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INTRODUCTION 
 
Diffuse gliomas, graded from II to IV according to the 
World Health Organization (WHO) criteria, are the 
most common and lethal primary tumors of the central 
nervous system. Lower grade gliomas (LGGs), desig-
nated as astrocytomas, oligodendrogliomas, and mixed  

oligoastrocytomas of grade II and III gliomas, account 
for approximately 43.2% of all gliomas diagnosed in 
adults [1–3]. Although LGGs have a relatively better 
therapeutic response and longer overall survival (OS) 
than fully malignant glioblastomas (GBM, WHO grade 
IV), they eventually transform to higher grade tumors 
with greater mortality [4, 5]. 
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ABSTRACT 
 
Unravelling the heterogeneity is the central challenge for glioma precession oncology. In this study, we 
extracted quantitative image features from T2-weighted MR images and revealed that the isocitrate 
dehydrogenase (IDH) wild type and mutant lower grade gliomas (LGGs) differed in their expression of 146 
radiomic descriptors. The logistic regression model algorithm further reduced these to 86 features. The 
classification model could discriminate the two types in both the training and validation sets with area 
under the curve values of 1.0000 and 0.9932, respectively. The transcriptome-radiomic analysis revealed 
that these features were associated with the immune response, biological adhesion, and several malignant 
behaviors, all of which are consistent with biological processes that are differentially expressed in IDH wild 
type and IDH mutant LGGs. Finally, a prognostic signature showed an ability to stratify IDH mutant LGGs 
into high and low risk groups with distinctive outcomes. By extracting a large number of radiomic features, 
we identified an IDH mutation-specific radiomic signature with prognostic implications. This radiomic 
signature may provide a way to non-invasively discriminate lower-grade gliomas as with or without the 
IDH mutation. 
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Isocitrate dehydrogenase (IDH) enzymes are crucial for 
the tricarboxylic acid cycle, catalyzing the oxidative 
decarboxylation of isocitrate. Mutations of IDH genes 
result in production of the oncometabolite 2-
hydroxyglutarate (2-HG) instead of α-ketoglutarate [6]. 
Previous research studies found that IDH mutations are 
a causative event in gliomagenesis, as well as a 
diagnostic, classification, and prognostic biomarker for 
LGG patients [7–9]. Patients harboring these mutations 
generally have a favorable prognosis, independent of 
their WHO grade [10, 11]. In light of the crucial role of 
IDH mutations in glioma management, IDH 
examination has become a routine diagnostic modality 
in many neuropathology centers [1, 3]. Currently, 
immunohistochemistry staining for IDH1R132H using 
formalin-fixed, paraffin-embedded specimens is the 
most common approach [12–14]. Alternatively, Sanger 
sequencing and pyrosequencing analyses are also 
commonly used, especially for those suspected of 
harboring mutations other than IDH1R132H [14, 15]. 
However, the classical determination of IDH status 
requires surgically removal of tumor tissues. A 
noninvasive method would be more helpful in the 
treatment plan and for the prognostic prediction of 
glioma management. 
 
Previous studies have reported associations between 
imaging manifestations and IDH mutations. IDH mutant 
low-grade gliomas occur most frequently in the frontal 
lobe [11], especially in the area surrounding the rostral 
extension of the lateral ventricles [16]. IDH wild type 
gliomas exhibit more post-contrast enhancement on MR 
images than their mutant counterparts [17, 18]. Diffu-
sion (the apparent diffusion coefficient and fractional 
anisotropy) and perfusion (the relative cerebral blood 
volume and normalized cerebral blood volume) MR 
imaging can also be used in distinguishing IDH wild type 
and mutant gliomas [19–21]. Importantly, recent studies 
showed that the oncometabolite 2-HG can be detected in 
vivo using magnetic resonance spectroscopy (MRS), 
providing a better option for IDH testing [22–24]. 
However, the detection of 2-HG requires a unique MRS 
sequence device and cannot therefore be feasibly applied 
in a standard clinical setting [25]. Notably, few of the 
above approaches are either diagnostic or quantitative. 
 
Radiomics is a quantifying innovation that extracts 
large numbers of features from radiographic images 
using automatic data-characterization algorithms [26, 
27]. In pioneering work, investigators have applied 
quantitative radiomics analysis to computer tomography 
[28], MR [29], and positron emission tomography imag-
ing data [30], deciphering tumor phenotypes of non-
small cell lung carcinoma [28], head and neck cancers 
[31], and breast cancers [32]. Gevaert et al. utilized 
shape, texture, and edge sharpness to divide GBM 

patients into three clusters with corresponding 
molecular alterations [29]. These studies highlight the 
potential of radiomics for quantifying and monitoring 
tumor-phenotypic characteristics in clinical practice 
[33]. In the present study, we assessed a total of 431 
radiomic features, including first order statistics, shape 
and size based features, textural features, and wavelet 
features, from T2-weighted MR images. By comparing 
radiological and transcriptomic profiles of IDH mutant 
(IDHMUT) and IDH wild type (IDHWT) LGG patients, 
diagnostic radiomic features for the IDH mutations were 
identified and independently validated. Furthermore, 
transcriptomic differences between the two groups and 
the biological processes underlying several significant 
radiomic features were explored. Our results suggested 
that the radiomic signature can separate the IDHMUT and 
IDHWT phenotypes of LGG patients and can potentially 
enable the distinction between molecular subtypes of 
LGGs and facilitate the design of new treatments. 
 
