population doubling levels. Each panel reports a DNAm age estimate (y-axis)
versus cumulative population doubling level, respectively. Plots in the left and right panels correspond to the new
skin & blood clock (A,C) and the pan-tissue clock (B,D) respectively. (A,B) Tracking of the epigenetic ages of neonatal
fibroblasts (Red squares) and keratinocytes (Blue diamonds) in function of population doubling. Inset graph in (B) is
a plot of ages of only the keratinocyte population. (C,D) Epigenetic ages of human coronary artery endothelial cells
derived from a 26 year old donor, in function of cumulative population doubling. Ages of uninfected control cells,
which senesced after cumulative population doubling of 20, are shown in blue while those bearing hTERT, with
extended proliferative capacity are in red. The blue dots with the highest cumulative doubling are at points when
the cells reached replicative senescence. Cells with hTERT (represented by red squares) do not senesce and the last

dots indicate the termination of the experiment.
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Having established the robustness of the skin & blood
clock in measuring age of cells isolated from human
tissues, we proceeded to test the applicability of the
clock on human cells cultured ex vivo. As observed
previously using the pan-tissue age estimator, the skin
& blood clock revealed that human fibroblasts cultured
ex vivo undergo epigenetic aging. However, unlike the
former which over-estimates the DNAm age of
fibroblasts (Figure 5B), the skin & blood clock correctly
estimated the age of the neonatal cells to within 6
months (Figure 5A). Proliferation of human fibroblasts
in culture, measured as population doubling, was
observed to correlate with continual increase in DNAmM
age. Similar correlation was also seen with neonatal
foreskin keratinocytes (Figure 5A and B). Although this
association was revealed by both clocks, the resolution
and accuracy of the skin & blood clock are clearly much
greater and better. The new clock also out-performs the
pan-tissue clock when applied to non-blood or skin
cells; namely, the human coronary artery endothelial
cells, whose increase in epigenetic age in function of
population doubling was readily detected by the former
but not the latter. Cells whose proliferative capacity was
extended by hTERT beyond their otherwise natural
limits (senescence), continued to age epigenetically,
underscoring the correlation between cellular prolifera-
tion and DNA methylation aging.

By its ability to quantitatively track aging of human
cells ex vivo, the skin & blood clock lends itself to be
used in the development of an ex vivo human cell aging
assay that can be used for testing and screening com-
pounds with anti-aging or pro-aging effects.

Analysis of blood samples from human cohort
studies

Epigenetic clocks are associated with a host of different
age-related phenotypes and conditions (reviewed in [11,
12]). In the following, we report the results of several
post-hoc analyses that demonstrate that the new skin &
blood clock satisfies most of the properties observed for
other blood based DNAm age estimators.

Similar to what has been observed with previous age
estimators, epigenetic age acceleration in blood
(according to the skin & blood clock) is highly
predictive of time to all-cause mortality (p=9.6E-7)
according to a univariate Cox regression model fixed
effects meta-analysis across multiple epidemiological
cohort studies (Supplementary Figure 12).

Blood samples from individuals with Down syndrome
exhibit positive epigenetic age acceleration compared to
controls (p=0.034, Supplementary Figure 13) consistent
with previous findings [15].

Similar to the previous epigenetic aging clock analyses
of blood [21], cross sectional studies of n=3700 blood
samples from postmenopausal women from the
Women's Health Initiative revealed relationships to
lifestyle factors and dietary variables (Supplementary
Table 3). Slow epigenetic age acceleration in blood was
associated with higher education (p=6E-5), physical
exercise (p=4E-3), fish consumption (p=2E-4), poultry
consumption (p=3E-4), high mean carotenoid levels
(p=8E-6), beta cryptoxhanthin (p=2E-7), beta carotene
levels (p=4E-4), and HDL levels (p=5E-4, Supplemen-
tary Table 3). Conversely, faster epigenetic aging in
blood is associated with higher C-reactive protein levels
(p=1E-3), body mass index (p=0.01), triglyceride levels
(p=3E-3), and insulin (p=2E-3). However, it is worth
emphasizing that the respective correlation coefficients
were weak (|r[<0.11, Supplementary Table 3). Physical
exercise was associated with a slower epigenetic aging
effect in African American women (p=4E-3) and
perhaps in Caucasian women (p=0.07) but not in
Hispanic women (p=0.74). Current smoking status was
only associated with increased age acceleration in
Caucasian women (p=0.04).

