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ABSTRACT 
 
Roles of Piezo-type mechanosensitive ion channel component 2 (PIEZO2) in cancer remain largely unknown. 
Herein, we explored PIEZO2 expression, prognosis and underlying mechanisms in cancer. Breast was selected as 
the candidate as its relatively higher expression level of PIEZO2 than other human tissues. Next, we identified a 
decreased expression of PIEZO2 in breast cancer compared with normal controls, and found that PIEZO2 
expression positively correlated with estrogen receptor (ER) and progesterone receptor (PR) status but 
negatively correlated with human epidermal growth factor receptor 2 (HER2) status, Nottingham Prognostic 
Index (NPI) score, Scarff-Bloom-Richardson (SBR) grade, basal-like and triple-negative status. Subsequent 
analysis revealed that high expression of PIEZO2 had a favorable prognosis in breast cancer. 182 miRNAs were 
predicted to target PIEZO2. Among these miRNAs, five miRNAs (miR-130b-3p, miR-196a-5p, miR-301a-3p, miR-
421 and miR-454-3p) possess the greatest potential in targeting PIEZO2. 109 co-expressed genes of PIEZO2 were 
identified. Pathway enrichment analysis showed that these genes were enriched in Hedgehog signaling 
pathway, including Cell adhesion molecule-related/downregulated by oncogenes (CDON). CDON expression 
was decreased in breast cancer and downregulation of CDON indicated a poor prognosis. Altogether, these 
findings suggest that decreased expression of PIEZO2 may be utilized as a prognostic biomarker of breast 
cancer. 
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INTRODUCTION 
 
With the rapid development of economy and aging of 
population, cancer has been one of the most prevalent 
and lethal diseases all over the world, which seriously 
threatens human health [1]. According to the statistics 
of the world cancer report, in 2014, approximately 14.1 
million cancers were diagnosed and nearly 8.2 million 
cancer-related deaths occurred. The onset of cancer is 
an extremely complicated process, consisting of a series 
of steps. Multiple factors account for this severe 
situation, among which gene mutation is one cause 
closely linked to cancer occurrence and progression [2, 
3]. Although considerable improvements have been 
achieved in cancer diagnosis, therapy and prognosis 
over the past few years, the five-year survival rate of 
most cancer patients remains dismal [4]. The majority 
of cancer patients will eventually recur after current 
treatment. Therefore, establishing an effective 
prognostic biomarker can not only estimate prognosis of 

cancer patients but also predict therapeutic effect, 
thereby providing proper treatment and finally 
improving clinical outcomes. 
 
Lately, microRNA (miRNA)-targeted genes have been 
demonstrated to function as predictors of prognosis in 
cancer patients. For example, Sheng et al. found that, 
loss of suppression of miR-206, kinesin family member 
2A was significantly overexpressed in ovarian cancer 
and was associated with poor prognosis of patients with 
ovarian cancer [5]; Lei et al. suggested that miR-222-
mediated downregulation of matrix metalloproteinase 
inhibitor 3 indicated a good prognosis for non-small cell 
lung cancer [6]. Piezo-type mechanosensitive ion 
channel component 2 (PIEZO2), a mechanically 
activated ion channel, has entered the eyes of 
researchers and scholars for few years. PIEZO2 belongs 
to the PIEZO family which are large transmembrane 
proteins with predicted transmembrane domains 
between 24 and 36 [7]. PIEZO2 is also an essential 

 
 

Figure 1. Expression of PIEZO2 in normal and cancer tissues from the HPA database. (A) PIEZO2 mRNA expression in 
different normal tissues; (B) PIEZO2 protein expression in different normal tissues; (C) PIEZO2 mRNA expression in different cancer 
tissues; (D) PIEZO2 protein expression in different cancer tissues (HPA031974); (E) PIEZO2 protein expression in different cancer tissues 
(HPA040616); (F) PIEZO2 protein expression in different cancer tissues (HPA015986). 
 



www.aging-us.com 2630 AGING 

component of distinct mechanically-activated cation 
channels and has been found to play a key role in rapid 
adapting mechanically activated currents in 
somatosensory neurons. PIEZO2 dysregulation has been 
well documented to cause several diseases, such as 
Gordon syndrome, Marden-Walker syndrome and 
Arthrogryposis [8]. Recently, some studies have also 
suggested that aberrant expression of PIEZO2 is 
involved in cancer onset and progression [9-11]. 
However, previous studies regarding the roles of 
PIEZO2 in cancer and the underlying mechanisms how 
PIEZO2 exerts its impact on cancer are still insufficient 
and need to be further elucidated. Furthermore, the 
expression and prognostic role of PIEZO2 in human 
cancers, to date, have also not been fully determined. In 
this study, we first detected the expression of PIEZO2 
in all types of cancer, especially in breast cancer. Then, 
the prognostic roles of PIEZO2 in breast cancer based 
on different clinicopathological features were assessed. 
Finally, we explored the underlying regulatory 
mechanisms of PIEZO2 in breast cancer. 