RESULTS 
 
Demographic and clinical characteristics 
 
A total of 158 patients diagnosed with LGG were 
enrolled as the training data set. Of these, 118 (74.7%) 
had IDH mutant (IDHMUT) tumors and 40 (25.3%) had 
IDH wild type (IDHWT) tumors. No significant 
differences were observed with respect to age, sex, 
WHO grade, and tumor location between the two 
groups. The IDH mutation rate in the validation data set 
was 75.5% (77 out of 102). The clinical and pathologi-
cal characteristics of the training and the validation data 
sets are listed in Table 1. 
 
Identification of LGGs with similar radiomic 
patterns 
 
To assess the radiomic expression patterns, the quantita-
tive radiomic features were extracted from the LGG 
patients in the training set. An unsupervised hierarchical 
clustering method with average linkage revealed two 
clusters of patients with similar radiomic expression 
patterns (Figure 1). By comparing the clinical parame-
ters of the two clusters, we found that the second cluster 
was significantly associated with a high frequency of 
the IDH mutation (P = 0.0020, Fisher’s exact test, 
Figure 1), which indicates a tight association between 
IDH mutation status and quantitative radiomic features. 
 
Identification of the IDH-mutation specific radiomic 
signature 
 
Based on previous observations, our goal was to 
identify a set of radiomic features that would enable the 
prediction of the IDH mutation status in LGGs. We first  
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Table 1. Clinical characteristics of Lower Grade Glioma patients in training and validation set. 

 Training Set Validation Set 

 IDHWT 
(n=40) 

IDHMUT 
(n=118) P  IDHWT 

(n=25) 
IDHMUT 
(n=77) P 

Age 
median (range), years 

37 
(18-61) 

38 
(18-63) 

0.403a 44 
(22-70) 

42 
(22-68) 

0.754a 
  

Sex       
Male 26 74 0.795 b 15 46 0.999b 

Female 14 44  10 31  
WHO Grade       

II 25 89 0.115 b 13 62 0.005 b 
III 15 29  12 15  

Lesion Location       
Left 24 66 0.132 c 10 38 0.565 c 

Right 16 41  12 34  
Left+Right 0 11  3 5  

aStudent’s t test; bChi-square test; cFisher’s exact test; WT = Wild Type; MUT = Mutation. 
 

 
 

Figure 1. Radiomic patterns of 431 features in LGGs. Each column corresponds to one patient in the training cohort, and each row 
corresponds to one z-score-normalized radiomic feature. Unsupervised clustering between radiomic features and LGG samples revealed two 
distinct radiomic patterns. The second cluster showed a higher frequency of the IDH mutation (**, P < 0.01). 
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screened the differences in the radiomic features between 
the IDHWT and IDHMUT LGGs using the SAM algorithm. 
A total of 146 features, including 5 first order statistics 
features (energy, entropy, mean, median and root mean 
square), 1 shape and size based feature (surface to volume 
ratio), 8 textural features (GLCM: contrast, dissimilarity, 
energy, entropy, difference entropy, informational 
measure of correlation 1; GLRLM: short run emphasis, 
run percentage) and 132 wavelet features (Figure 2A), 
were found to be expressed differentially. All the 146 
screened features were listed in Supplementary Table 1. 
 
Then, we utilized the logistic regression algorithm to 
select the IDH mutation-specific signature. A series of 
ROC curves with relevant AUC was delineated using the 
given parameters. The results showed that only ten 
radiomic features were needed to divide 158 LGGs into 
an IDHWT group and an IDHMUT group with an AUC of 
0.86, while the AUC was 0.92 for 20 features and 0.98 
for 50 features (Figure 2B and 2C). Notably, using a 
classification model of 86 radiomic features, the enrolled 
patients were correctly classified into the IDHWT and the 
IDHMUT groups (AUC = 1.00, Figure 2B and 2C).  
 
To further validate the classification of this radiomic 
signature, T2-weighted images from 102 patients and in 
vivo xenograft glioma models were subjected to feature 
extraction and logistic regression. Consistently, the 

results suggested that this signature, which was 
comprised of 86 radiomic features, could separate the 
102 LGG patients into two groups with high sensitivity 
and specificity (AUC=0.99, Figure 2D). Fifty-four 
differentially expressed radiomic features were found in 
xenograft model, and 40 of them (such as Energy, Mean, 
Median and Root mean square) were shared between 
patients and xenograft model (Supplementary Table 2). 
Moreover, by using 40 of the differential features, we 
could divide the experimental mice into two groups in 
accordance with their IDH phenotype (Figure 2E and 
2F). These in vivo experiments further indicated the 
robustness of radiomic features in differentiating IDH 
mutation status. Specifically, the immune associated 
features were also listed in Supplementary Table 2. 
 