Epigenetic age acceleration is highly conserved across a
9 year follow up time period (r=0.71, Supplementary
Figure 14). In other words, if an individual exhibits
positive epigenetic age acceleration at age 40 then
he/she will probably continue to exhibit positive
epigenetic age acceleration at age 49.

Collectively these characteristics demonstrate that
although the new clock is highly and uniquely accurate
for skin cells, it has not acquired this at the cost of
losing any of the features shared amongst existing age
estimators in being also highly accurate with blood
DNA methylation data, buccal cells, saliva. As such,
this clock could become useful for forensic applications.

Relationship to other DNAm age estimators

The skin & blood clock (based on 391 CpGs) shares 45
CpGs (out of 71 CpGs) with the blood-based clock from
Hannum (2013) and 60 CpGs (out of 353 CpGs) with
the pan tissue clock from Horvath (2013) as detailed in
Supplementary Table 4. Despite this significant overlap,
epigenetic age acceleration of the skin & blood clock
exhibits only moderate correlations with corresponding
epigenetic age acceleration measures by Horvath (2013)
and Hannum (2013) (r=0.5 and r=0.59, p<1.E-110) in
the blood samples from the Women's Health Initiative
(BA23 study).

Leukocyte telomere length and blood cell counts

We find a weak negative correlation between leuko-
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cyte telomere length and epigenetic age acceleration of
blood (r=-0.087, p=0.0088 in n=905 samples from the
Framingham Heart Study, r =-0.081, p=0.0011 in
n=1639 samples from the Jackson Heart Study, and r=-
0.117, p=0.00079 in the 818 samples from the Women's
Health Initiative). This weak negative relationship
between telomere length and epigenetic age acceleration
is similar to that of the Hannum-based DNAm age
estimator and other blood based biomarkers [11, 39,
40].

Epigenetic age acceleration measured by the skin &
blood clock is only weakly correlated with, or affected
by blood cell type counts, as is evident from the
analyses of postmenopausal women from the Women's
Health Initiative (Supplementary Figure 15). The
strongest correlations are observed with exhausted
CD8+ T cells (r=0.22), naive CD8+ T cells (r=-0.21),
and naive CD4+T cells (r=-0.19, Supplementary Figure
15B-D). These correlations suggest that individuals
with positive epigenetic age accelerations exhibit an
adaptive immune system that is older than expected.

DISCUSSION

We present a new DNA methylation-based biomarker
(based on 391 CpGs) that was developed to accurately
measure the age of human fibroblasts, keratinocytes,
buccal cells, endothelial cells, skin and blood samples.
Perhaps unexpectedly, we also observe strong age
correlations in sorted neurons, glia, brain, liver and
bone samples. The need for the new skin & blood clock
became apparent when it was observed that the existing
DNA methylation-based age estimators that are highly
accurate in measuring ages of blood and many cell
types of the body, perform poorly when applied to
human fibroblasts and other skin cells. The implications
of this anomaly extend beyond theoretical curiosity as it
impacts the reliability of conclusions drawn from
epigenetic age analyses of skin cells. As a case in point,
the apparent lack of epigenetic age acceleration of
HGPS fibroblasts indicated by measurements using the
pan-tissue age estimator revealed an important
limitation.

Skin cells are among the most common cell types
employed in laboratories. This is owed largely to the
ease by which cells such as keratinocytes, fibroblasts,
and microvascular endothelial cells can be isolated from
skin, allowing cells from many donors to be easily
acquired and used; a characteristic that is not afforded
by internal organs. The ability to use these cells to
investigate epigenetic age ex vivo is paramount if we are
to identify constituents of the epigenetic clock and
elucidate how they function together to drive the ticking
of the clock.