RESULTS 
 
Expression profile of PIEZO2 in human normal and 
cancer tissues 
 
A high and detectable expression level of a gene is one 
of the most important traits for being a promising 
diagnostic or prognostic biomarker. Therefore, in the 
first place, we determined the expression of PIEZO2 in 
different normal tissues using the Human Protein Atlas 
(HPA) database. The results demonstrated that lung, 
gallbladder, urinary bladder, esophagus, cerebral cortex, 
prostate, spleen, seminal vesicle, smooth muscle and 
breast were the top ten normal tissues according to 
expression values of PIEZO2 mRNA (Figure 1A). The 
top ten tissues, sorted by expression levels of PIEZO2 
protein, were adrenal gland, gallbladder, pancreas, 
stomach, small intestine, breast, parathyroid gland, 
appendix, lymph node and tonsil (Figure 1B). Figure 1A 
and Figure 1B together told us that gallbladder and 
breast were the two proper candidates for further 

 
 

Figure 2. Expression of PIEZO2 in breast cancer. (A) PIEZO2 expression in breast cancer cell lines (MCF-7, Bcap37, MDA-MB-468 
and MDA-MB-231) compared with that in normal breast cell line (HBL-100); (B) PIEZO2 expression in clinical breast cancer tissues 
compared with that in matched adjacent normal tissues (n=16); (C) expression of PIEZO2 (also known as FAM38B) in breast cancer 
compared with normal controls by analyzing UALCAN database; (D) PIEZO2 protein expression level in breast cancer tissue and 
normal breast tissue was analyzed using immunohistochemical staining from HumanProteinAtlas database. *P<0.05. Errors bars 
indicate respective standard deviations. 
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investigation. The expression of PIEZO2 mRNA and 
protein in different types of cancer was successively 
analyzed using the HPA database (Figure 1C-F). 
Among all types of cancer, breast cancer presented as 
the highest expression value of PIEZO2 in both mRNA 
and protein levels. Taken these findings together, breast 
was selected for further investigation. 
 
PIEZO2 expression is frequently decreased in breast 
cancer and inversely correlates with progression 
 
Next, we determined the expression of PIEZO2 in 
breast cancer cell lines and clinical samples compared 
with normal breast cell line and matched non-cancerous 
samples. Figure 2A showed that PIEZO2 expression in 
four breast cancer cell lines (MCF-7, Bcap37, MDA-

MB-468 and MDA-MB-231) was significantly lower 
than that in normal breast cell line (HBL-100). 
Moreover, we found lower expression of PIEZO2 in 
high malignant cells (MDA-MB-468 and MDA-MB-
231) compared with low malignant cell (MCF-7). Then, 
we compared the expression of PIEZO2 in breast cancer 
tissues with matched adjacent normal breast tissues and 
suggested that cancer tissues showed a significantly 
decreased PIEZO2 expression (Figure 2B). To further 
confirm under-expression of PIEZO2 in breast cancer, 
corresponding breast cancer expression data from 
TCGA were analyzed using UALCAN database (Figure 
2C). Intriguingly, a similar result was observed. 
Furthermore, the protein level of PIEZO2 was also 
decreased in breast cancer tissues compared with 
normal breast tissues (Figure 2D). 

 
 

Figure 3. Expression differences of PIEZO2 in breast cancer patients based on different clinicopathological features, including age 
(A), nodal status (B), ER status (C), PR status (D), HER2 status (E), NPI score (F), SBR grade (G), basal-like status (H) and triple-negative 
status (I). 
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Table 1. Correlation between PIEZO2 expression and clinicopathological characteristics in TCGA breast 
cancer. 