The potential molecular mechanism of IDH-
mutation-specific radiomic features 
 
CGGA and TCGA mRNA sequencing data were 
utilized to identify the biological processes and 
signaling pathways that differed significantly between 
the IDHMUT and IDHWT LGGs. Separate gene 
annotations of the CGGA data and the TCGA data 
consistently indicated that they primarily involved these 
biological processes: the immune response, cell 
adhesion, and vascular development (Supplementary 
Figure 1 and Supplementary Figure 2). In addition,

 

 
 

Figure 2. Identification and validation of the IDH mutation-specific radiomic signature using the logistic regression. (A) A total 
of 146 radiomic features were selected using SAM methods. The mean value and the corresponding groups of the differentially expressed 
features are listed. (B and C) In the training set, the logistic regression-derived radiomic features was able to separate LGGs into two groups 
with high sensitivity and specificity. The AUCs were 0.86, 0.92, 0.98 and 1.00 for 10, 20, 50 and 86 radiomic features, respectively. (D) 
Importantly, these 86 features comprised a signature enabling the distinction of LGGs into IDHMUT and IDHWT groups with an AUC of 0.9932. (E) 
A Western Blot assay confirmed the expression of the mutant IDH1 protein (IDH1R132H, 1:200, DIA-H05, Dianova). (F) The radiogenomic 
analysis of xenograft gliomas of nude mice. Differential radiomic features between LGGs patients could be used to distinguish the IDH 
mutation phenotype in the xenograft model as well. 
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the TCGA data suggested that the cell cycle phase and 
cell proliferation were also involved in the radiological 
manifestation of the IDHWT LGGs (Supplementary 
Figure 2).  
 
Meanwhile, to attempt to determine the exact 
biological significance of each radiomic feature, 48 
LGGs samples with both transcriptomic and radiomics 
data were subjected to correlation analysis and gene 
annotation. The results indicated that the IDH-specific 
radiomic features, such as the surface to volume ratio 
(SVR) and entropy, were primarily associated with cell 
polarity, cell adhesion, cell growth, and immune 
processes, which were the same biological processes 
that were found to differ between the IDHMUT and 
IDHWT LGGs (Supplementary Figures 3–5). 
Specifically, LGGs with large SVRs were found to be 
positively associated with a high expression of 
oncogenes, such as OTX1, HES1, BAG5, and the top 

10 genes that were positively associated with SVR 
were listed in Supplementary Table 3. 
 
Identification of a prognostic-based radiomic  
signature 
 
Accumulating evidence has revealed that the IDH 
mutation is a crucial predictor for LGG patient 
outcomes. The present study also showed that the 
IDHMUT LGG patients had a longer OS than the IDHWT 
patients (Figure 3B). To further explore the prognostic 
ability of the IDH-specific radiomic features, we 
extracted a compact signature consisting of features 
with P < 0.05 after a univariate Cox regression analysis 
(Table 2). The β value of each significant radiomic 
feature was used for risk evaluation. When they had an 
elevated risk score, the patients were prone to have a 
higher mortality and a greater frequency of IDH 
mutation (Figure 3A).  
 

 
 
Figure 3. Identification of a prognostic signature based on differential features between IDHWT and IDHMUT LGGs. (A) The 
expression pattern of 16 radiomic features along with the elevation of the risk score. The corresponding survival data and IDH status are 
listed. (B) In 158 LGGs cohort, the IDHMUT patients survived longer than the IDHWT patients (P = 0.0045, HR = 0.4024, 95%CI:0.16–0.70). (C) The 
risk score divided the LGGs into two groups with distinct outcomes (P = 0.0017, HR = 0.3207, 95%CI:0.19–0.68). (D) IDHMUT LGGs with a low 
risk score showed a favorable prognosis compared with the IDHWT patients (P = 0.0483, HR = 0.4232, 95%, CI:0.17–0.99). (E) Further, the 
overall survival time of the IDHMUT patients with a high risk score was not significantly different from that of the IDHWT (P = 0.199). 
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Table 2. Fourteen prognostic radiomic features identified by Cox regression. 

Features HR β 
95% CI 

P Value 
Lower Upper 

Mean_HLL 1.028 0.027 1.012 1.044 0.001 
Median_HHL 2.977 1.091 1.548 5.726 0.001 
Mean absolute deviation_HLL 1.011 0.011 1.003 1.019 0.007 
RunPercentage_HLL 1.300 0.263 1.066 1.586 0.010 
Range_HLH 1.001 0.001 1.000 1.002 0.013 
Surface to Volume Ratio 210.673 5.352 2.872 15475.144 0.015 
Entropy (group 1) 0.349 -1.052 0.149 0.817 0.015 
Median_HLH 1175.998 7.070 3.749 368844.040 0.016 
Energy_HLL (group 1 derived) 1.000 0.000 1.000 1.000 0.019 
Mean_HHL 1.189 0.173 1.025 1.380 0.023 
Variance_HLL(group 1 derived) 1.000 0.000 1.000 1.000 0.029 
Dissimilarity_HLL 1.759 0.565 1.051 2.944 0.032 
Root mean square_HLL 1.007 0.007 1.000 1.014 0.037 
Maximum_HLH 1.001 0.001 1.000 1.003 0.047 

 HR = Hazard Ratio; 95% CI = 95% Confidence Interval. 
 

 
Using the calculated risk score, we divided the LGG 
patients into high-risk and low-risk groups. Patients with 
a high-risk score had a worse prognosis (Figure 3C, HR = 
0.3207, P = 0.0017). Intriguingly, IDHMUT patients could 
be further categorized into IDHMUT-high risk and 
IDHMUT-low risk groups with significantly different OSs 
(Figure 3D, HR = 0.4232, P = 0.0483). A multivariate 
Cox analysis also demonstrated that the radiomic risk 
score could serve as a prognostic indicator for LGGs 
(Table 3). Moreover, the OS was not significantly 
different between the IDHWT–high risk groups and the 
IDHMUT-high risk groups (Figure 3E, P = 0.199), further 
emphasizing the prognostic value of the IDH-specific 
radiomic signature.  
 