The skin & blood that we derived is well-suited to meet
all these needs. By applying it to fibroblasts from HGPS
cases, we detect a significant epigenetic age acce-
leration effect after adjusting for fibroblast population
doubling levels. For reasons yet to be determined, the
pan-tissue DNA methylation age estimator failed to
detect this subtle increase in epigenetic age acceleration.
In considering the modest increase in age acceleration
of HGPS cells, it is worth noting that changes in the
methylation state of clock CpGs in the early years of
life already occur at a frenetic rate, which is
approximately twenty-four times greater than that which
takes place after the age of twenty [6]. Hence, it is
difficult to envisage that the accelerated rate of
epigenetic aging in HGPS cells from young donors
could be very much greater in magnitude. This
hypothesis can in theory be tested by measuring the
epigenetic age of HGPS cells from patients older than
twenty years of age, when the basal rate of normal
epigenetic aging is significantly reduced, allowing for
any age acceleration to become even more apparent. It
is however difficult to achieve this as the median age of
death of HGPS patients is approximately 14 years old.
The ability of the skin & blood clock to nevertheless
detect epigenetic age acceleration in young HGPS
patients over and above an already very high normal
background rate, attests to its sensitivity.

It is also conceivable that there may be specific, as well
as overlapping aging mechanisms in patients with
different segmental progeroid syndromes (i.e. HGPS
versus classical WS) that differentially contribute to
their respective rates of DNAm acceleration. Alter-
natively, these differences might be attributable, at least
in part, to the consequences rather than the causes of the
patterns of diverse pathologies that characterize these
different phenotypes.

In addition to resolving the conundrum of HGPS
described above, the skin & blood clock outperforms
widely used existing biomarkers when it comes to
accurately measuring the age of an individual based on
DNA extracted from skin, dermis, epidermis, blood,
saliva, buccal swabs, and endothelial cells. Thus, the
biomarker can also be used for forensic and biomedical
applications involving human specimens. The bio-
marker applies to the entire age span starting from
newborns, e.g. DNAm of cord blood samples correlates
with gestational week (Supplementary Figure 4).
Furthermore, the skin & blood clock confirms the effect
of lifestyle and demographic variables on epigenetic
aging. Essentially it highlights a significant trend of
accelerated epigenetic aging with sub-clinical indicators
of poor health. Conversely, reduced aging rate is
correlated with known health-improving features such
as physical exercise, fish consumption, high carotenoid
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levels (Supplementary Table 3). As with the other age
predictors, the skin & blood clock is also able to predict
time to death. Collectively, these features show that
while the skin & blood clock is clearly superior in its
performance on skin cells, it crucially retained all the
other features that are common to other existing age
estimators.

The skin & blood clock is particularly well suited for
forensic applications because it greatly outperforms the
considered alternative DNAm based estimators when it
comes to measuring chronological age in blood, buccal
cells, saliva, and other cell types (Figure 1, Figure 2,
Supplementary Figures 2-4).

The performance of the skin & blood clock is equally
impressive when applied to ex vivo cell culture system.
Studies with fibroblasts and endothelial cells revealed
that increase in population doublings is significantly
associated with increased DNAm age including hTERT
immortalized cells, which corroborates the findings in
previous studies [41, 42].

We have coupled the skin & blood clock with human
primary cell cultures to generate an ex vivo human cell
aging assay that is highly sensitive. This assay is able to
detect epigenetic aging of a few years, within a few
months. The benefits of this assay are self-evident. The
two most obvious are its use to test and screen for
potential pharmaceuticals that can alter the rate of
epigenetic aging, and its use to test and detect potential
age-inducing hazards in the arena of health protection.

Many of our key observations are critically dependent
upon the choice of a DNAm age estimator, i.e., they
could only be observed with the new skin & blood clock
assay. For example, the original pan-tissue clock could
not detect an age acceleration effect in HGPS. Looking
ahead, there might be valuable applications of this more
robust epigenetic clock for example, in the evaluation of
clinical trials of pharmaceutical interventions in
segmental progeroid syndromes such as the most recent
clinical trial of a farnesyltransferase inhibitor,
lonafarnib, to treat HGPS that reportedly lowers
mortality rates (6.3% death in the treated group vs 27%
death in the matched untreated group after 2.2 years of
follow-up) [28]. We are likely to see an increase of such
clinical trials. For example, in vitro studies of the
effects of rapamycin or another mTOR inhibitor,
metformin, showed a reduction of progerin accumula-
tion accompanied by the amelioration of cellular HGPS
phenotypes [43, 44]. Reactivation of the antioxidant
NRF2 was also shown to alleviate cellular defects of
HGPS in an animal model [45]. Beyond therapeutic
aims, prophylactic interventions would certainly be
sought-after, and the ability of the skin & blood clock to

accurately measure the age of cells from highly
accessible human tissues will reveal whether the tested
treatments are widely targeted across cell and tissue
types - an important feature that is not hitherto afforded
by other age estimators.