             
Features 

 Breast cancer 

PIEZ02  

low/high expression case (n) aP value 

Age at diagnosis Cases   

<=51 367 283/84 0.6101 
 >51  729 572/157 

Estrogen receptor status   

Positive 806 596/210 < 0.0001 
 Negative 240 224/16 

NA 50 35/15 

Progesterone receptor status    

Positive 698 513/185 < 0.0001 
 Negative 345 304/41 

NA 53 38/15 

Her2 receptor status    

Positive 161 147/14 < 0.0001 
 Negative 564 425/139 

NA 371 283/88 

T stage   

T1  280 193/87 < 0.0001 
 T2/T3/T4 813 660/153 

TX  3 2/1 

N stage   

N0/N1  880 675/205 0.0221 
 N2/N3 196 165/31 

NX  20 15/5 

M stage    

M0  910 711/199 0.8316 
 M1  21 16/5 

MX 165 128/37 

Pathologic stage    

I 182 125/57 0.0010 
 II/III/IV  891 711/180 

NA 23 19/4 

aFor analysis of relationship between PIEZO2 levels and various clinicopathological features, Pearson’s Chi-Square test 
was employed. If the expected count of variable was less than 5 and more than 1, Yates’ continuity corrected Chi-Square 
test was used. When the expected count of variable was less than 1, Fisher’s exact test was utilized. 
The significant P value is marked with Bold type. NA=Not Applicable. 
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Figure 4. Prognostic value of PIEZO2 (Affymetrix ID are valid: 1562488_at and 222908_at) in breast cancer patients. (A-
B) Overall survival curve of PIEZO2 for breast cancer patients; (C-D) relapse free survival curve of PIEZO2 for breast cancer patients; 
(E-F) distant metastases free survival curve of PIEZO2 for breast cancer patients; (G-H) post progression survival curve of PIEZO2 for 
breast cancer patients. 
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Subsequently, we further studied the expression 
differences of PIEZO2 based on different 
clinicopathological parameters in breast cancer using 
bc-GenExMiner database. As shown in Figure 3A, no 
significant difference between the <51 years and >51 
years was observed. Figure 3 also demonstrated that 
PIEZO2 expression was markedly upregulated in breast 
cancer with nodal negative (Figure 3B), ER positive 
(Figure 3C), PR positive (Figure 3D) and HER2 
negative (Figure 3E) status. PIEZO2 expression was 
inversely correlated with NPI score and SBR grade as 
presented in Figure 3F and Figure 3G, respectively. 
Additionally, we also discovered that expression of 
PIEZO2 was significantly decreased in basal-like 
(Figure 3H) and triple negative (Figure 3I) breast cancer 
patients compared with not basal-like and not triple 
negative breast cancer, respectively. We further 
investigated the relationship between PIEZO2 
expression and clinicopathological characteristics using 

TCGA breast cancer data. Chi-square test revealed that 
PIEZO2 expression was significantly associated with 
ER status (P < 0.001), PR status (P < 0.001), HER2 
status (P < 0.001), T stage (P < 0.001), N stage (P = 
0.0221) and pathologic stage (P = 0.0010) (Table 1). All 
these findings suggest that PIEZO2 expression in breast 
cancer is significantly declined and negatively 
correlates with progression of breast cancer. 
 
Breast cancer patients with lower expression of 
PIEZO2 have poorer prognosis 
 
Then, we explored the prognostic values of PIEZO2 in 
breast cancer. When we entered PIEZO2 in Kaplan 
Meier-Plotter database, two probes (1562488_at and 
222908_at) were found. As shown in Figure 4, breast 
cancer patients with high expression of PIEZO2 had a 
significantly favorable prognosis, including overall 
survival, relapse free survival and distant metastasis free 

 
 

Figure 5. Prognostic values of PIEZO2 in breast cancer patients based on different clinicopathological features. Green 
bars indicate a favorable prognosis; red bars indicate an unfavorable prognosis; black bars represent no statistical significance. 
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survival in both two probes. Regarding to post 
progression survival, high expression of PIEZO2 was 
also found to be significantly linked to a favorable 
prognosis in the probe 222908_at. In the probe 
1562488_at, however, no statistical significance of 
PIEZO2 for predicting post progression survival was 
observed between the PIEZO2 high expression group 
and PIEZO2 low expression group. Furthermore, we 
also assessed the relationship between PIEZO2 
expression and prognosis in breast cancer using 
PrognoScan database (Table 2). As listed in Table 2, 
PIEZO2 expression level was positively correlated with 
distant metastasis free survival, relapse free survival, 
disease specific survival, disease free survival and 
overall survival in patients with breast cancer. 
 