A radiogenomic analysis found that a high-risk score was 
positively associated with genes that included ERCC1, 
G6PD, SOX9, and EGLN2, which are primarily enriched 
during the regulation of programmed cell death, cell 
growth, and metabolic processes. This could partially 
account for the radiological malignancy of the high-risk 
group (Figure 4). Representative samples of T2-weighted 
images with relevant radiomics and clinical features are 
presented in Figure 5. The first case was a 39-year old 
male patient with IDH mutant LGG. This patient was 
classified into the IDHMUT group with a relatively low 
radiomics risk score. Case 2 was a 46-year-old male with 
the IDH wildtype LGG who was correctly classified into 
the IDHWT group with a high-risk score.  
 
Additionally, the current study revealed that the radiomic 
risk score was significantly positively correlated with 

glioma stem cell markers such as TWIST1 (R = 0.503, 
P < 0.001) and CD133 (R = 0.346, P = 0.016) 
(Supplementary Figure 6). 
 
DISCUSSION 
 
By assessing the comprehensive characteristics of the 
entire tumor noninvasively, MR imaging is currently an 
indispensable approach for glioma diagnosis and 
treatment monitoring. The development of computational 
methodologies has successfully converted routine MR 
images to informative descriptors, substituting a quantita-
tive and objective modality for traditionally qualitative 
and subjective methods. In the present study, we 
analyzed 431 T2-weighted radiomic features in 158 LGG 
patients and identified an IDH-specific radiomic 
signature. An integrated analysis of both radiomic and 
transcriptomic data indicated that these radiomic features 
could reflect the tumor immune response, adhesion, and 
several malignant biological processes, all of which are in 
accord with behaviors that differentiate between IDHMUT 
and IDHWT LGGs. Furthermore, these IDH-specific radi-
omic features could be utilized to establish a prognostic 
evaluation model. The IDHMUT patients with a low risk 
score showed a significantly longer OS than the IDHMUT 

patients with a high-risk score.  
 
Medical imaging holds great promise for monitoring the 
progression of disease and the therapeutic response 
because it can noninvasively provide a more compre-
hensive view of tumors and can be performed repeat-
edly in routine practice [26]. However, unlike our 
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Table 3. Univariate and multivariate Cox analysis in Lower Grade Glioma. 

Variables 
Univariate Cox Regression Multivariate Cox Regression 

HR 95% CI P value HR 95% CI P value 
Sex       

Female vs. Male 0.722 0.363-1.439 0.355 0.870 0.428-1.767 0.699 
Age 0.978 0.944-1.012 0.202 0.991 0.959-1.024 0.567 
WHO Grade       

II vs. III 0.337 0.177-0.643 0.001 0.420 0.213-0.827 0.012 
IDH status       

MUT vs. WT 0.402 0.209-0.770 0.006 0.538 0.269-1.078 0.081 
Risk Score       

Low vs. High 0.806 0.727-0.894 <0.001 0.875 0.780-0.981 0.022 
 

 
quantitative radiomics analyses, the conventional 
evaluation of MR images is subjectively based on the 
experience of the radiologists and neurosurgeons, 
leading to a lack of conformity between different 
clinical centers. In this study, we identified the 
quantitative radiomics features that were differentially 
expressed in two IDH phenotypes. The consistency of 
the findings was validated by an independent cohort of 
102 LGGs patients. Intriguingly, some of the 
differential radiomic features could also be observed in 
an in vivo glioma model. Several reasons may 
contribute to this phenomenon. First, IDH1 mutation 
results in dramatically elevated levels of 2HG, a 
potential oncometabolite, which could influence the 

whole metabolic profile [34]. Secondly, IDH1 mutation 
is sufficient to establish the glioma hypermethylator 
phenotype, which is a powerful determinant of tumor 
pathogenicity [35].  
 
We utilized the integrative analysis of radiomic and 
transcriptomic data to decipher radiological 
characteristics that could be associated with biological 
processes and gene expression. The SVR, also called the 
surface-area-to-volume ratio, is the amount of surface 
area per unit volume of an object. For a given volume, 
the object with the smallest surface area (namely, with 
the smallest SVR) is a sphere. In contrast, objects with 
tiny spikes have a very large surface area for a given

 

 
 

Figure 4. Gene annotation of 48 patients with radiomic and transcriptome data. (A) The radiomic features, clinical characteristics, 
and associated genes are presented. (B) The positively associated genes (blue) that participated in GO in terms (yellow) of apoptosis, cell 
growth, and metabolic processes. 
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volume. In keeping with its biological significance, 
LGGs with large SVRs were found to be positively 
associated with a high expression of oncogenes, such as 
OTX1, HES1, BAG5; these genes are involved in 
biological processes that include the immune process and 
responses to stimuli. Similarly, a previous study revealed 
that patients with spherical tumors survived significantly 
longer than those with irregular tumor surface in 
glioblastomas, which indicated that tumors with irregular 
surface could be more malignant than spherical tumors 
[36]. Another radiomic parameter enriched in the IDHWT 
LGGs was Entropy, which describes irregularity of pixel 
values within the tumor area (higher values suggesting 
increasing irregularity). Entropy is a promising quanti-
tative imaging biomarker for capturing cancer imaging 
phenotype, and a higher Entropy was found to be 
associated with higher tumor metabolism, higher tumor 
grade, worse prognosis, and worse treatment response 
[37–39]. The current study revealed that Entropy was 
positively associated with transcription, chromatin 
organization and other biological functions 
(Supplementary Figure 3). The current finding is in 
accordance with previous studies. 
 