Due to its superior accuracy, we expect that this novel
set of epigenetic biomarkers will be useful for both ex
vivo studies involving cultures of various somatic cell
types, including fibroblasts, keratinocytes, and
endothelial cells, as well as in vivo studies utilizing
samples of peripheral blood and biopsies of skin.

METHODS

The R software code underlying the new skin & blood
clock can be found in the Supplement.

Definition of DNAm age using a penalized regression
model

A penalized regression model (implemented in the R
package glmnet [46]) was used to regress a calibrated
version of chronological age on the CpG probes in the
training set. We restricted the analysis to CpGs that
were present both on the Illumina 450K and EPIC
platforms and were in one of the following subsets: 1)
most significant CpGs with high positive/negative
correlation with chronological age in different cell types
or 2) 500 CpGs with the least significant correlation
with age. The alpha parameter of glmnet was chosen as
0.5 (elastic net regression) and the lambda value was
chosen using cross-validation on the training data.
DNAm age was defined as predicted age.

Fibroblasts from The Progeria Research Foundation

Human primary dermal fibroblast cell lines were
obtained from The Progeria Research Foundation (PRF)
Cell and Tissue Bank (www.progeriaresearch.org). The
fibroblast cell lines originated from cases with classic
mutations, non-classic mutations and parental controls
as detailed in Table 2. The following citations provide
additional details on cases carrying the specific variants:
LMNA ¢.1968+1G>A  heterozygote [30], LMNA
¢.1968+2T>C heterozygote [31], LMNA p.Met540Thr
homozygotes [34] and compound heterozygotes of
ZMPSTE24 p.Pro248Leu and p.Trp450* [32].
Additional details can be found in the Supplement.

Isolation and culture of cells for ex vivo experiments

Informed consent was obtained prior to collection of
human skin samples with approved by the Oxford
Research FEthics Committee; reference 10/H0605/1.
Human skin samples were acquired under ethical appro-
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val. Primary human skin keratinocytes, fibroblasts and
microvascular endothelial cells were isolated from
neonatal foreskin and adult facial/neck skin. Keratino-
cytes were cultured in CnT media (CellnTec) on
fibronectin/collagen-coated plates, fibroblasts were
cultured in DMEM (Sigma) supplemented with 10%
foetal calf serum and CD31-selected microvascular
endothelial cells were cultured in Endothelial Cell
Growth Medium MV (PromoCell, C-22020) on gelatin-
coated plates. Human Coronary Artery Endothelial
Cells (HCAEC) from a male, aged 26 years, were
obtained from Sigma and grown in MesoEndo Cell
Growth Medium (Sigma). HCAEC were immortalized
with pBABE-neo-hTERT (Addgene, cat. 1774) and
after selection, were cultured in parallel with uninfected
control until control reached senescence. All cells were
maintained in a 37°C, 5% CO2 humidified environ-
ment. At each passaging step, cells were counted,
population doubling calculated and 10,000 were seeded
into a fresh 10cm plate. Remaining cells were used for
DNA extraction. Population doubling was calculated
with the following formula: [log(number of cells
harvested) — log(number of cells seeded)] x 3.32.
Cumulative population doubling was obtained by
addition of population doubling of each passage.
Additional details can be found in the Supplement.

Sample preparation

DNA was extracted from cells using the Zymo Quick
DNA mini-prep plus kit (D4069) according to the
manufacturer’s instructions and DNA methylation levels
were measured on I[llumina 450 or Illumina 850 EPIC
arrays according to the manufacturer’s instructions.
Blood methylation data from different
epidemiological cohorts

A number of validation studies were used to test
associations between DNAm age and various aging-
related traits including time to all-cause mortality.
Details on these studies can be found in the Supplement
and in [20, 40].
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