The prognostic roles of PIEZO2 in breast cancer 
patients according to various clinicopathological 
features were also determined by Kaplan Meier-Plotter 
database. The data were presented in Figure 5 which 

demonstrated that PIEZO2 overexpression was 
significantly associated with better prognosis in ER-
positive, HER2-negative, luminal A and luminal B 
breast cancer in the two probes. Furthermore, we also 
found that high expression of PIEZO2 in basal-like 
breast cancer patients indicated a better prognosis in the 
probe 1562488_at. In the probe 222908_at, a positive 
correlation of PIEZO2 expression and survival in PR-
positive and lymph node-positive breast cancer patients 
but a negative association between PIEZO2 expression 
and survival in ER-negative, HER2-positive and 
pathological grade 3 breast cancer patients were 
observed. 
 
Identification of miRNAs that potentially regulate 
PIEZO2 
 
To identify PIEZO2 that can be modulated by miRNAs, 
starBase database was utilized to predict upstream 
miRNAs  of  PIEZO2.   In total,   182   miRNAs   could  

Table 2. Relationship between PIEZO2 expression and prognosis in breast cancer patients (PrognoScan 
database). 

Dataset Endpoint Patient  
number 

Probe ID Cox  
P-value 

HR(95% CI) 

GSE11121 Distant Metastasis 
Free Survival 

200 219602_s_at 0.002372 0.50(0.32-
0.78) 

GSE1456-GPL96 Relapse Free Survival 159 219602_s_at 0.004637 0.57(0.38-
0.84) 

GSE1456-GPL97 Relapse Free Survival 159 222908_at 0.012288 0.67(0.49-
0.92) 

GSE1456-GPL96 Disease Specific 
Survival 

159 219602_at 0.017194 0.57(0.36-
0.91) 

GSE12276 Relapse Free Survival 204 1565775_at 0.027079 0.84(0.73-
0.98) 

GSE4922-GPL97 Disease Free Survival 249 222908_at 0.035685 0.82(-.68-
0.99) 

GSE1456-GPL97 Disease Specific 
Survival 

159 222908_at 0.039966 0.68(0.47-
0.98) 

GSE1456-GPL96 Overall Survival 159 219602_s_at 0.044087 0.66(0.44-
0.99) 

GSE12276 Relapse Free Survival 204 219602_s_at 0.044552 0.83(0.69-
1.00) 
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Table 3. The correlation between predicted miRNA and PIEZO2. 

Predicted miRNA R P-value 
Let-7d-5p -0.197 5.48e-11 
Let-7g-5p -0.105 5.52e-04 
Let-7i-5p -0.133 1.07e-05 
miR-7-5p -0.198 5.17e-11 
miR-15a-5p -0.133 1.04e-05 
miR-15b-5p -0.125 3.51e-05 
miR-25-3p -0.184 9.23e-10 
miR-27a-3p -0.175 6.43e-09 
miR-28-5p -0.123 4.85e-05 
miR-32-5p -0.206 7.07e-12 
miR-33a-5p -0.196 8.19e-11 
miR-92a-3p -0.149 8.40e-07 
miR-98-5p -0.248 9.93e-17 
miR-130b-3p -0.198 5.25e-11 
miR-137 -0.136 7.03e-06 
miR-138-5p -0.150 7.52e-07 
miR-142-5p -0.206 7.61e-12 
miR-146b-5p -0.252 3.82e-17 
miR-186-5p -0.180 2.36e-09 
miR-193a-3p -0.150 8.09e-04 
miR-196a-5p -0.129 2.05e-05 
miR-197-3p -0.178 3.31e-09 
miR-200c-3p -0.124 3.93e-05 
miR-224-5p -0.245 2.51e-16 
miR-301a-3p -0.219 3.00e-13 
miR-301b-3p -0.207 5.77e-12 
miR-330-5p -0.106 4.59e-04 
miR-345-5p -0.145 1.54e-06 
miR-362-5p -0.257 7.35e-18 
miR-421 -0.224 3.85e-14 
miR-429 -0.147 1.21e-16 
miR-452-5p -0.128 4.16e-03 
miR-454-3p -0.149 7.55e-07 
miR-455-3p -0.147 1.12e-06 
miR-577 -0.232 9.38e-15 
miR-579-3p -0.101 8.67e-14 
miR-580-3p -0.148 1.05e-06 
miR-589-5p -0.214 1.02e-12 
miR-671-5p -0.197 6.54e-11 
miR-708-5p -0.115 1.04e-02 
miR-934 -0.269 1.83e-19 
miR-2355-5p -0.159 1.50e-07 
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Figure 6. Prognostic values of 18 potential miRNAs in breast cancer analyzed by Kaplan Meier-plotter database. 
 

Table 4. The expression of potential miRNAs in breast cancer (OncomiR database). 