The discovery that IDH mutations lead to accumulation 
of the oncometabolite 2-HG indicates an oncogenic role 
of the IDH mutation in the genesis of malignant brain 
tumors [34]. Therefore, the biological functions of the 
IDH mutation have attracted attention worldwide. 
Researchers suggested that the IDH mutation is 
correlated with the regulation of HIF1 [40], the escape 
immune system [41], and aggregation [42]. In the present 
study, RNA sequencing data from both TCGA and 
CGGA revealed that IDHMUT and IDHWT LGGs showed 
differences in immune response, vascular development, 

adhesion, and even proliferation, which further confirmed 
the genotypic and phenotypic differences between the 
two groups. Importantly, these genetic alterations and 
biological behaviors may be manifested radiologically, 
supporting a preoperative and noninvasive strategy for 
IDH prediction.  
 
A recent study showed that IDH mutant high grade 
gliomas were more amenable to a complete resection of 
enhancing tumors and had an improved survival with the 
resection of non-enhanced tissues [43]. Therefore, 
preoperatively evaluating the IDH status may be 
beneficial for surgical decision making and for 
developing selective targeted therapy [25]. An increasing 
number of studies indicate that patients harboring IDH 
mutations have a better prognosis. However, some 
IDHMUT patients had a shorter survival than some IDHWT 
patients. In the present work, we used radiomic features 
to promote the prognostic prediction. The results implied 
that a combination of genetic alterations and radiomic 
changes could potentially provide a non-invasive 
methodology for genotype detection. What is more, the 
worse prognosis of high risk patients could be partially 
attributable to cell growth, metabolic processes, and 
programmed cell death, providing a new approach for 
developing therapeutic targets. 
 
There are several limitations in the present study. We 
used T2-weighted MR images, a routine type of imaging 
for clinical glioma management, for the radiomic 
analysis. Although we normalized the radiological data, 
weighting the imaging data may not reflect the actual 
situation in the brain tissue, and the data can and does 
vary between MR scanners. A quantitative approach, 
such as T2 mapping, would be more suitable for the

 

 
 

Figure 5. Case examples of LGG patients with T2-weighted images. Case 1 was a 39-year-old male with an IDH mutant LGG. This 
patient was classified into the IDHMUT group with a relatively low risk score based on the radiomic features. In contrast, case 2 was a 46-year-
old male with an IDH wildtype LGG, who was correctly classified into the IDHWT group with a high risk score.  
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analysis of the MR images. Moreover, multi-dimensional 
data (copy number variance, methylation, proteomic 
profile, etc.) and a larger cohort would help to further 
delineate the radiomic and genomic landscape of glioma, 
and multi-regional samplings would help to obtain more 
precise results. Additionally, the specific radiomic 
features of tumors in various pathological types is an 
interesting topic to be investigated in future studies. 
 
CONCLUSIONS 
 
In conclusion, we demonstrated that radiomic features 
could serve as an alternative approach for IDH 
phenotype classification in LGG patients. The MR 
imaging is a routine examination for gliomas, and 
quantitative radiomic and radiogenomic analyses can 
potentially provide a noninvasive modality for 
prognosis prediction and phenotypic monitoring. As the 
whole process of radiomic analysis takes less than 10 
minutes for an individual case and can be practice 
automatically without further cost, this newly developed 
technique is increasingly applied to assisting clinical 
diagnosis and decision making. 
 
MATERIALS AND METHODS 
 
Patients and samples 
 
A total of 158 LGG patients who underwent surgical 
treatment between March 2006 and December 2012 

were retrospectively selected as a training set. An 
additional 102 LGG patients who underwent surgical 
treatment from January 2016 to June 2016 were 
prospectively included as a validation set. The 
inclusion criteria were as follows: (1) pathologically 
confirmed lower grade glioma; (2) available IDH 
status; (3) available high-resolution preoperative T2-
weighted MR images; (4) available clinical 
characteristics. The basic clinical characteristics of the 
patients, including age, gender, WHO grade, and 
tumor location are summarized in Table 1. The study 
was approved by the institutional review board of 
Beijing Tiantan Hospital. The design of the present 
study is illustrated in Figure 6. 
 
Tumor masking and normalization 
 
The tumor masking was conducted as previously 
described [44]. Most of the MR images were obtained 
using a Trio 3.0T scanner (Siemens, Erlangen, 
Germany), and the remaining clinical structural images 
were acquired on a Magnetom Verio 3T (Siemens AG, 
Erlangen, Germany). The T2-weighted image 
parameters were as follows: repetition time = 5800 ms; 
echo time = 110 ms; flip angle = 150 degrees; 24 slices; 
field of view = 240×188 mm2; voxel size = 0.6×0.6×5.0 
mm3; matrix = 384×300. Tumors were traced directly 
using MRIcron (http://www.mccauslandcenter.sc.edu/ 
mricro/mricron). Masks of the brain tumors were drawn 
on each patient’s T2-weighted images in native space 

 
 

 
 
Figure 6. The workflow of the radiogenomic analysis for the identification and validation of the IDH mutation-specific 
radiomic signature in lower grade gliomas. 
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by two board-certified neuroradiologists (K.W. and 
X.C.), who were blind to the patients’ clinical 
information. Areas that produced abnormal hyper-
intense signals on the T2-weighted images were identi-
fied as LGG tumor areas. When a greater than 5% 
discrepancy existed between these two masks, the masks 
utilized were determined by a senior neuroradiologist 
(S.L.). The intensities of the voxels in each tumor mask 
were normalized to the z distribution ([gray value – 
mean gray value] / SD), on the individual level, to 
ensure consistency in the distribution of the gray values 
among the cases in the cohort. 
 
Quantitative radiological features extraction and 
selection 
 
The extraction of the radiomic features was performed 
as previously reported [26]. A total of 431 image 
features were extracted from the tumor masks. The 
features were categorized into four groups. Group 1 
quantitatively described the distribution of voxel 
intensities in the MR image using 14 descriptors. 
Group 2 described 8 three-dimensional features based 
on the shape of the tumor regions. Group 3 described 
textual features for quantifying intra-tumor hetero-
geneity, which were calculated from gray level co-
occurrence (GLCM, 22 descriptors) and gray level 
run-length (GLRLM, 11 descriptors) texture matrices. 
Group 4 calculated the intensity and textural features 
from wavelet decompositions of the original image. 
All the algorithms were implemented in MATLAB 
(2014a).  
 
Transcriptomic comparison between IDHWT and 
IDHMUT LGG 
 
All available whole genome mRNA sequencing data 
of LGG patients and clinical information were 
acquired from the Chinese Glioma Genome Atlas 
database (http://www.cgga.org.cn) and the Cancer 
Genome Atlas database (http://cancergenome.nih.gov/). 
The differentially expressed genes were selected by a 
significance analysis of the microarray (SAM) 
algorithm using R programming language 
(http://cran.r-project.org), and with the criteria of fold 
change > 20% and false discovery rate (FDR) < 0.05 
(Benjamini-Hochberg). Finally, the genes 
significantly overexpressed in the IDHWT group 
(CGGA, 1509; TCGA, 1262) or in the IDHMUT group 
(CGGA, 914; TCGA, 582) were processed using Gene 
Cluster and Gene Treeview software to construct a 
heatmap, and the online Database for Annotation, 
Visualization, and Integrated Discovery (DAVID, 
http://david.ncifcrf.gov/) program [45] for the gene 
ontology (GO). 

Xenograft model of glioma and radiomic analysis 
 
Lentiviral vectors carrying IDH1 wildtype or IDH1 
R132H mutant cDNA sequences were transduced into 
the U87MG cells with polybrene (Sigma), as 
previously described [42]. Stably transduced cells 
were selected during three days of puromycin (Sigma) 
treatment. The Western Blot was conducted to verify 
the expression of the mutant IDH1 enzyme using a 
cell lysate and the IDH1R132H antibody (1:200, DIA-
H05, Dianova). Then, IDH1 wild type or R132H 
mutant U87MG cells (5 × 105 cells per mouse in 5 
µL) were intracranially injected into 5 to 6 weeks old 
female nude mice (Beijing Vital River Laboratory 
Animal Technology), as described earlier [46]. After 
40 days, the tumors were measured using a 7T MR 
Image System (Bioclinscan, Bruker). The relevant T2-
weighted MR images were subjected to radiomic 
feature extraction and analysis. After tumor 
segmentation, a total of 431 radiomic feature were 
extracted from the T2-weighted MR images from each 
mouse. The differentially expressed radiomic features 
were selected using SAM algorithm, with the criteria 
of false discovery rate (FDR) < 0.05 (Benjamini-
Hochberg). 
 
IDH phenotype classification 
 
First, similar to the radiomic analysis in xenograft 
model, SAM algorithm was conducted on the 431 
radiomic features to select the differentially expressed 
radiomic features between IDHWT and IDHMUT 
tumors, with the criteria of false discovery rate (FDR) 
< 0.05 (Benjamini-Hochberg). Next, the selected 
differentially expressed radiomic features were 
utilized for IDH phenotype classification. The 
classification process was conducted using a logistic 
regression model (Y = expr feature 1 × β feature 1 + expr 
feature 2 × β feature 2 + … + expr feature n × β feature n + ε) 
based on the MATLAB (2014a) software. In this 
model, ‘Y’ represents the IDH status (1 indicates 
mutation, 0 indicates wildtype), while ‘expr’ 
represents the expression value of each radiomic 
feature. β represents the model parameter to be 
estimated, and ε is the estimated residual. The 
prediction results were further interpreted using the 
receiver operating characteristic (ROC) curve. To 
select the most predictive parameters, the logistic 
regression algorithm was applied repeatedly. Using 
the dimensionality reduction principle, the radiomic 
feature with the highest P value in predicting IDH 
status was excluded from the model each time until 
features with the best predictive effect were 
identified. The signature derived from the training set 
was subsequently applied to the validation set. 
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Identification of the prognosis-based signature 
 
The prognostic values for each IDH-specific feature in 
patients with LGG were calculated using a univariate 
Cox regression after elimination of the patients with an 
OS of less than 30 days. The significant radiomic 
features with P values < 0.05 were selected to develop a 
prognosis-based signature. The risk score was 
calculated using the linear combination of the selected 
features weighted by the regression coefficient derived 
from the univariate Cox regression analysis (β), 
referring to previous studies [47, 48]. The risk score for 
the OS of each individual was calculated as follows: 
Risk score = expr feature 1 × β feature 1 + expr feature 2 × β 
feature 2 + … + expr feature n × β feature n. ‘Expr’ represents 
the expression value of each radiomic feature. The 
‘expr’ and β used in methods 2.7 have no relationship 
with those used in methods 2.6. 
 