MiRNA name T-Test  

P-value 

T-Test 

FDR 

Tumor log2  

mean expression 

Normal log2 

mean expression 

let-7d-5p 3.49e-08 1.31e-07 7.75 7.20 

miR-33a-5p 1.63e-14 1.13e-13 3.60 1.91 

miR-98-5p 2.62e-14 1.79e-13 5.80 5.12 

miR-130b-3p 1.04e-21 1.56e-20 3.36 1.82 

miR-137 2.03e-02 3.59e-02 0.14 0.00 

miR-193a-3p 7.57e-04 1.76e-03 4.05 3.63 

miR-196a-5p 1.22e-18 1.35e-17 8.49 6.05 

miR-301a-3p 2.42e-16 2.08e-15 3.16 1.54 

miR-421 6.17e-03 1.23e-02 0.69 0.42 

miR-454-3p 1.08e-19 1.31e-18 3.20 1.61 

miR-671-5p 1.94e-24 4.79e-23 2.00 0.53 
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potentially regulate PIEZO2 as shown in Table S1. It 
has been widely acknowledged that there exists an 
inverse association between miRNA and mRNA 
expression [12-15]. Therefore, we further assessed 
expression correlations between each predicted miRNA 
and PIEZO2 using TCGA breast cancer data. We 
observed that 42 miRNAs expression were statistically 
inversely associated with PIEZO2 expression (Table 3). 
Next, the prognostic values of the 42 miRNAs in breast 
cancer were determined by Kaplan Meier-Plotter 
database. The results demonstrated that breast cancer 
patients with high expression of 18 miRNAs (let-7d-5p, 
miR-33a-5p, miR-98-5p, miR-130b-3p, miR-137, miR-
138-5p, miR-186-5p, miR-193a-3p, miR-196a-5p, miR-
301a-3p, miR-421, miR-429, miR-454-3p, miR-579-3p, 
miR-580-3p, miR-671-5p, miR-934 and miR-2355-5p) 

indicated a poor prognosis (Figure 6). Moreover, we 
also detected the 18 miRNAs expression in breast 
cancer using OncomiR database. As listed in Table 4, 
only 11 miRNAs (let-7d-5p, miR-33a-5p, miR-98-5p, 
miR-130b-3p, miR-137, miR-193a-3p, miR-196a-5p, 
miR-301a-3p, miR-421, miR-454-3p and miR-671-5p) 
were significantly upregulated in breast cancer when 
compared with normal controls. Subsequently, by text 
mining for the 11 miRNAs, we found that 5 miRNAs 
(miR-130b-3p, miR-196a-5p, miR-301a-3p, miR-421 
and miR-454-3p) were reported to function as 
oncogenes in breast cancer (Table 5). In order to further 
validate the inverse regulation of the five miRNAs in 
PIEZO2, we determined the mRNA and protein 
expression levels of PIEZO2 after knockdown of the 
five  miRNAs.  As  shown  in  Figure S1,  PIEZO2  was  

Table 5. Text mining the roles of potential miRNAs in breast cancer. 

PubMed ID miRNAs Direct targets Function Sum effect Refs 

28165066 miR-130b-3p PTEN mediate drug 
resistance 
and proliferation 

oncogenic [41] 

29685157 miR-196a-3p SPRED1 promote tumor 
growth and 
metastasis 

oncogenic [42] 

24315818 miR-301a-3p PTEN promote tumor 
metastasis 

oncogenic [43] 

29763890 miR-301a-3p ESR1 Suppress estrogen 
signaling 

oncogenic [44] 

29396508 
 

miR-301a-3p - Indicate a poor 
prognosis 

oncogenic [45] 

25311065 miR-301a-3p - Indicate a poor 
prognosis 

oncogenic [46] 

30365117 miR-421 PDCD4 promote 
proliferation 

oncogenic [47] 

29322788 miR-421 Caspase-10 promote tumor 
progression 

oncogenic [48] 

28795052 miR-454-3p AKT promote 
proliferation, 
migration, invasion 
and suppress 
apoptosis 

oncogenic [49] 

27588500 miR-454-3p - Indicate a poor 
prognosis 

oncogenic [50] 
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Figure 7. GO functional annotation and pathway enrichment analysis for the co-expressed genes of PIEZO2. (A) The Veen 
diagram of PIEZO2’s co-expressed genes from GEPIA, UALCAN and cBioPortal databases; (B-D) GO functional annotation (biological 
process, cellular component and molecular function) for the 109 co-expressed genes of PIEZO2; (E-G) pathway (Reactome, KEGG and 
NCI-Nature) enrichment analysis for the 109 co-expressed genes of PIEZO2; (H) the Veen diagram of the genes enriched in Hedgehog 
signaling pathway from Reactome, KEGG and NCI-Nature databases. 
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significantly upregulated in miRNAs-knockdown 
groups compared with negative control group. Taken 
together, the 5 miRNAs, with the features of 
upregulation in breast cancer, indicating poor prognosis, 
possessing negative associations with PIEZO2 
expression and being reported to act as oncogenes, were 
the most potential upstream miRNAs that could 
inversely regulate PIEZO2 in breast cancer. 
 