We next divided the patients into high-risk and low-risk 
groups based on the risk score. The cutoff value was 
determined when the P value was the smallest in log-
rank test in the training set, and then the cut-off value 
was fixed and applied to all Kaplan-Meier curve 
analyses. 
 
Radiogenomic analysis 
 
Forty-eight LGG patients involved in the radiomic 
analysis were subjected to an Agilent Whole Human 
Genome Array analysis according to the manufacturer’s 
instructions [49]. The data were acquired using the 
Agilent G2565BA Microarray Scanner System and 
Agilent Feature Extraction Software (version 9.1). The 
probe intensities were normalized using GeneSpring 
GX 11.0. The IDH mutations of the training data set 
were assessed by pyrosequencing, while the IDH status 
for the validation data set was identified by 
immunohistochemistry (IDH1R132H, DIA-H05, Dianova). 
 
Radiogenomic analysis was further performed. The 
Pearson correlation coefficients were calculated between 
the genes and IDH-associated radiomic features. The 
association was identified to be statistically significant 
when the absolute value of Pearson correlation 
coefficient was > 0.4 and the P value was < 0.05. Gene 
ontology (GO) analysis was conducted to investigate the 
underlying biological processes of the radiomic features 
based on the DAVID Bioinformatics Resources 
(http://david.ncifcrf.gov/). The top 200 positive/negative 
genes that were significantly associated with each feature 
were subjected to GO analysis to reveal the underlying 
biological processes of each feature. Using this method, 
the underlying biological processes of the risk score and 
the differentially expressed features in xenograft model 
were also investigated. In addition, the relationship 

between the radiomic risk score and glioma stem cell 
signatures was also assessed with using the Pearson 
correlation analysis. 
 
Statistics 
 
The significant differences between the two groups 
were estimated using a Student’s t-test. Chi-square and 
Fisher’s exact tests were used to compare the 
frequencies between the groups. The OS curves were 
plotted according to the Kaplan–Meier method, with the 
log-rank test applied for comparison. A Cox regression 
was used to determine the prognostic value of each 
radiomic feature for the OS in LGG patients. All the 
differences were considered statistically significant at 
the two-sided P < 0.05 level. 
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SUPPLEMENTARY MATERIAL 
 
 
 

 
 

Supplementary Figure 1. The transcriptomic distinction between IDHMUT and IDHWT LGGs in the CGGA cohort. (A) Differentially 
expressed genes determined by the Pearson correlation algorithm. (B) Highly expressed genes in the IDHWT LGGs were investigated by gene 
annotation. The enriched biological processes included the immune response, cell adhesion, and vascular related terms. 
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Supplementary Figure 2. The transcriptomic distinction between the IDHMUT and IDHWT LGGs in the TCGA cohort. 
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Supplementary Figure 3. The associated genes and relevant GO result of Group 1 and Group 2 descriptors. 
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Supplementary Figure 4. The associated genes and relevant GO result of Group 3 descriptors: Dissimilarity, Difference 
Entropy, Energy, and IMC1 (Informational measure of correlation 1). 
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Supplementary Figure 5. The associated genes and relevant GO result of Group3 descriptors: Short Run Emphasis, Run 
percentage, Entropy (Group3), and Contrast. 
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Supplementary Figure 6. Pearson correlation analysis was performed between the radiomics risk score and the glioma stem 
cell markers TWIST1 and CD133. 
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Supplementary Table 1. Differential Radiomics features (n=146) between IDH mutant and IDH wildtype groups in the 
training set. 

Features Type   
Shape and size based features   

Surface to Volume Ratio  
First order statistics  

Energy Entropy Median 
Mean Root mean square  

Gray Level Co-occurrence Matrix  
Contrast Dissimilarity 
Energy Entropy 
Difference entropy IMC1 