GO functional annotation and pathway enrichment 
analysis of co-expressed genes of PIEZO2 
 
Co-expression of PIEZO2 was analyzed using three 
databases, namely GEPIA, UALCAN and cBioPortal. 
As shown in Figure 7A, 109 co-expressed genes of 
PIEZO2 were commonly appeared in all the three 
databases. To better understand these genes, GO 
functional annotation and pathway enrichment analysis 
were conducted using Enrichr database. Three GO 
categories, containing biological process, cellular 
component and molecular function, were included in the 
functional annotation. For pathway enrichment, 
Reactome’s cell signaling pathway, KEGG’s cell 
signaling pathway and cell signaling pathway from 
NCI-Nature were analyzed.  
 
The top ten enriched GO terms were shown in Figure 
7B-D, including intraciliary retrograde transport, cilium 

assembly and plasma membrane bounded cell 
projection assembly in the biological process category, 
microtubule, polymetric cytoskeletal fiber and pre-
autophagosomal structure in the cellular component 
category and ATP-dependent microtubule motor 
activity plus-end-directed, tRNA binding and ATP-
dependent microtubule motor activity in the molecular 
function category. The top ten enriched pathways in 
three pathway categories were presented in Figure 7E-
G. Intriguingly, we found that Hedgehog signaling 
pathway was the most top enriched pathway in all the 
three pathway databases. The corresponding gene 
counts of Hedgehog signaling pathway in Reactome, 
KEGG and NCI-Nature pathways were displayed in 
Figure 7H. A total of seven genes (IFT88, INTU, 
WDR19, WDR35, GLI3, CDON and CSNK1G3) were 
enriched in Hedgehog signaling pathway. 
 
Decreased expression of PIEZO2 correlates with 
dysregulation of Hedgehog signaling pathway 
 
To preliminarily explore the role of Hedgehog signaling 
pathway in PIEZO2-mediated progression of breast 
cancer, we first determined the expression of the seven 
genes enriched in Hedgehog signaling pathway in breast 
cancer using UALCAN database as shown in Figure 
8A-G. Among the seven genes, an obvious upregulation 
of IFT88 (Figure 8A) in breast cancer was found 

 
Figure 8. Identification of potential downstream of PIEZO2 in breast cancer. (A-G) Expression of IFT88, INTU, WDR19, WDR35, 
GLI3, CDON and CSNK1G3 in breast cancer analyzed using UALCAN; (H-N) prognostic roles of IFT88, INTU, WDR19, WDR35, GLI3, CDON 
and CSNK1G3 in breast cancer analyzed using Kaplan Meier-Plotter; (O) CDON expression in human breast cancer cell lines (MCF-7, 
Bcap37, MDA-MB-468 and MDA-MB-231) compared with that in normal breast cell line (HBL-100); (P) CDON expression in clinical 
breast cancer tissues compared with that in matched adjacent normal tissues (n=16); (Q) knockdown effect of siRNA-PIEZO2 in MCF-7 
cell line; (R) expression change of CDON after silencing expression of PIEZO2 in MCF-7 cell line; (S) knockdown effect of siRNA-CDON in 
MCF-7 cell line; (T) expression change of PIEZO2 after silencing expression of CDON in MCF-7 cell line. *P<0.05; **P<0.01; “NS” 
represents no statistical significance. 
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whereas INTU (Figure 8B), WDR19 (Figure 8C), 
WDR35 (Figure 8D) and CDON (Figure 8F) expression 
levels in breast cancer samples were significantly lower 
than that in normal breast samples. GLI3 (Figure 8E) 
and CSNK1G3 (Figure 8G) showed no significant 
differences between cancer tissues and normal tissues. 
Subsequently, we further evaluated the prognostic 
values of the seven genes in breast cancer patients by 
Kaplan Meier-Plotter database (Figure 8H-N). The 
results showed that breast cancer patients with higher 
expression of CDON indicated a better prognosis. 
However, for the other six genes, no statistical 
significance was found. By combination of expression 
and prognostic roles of these genes, CDON was thought 
to closely correlate with PIEZO2 in breast cancer. The 
positive correlation of CDON expression with PIEZO2 
expression in breast cancer was further determined by 
four databases, namely GEPIA, UALCAN, bc-
GenExMiner and cBioPortal (Figure S2). Moreover, we 
also employed Oncomine database and Human Protein 
Atlas database to further testify the expression of 
CDON in breast cancer. As shown in Figure S3A-E, 
CDON mRNA expression was significantly lower in 
invasive breast carcinoma, invasive ductal breast 
carcinoma and invasive lobular breast carcinoma. 
Figure S3F demonstrated that expression level of 