Gray Level Run-Length Matrix  
Short run emphasis Run Percentage 

Wavelet features    

Cluster shade_HLL 
Energy_HHL (group 1 

derived) Maximum_LLH Root mean square_HLL 

Contrast_LLL 
Energy_HHL (group 3 

derived) Maximum_LHL Root mean square_HLH 

Contrast_LLH 
Energy_HHH (group 1 

derived) Maximum_LHH Root mean square_HHL 

Contrast_LHL 
Energy_HHH (group 3 

derived) Maximum_HLL Root mean square_HHH 

Contrast_HLH 
Entropy_LLL (group 1 

derived) Maximum_HLH Run percentage_LLL 

Contrast_HHL 
Entropy_LLL (group 3 

derived) Maximum_HHL Run percentage_LHL 

Contrast_HHH 
Entropy_LLH (group 1 

derived) Maximum_HHH Run percentage_LHH 

Difference entropy_LLL 
Entropy_LLH (group 3 

derived) Mean_LLL Run percentage_HLL 

Difference entropy_LLH 
Entropy_LHL (group 1 

derived) Mean_LLH Run percentage_HLH 

Difference entropy_LHL 
Entropy_LHL (group 3 

derived) Mean_LHL Run percentage_HHH 

Difference entropy_HLL 
Entropy_LHH (group 1 

derived) Mean_LHH Short run emphasis_LLL 

Difference entropy_HLH 
Entropy_LHH (group 3 

derived) Mean_HLL Short run emphasis_LLH 

Difference entropy_HHL 
Entropy_HLL (group 1 

derived) Mean_HLH Short run emphasis_LHL 

Difference entropy_HHH 
Entropy_HLL (group 3 

derived) Mean_HHL Short run emphasis_LHH 

Dissimilarity_LLL 
Entropy_HLH (group 1 

derived) Mean_HHH Short run emphasis_HLL 

Dissimilarity_LLH 
Entropy_HLH (group 3 

derived) Median_LLL Short run emphasis_HLH 

Dissimilarity_LHL 
Entropy_HHL (group 1 

derived) Median_LLH Short run emphasis_HHL 

Dissimilarity_HLL 
Entropy_HHL (group 3 

derived) Median_LHL Short run emphasis_HHH 
Dissimilarity_HLH Entropy_HHH (group 1 Median_LHH Standard deviation_LLH 
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Features Type   
derived) 

Dissimilarity_HHL 
Entropy_HHH (group 3 

derived) Median_HLH Standard deviation_LHL 
Dissimilarity_HHH IMC1_LLL Median_HHL Standard deviation_LHH 

Energy_LLL (group 1 derived) IMC1_HLL Median_HHH Standard deviation_HLL 
Energy_LLL (group 3 derived) IMC1_HLH Minimum_LLL Standard deviation_HLH 
Energy_LLH (group 1 derived) IMC1_HHL Range_LLH Standard deviation_HHL 
Energy_LLH (group 3 derived) IMC1_HHH Range_LHL Standard deviation_HHH 
Energy_LHL (group 1 derived) Mean absolute deviation_LLH Range_HLL Sum entropy_HHL 

Energy_LHL (group 3 derived) Mean absolute deviation_LHL Range_HLH 
Variance_LLH (group 1 

derived) 

Energy_LHH (group 1 derived) Mean absolute deviation_LHH Range_HHL 
Variance_LHL (group 1 

derived) 

Energy_LHH (group 3 derived) Mean absolute deviation_HLL Range_HHH 
Variance_LHH (group 1 

derived) 

Energy_HLL (group 1 derived) Mean absolute deviation_HLH Root mean square_LLL 
Variance_HLL (group 1 

derived) 

Energy_HLL (group 3 derived) Mean absolute deviation_HHL 
Root mean 

square_LLH 
Variance_HLH (group 1 

derived) 

Energy_HLH (group 1 derived) Mean absolute deviation_HHH 
Root mean 

square_LHL 
Variance_HHL (group 1 

derived) 

Energy_HLH (group 3 derived) Maximum_LLL 
Root mean 

square_LHH 
Variance_HHH (group 1 

derived) 

IMC1 = Informational measure of correlation 1   
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Supplementary Table 2. Forty differentially expressed radiomic features between IDH mutant and IDH wildtype 
groups in the xenograft model. 

Number Features 
1 Energy (Group 1) 
2 Energy_LLL (Group 1 derived) 
3 Energy_LHL (Group 1 derived) 
4 Energy_HLH (Group 1 derived) 
5 Energy_HHL (Group 1 derived) 
6 Energy_HHH (Group 1 derived) 
7 Mean absolute deviation_HHL 
8 Mean absolute deviation_HHH 
9 Maximum_LLL 
10 Maximum_LHL 
11 Maximum_LHH 
12 Maximum_HLL 
13 Maximum_HLH 
14 Maximum_HHL 
15 Maximum_HHH 
16 Mean 
17 Mean_LLL 
18 Mean_HHL 
19 Median 
20 Median_LLL 
21 Range_LLH 
22 Range_LHL 
23 Range_HLL 
24 Range_HLH 
25 Range_HHL 
26 Range_HHH 
27 Root mean square 
28 Root mean square_LLL 
29 Root mean square_LHL 
30 Root mean square_HLH 
31 Root mean square_HHL 
32 Root mean square_HHH 
33 Standard deviation_LHL 
34 Standard deviation_HLH 
35 Standard deviation_HHL 
36 Standard deviation_HHH 
37 Variance_LHL (Group 1 derived) 
38 Variance_HLH (Group 1 derived) 
39 Variance_HHL (Group 1 derived) 
40 Variance_HHH (Group 1 derived) 
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Supplementary Table 3. Top 10 genes that were positively associated with surface to volume ratio. 

Genes Pearson correlation coefficients P 
OTX1 0.548373009 5.46E-05 
SP8 0.535831595 8.68E-05 

BAG5 0.528369318 0.000113355 
C9orf144B 0.507442171 0.000232145 
GPR37L1 0.501972823 0.000277878 
RAB4B 0.489037137 0.000420165 

AHCYL2 0.48877379 0.000423645 
KIAA0090 0.483516067 0.000498797 
ATP1A4 0.475963747 0.000627815 

 
 