CDON protein was also markedly decreased in breast 
cancer. Subsequently, CDON expression among groups 
of patients, based on various ER, PR, HER2, nodal, 
basal-like and triple negative status were determined 
using bc-GenExMiner. The analytic data were presented 
in Table 6. In breast cancer patients with positive ER, 
positive PR, negative HER2, negative nodal, negative 
basal-like and negative triple-negative status, expression 
of CDON was significantly upregulated when compared 
with corresponding counterparts. Furthermore, we also 
experimentally demonstrated the expression of CDON 
in breast cancer cell lines (Figure 8O) and clinical 
breast cancer samples (Figure 8P). The results also 
revealed that CDON expression was significantly 
downregulated in breast cancer cell lines and clinical 
cancer samples when compared with their counterparts. 
To preliminarily explore the upstream and downstream 
association of CDON and PIEZO2 in breast cancer, we 
detected the expression change of CDON or PIEZO2 
after silencing expression of PIEZO2 or CDON using 
siRNA-PIEZO2 or siRNA-CDON, respectively. In this 
study, MCF-7 was chosen as the representative breast 
cancer cell line as its relatively high expression of 
PIEZO2 and CDON compared with other cell lines 
(Figure 2A and Figure 8O). The knockdown effects of 
siRNA-PIEZO2 and siRNA-CDON were presented in 

Table 6. The relationship between CDON and clinicopathological parameters of breast carcinoma. 

Variables  CDON  
 Number mRNA expression P-value 
ER   <0.0001 
    
- 1525 -  
+ 3923 Up  
PR   <0.0001 
- 946 -  
+ 1439 Up  
HER2   <0.0001 
- 1409 Up  
+ 201 -  
Nodal Statas   0.0064 
+ 1509 -  
- 2447 Up  
Basal-like Status   <0.0001 
Not 4200 Up  
Basal-like 1144 -  
Triple-negative Status   0.0005 
Not 3299 Up  
TNBC 293 -  
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Figure 8Q and Figure 8S, respectively. Figure 8R 
showed a significant reduction of CDON expression 
after knockdown of PIEZO2. However, PIEZO2 
expression was not statistically changed after 
downregulation of CDON (Figure 8T). All these 
findings indicate that PIEZO2 might be associated with 
Hedgehog signaling pathway by regulating CDON in 
breast cancer. 
 
DISCUSSION 
 
PIEZO2, a mechanically activated ion channel, is 
believed to play important roles in the onset and 
progression of human cancers for a long time. Recently, 
several studies have reported that the dysregulation of 
PIEZO2 is associated with cancer proliferation, 
angiogenesis and resistance to anticancer treatments [9, 
11, 16]. However, to date, the expression, prognostic 
value and underlying mechanisms of PIEZO2 in cancer 
remain largely unknown. 
 
By analyzing expression profile of PIEZO2 using the 
HPA database, we found that breast cancer was the 
most suitable candidate for further investigation. 
Moreover, the role of PIEZO2 expression in the 
development and progression of breast cancer has not 
been identified. Subsequently, we confirmed that 
PIEZO2 was frequently downregulated in breast cancer 
cell lines and clinical samples relative to corresponding 
normal cell line and matched adjacent normal samples 
using qRT-PCR. UALCAN database analysis also 

revealed a low expression of PIEZO2 in breast cancer. 
Meanwhile, PIEZO2 expression was found to positively 
correlate with ER status and PR status but negatively 
correlate with HER2 status, NPI score, SBR grade, 
basal-like status and triple-negative status in breast 
cancer, indicating that high expression of PIEZO2 is 
closely linked to progression of breast cancer. Using 
Kaplan Meier-Plotter, we found a favorable prognosis 
of PIEZO2 expression in breast cancer, especially in 
ER-positive, HER2-negative, luminal A and luminal B 
breast cancer. We also investigated the prognostic role 
of PIEZO2 in breast cancer by PrognoScan, and the 
results demonstrated that breast cancer patients with 
low expression of PIEZO2 had a poor prognosis. 
Altogether, these findings suggest that low expression 
of PIEZO2 might be a promising prognostic biomarker 
in breast cancer. 
 
Next, we explored the underlying mechanism how 
PIEZO2 exerted its roles in breast cancer (Figure 9). It 
is known to all that genes can be post-transcriptionally 
regulated by miRNAs. 182 upstream miRNAs were first 
predicted to potentially regulate PIEZO2. Among these 
miRNAs, we found that five miRNAs (miR-130b-3p, 
miR-196a-3p, miR-301a-3p, miR-421 and miR-454-3p) 
possessed the greatest potential in targeting PIEZO2 in 
breast cancer by combination of correlation analysis, 
prognosis analysis, expression analysis and text mining. 
 
By co-expression analysis, 109 co-expressed genes 
were also identified. Pathway enrichment analysis 

 
 

Figure 9. The mechanism graph of the regulatory network of PIEZO2 under different circumstance including normal (A) and cancer 
(B). In patients with breast cancer, miRNAs (miR-454-3p, miR-196a-5p, miR-301a-3p, miR-130b-3p and miR-421)-mediated 
downregulation of PIEZO2 can activate hedgehog signaling pathway by suppressing CDON. 
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showed that these co-expressed genes were significantly 
enriched in Hedgehog signaling pathway. Numerous 
studies have suggested that activation of Hedgehog 
signaling pathway is implicated in the development of a 
variety of human cancers, including breast cancer [17-
20]. In total, seven genes (IFT88, INTU, WDR19, 
WDR35, GLI3, CDON and CSNK1G3) were enriched 
in Hedgehog signaling pathway. We further determined 
expression and prognostic roles of the seven genes in 
breast cancer using TCGA breast cancer data via 
analyzing UALCAN and Kaplan Meier-Plotter. Among 
these genes, only CDON was downregulated in breast 
cancer and the decreased expression of CDON indicated 
a poor prognosis. CDON, a receptor of Sonic 
Hedgehog, has been found to block tumor growth and 
progression by inducing apoptosis [21, 22]. The 
downregulation of CDON expression in breast cancer 
was experimentally validated in our breast cancer cell 
lines and clinical breast cancer samples. Moreover, we 
also demonstrated that CDON expression was 
significantly decreased after knockdown of PIEZO2, 
preliminarily suggesting that CDON acts as a 
downstream of PIEZO2. All these results together 
provide plenitudinous evidence that PIEZO2, 
downregulated by five oncogenic miRNAs (miR-130b-
3p, miR-196a-3p, miR-301a-3p, miR-421 and miR-454-
3p), might promote survival and progression of breast 
cancer by decreasing expression of CDON. 
 
In conclusion, the present study confirmed that PIEZO2 
expression in breast cancer was decreased and the 
downregulated expression of PIEZO2 indicated a poor 
prognosis of patients with breast cancer. Furthermore, 
we also found that PIEZO2 expression was potentially 
targeted by five miRNAs and correlated with 
dysregulation of Hedgehog signaling pathway, 
especially the SHH co-receptor-CDON. Of course, 
these findings should be validated in large-scale 
comprehensive studies and multicenter clinical trials in 
the future. 
 
MATERIALS AND METHODS 
 
Human Protein Atlas database analysis 
 
Expression of PIEZO2 mRNA and protein in different 
human normal and cancer tissues were determined 
using the Human Protein Atlas (HPA) database [23]. 
CDON protein expression level in breast cancer tissues 
and normal breast tissues was also analyzed using HPA 
database. 
 
UALCAN database analysis 
 
UALCAN database, a user-friendly and interactive web 
resource, provides easy access to publicly available 

cancer transcriptome data from The Cancer Genome 
Atlas (TCGA) [24]. In this study, it was utilized to 
analyze gene expression and assess the correlation 
between two genes. Statistical analysis was calculated 
and displayed on the webpage and logrank P-value < 
0.05 was considered as statistically significant. 
 
Breast cancer gene expression miner 
 
Breast cancer gene expression miner (bc-GenExMiner) 
is an easy-to-use online platform for analyzing gene 
expression, prognosis and correlation in breast cancer 
[25, 26]. Bc-GenExMiner was introduced to determine 
PIEZO2 and CDON expression in breast cancer based 
on different clinicopathological features. Moreover, 
correlation of PIEZO2 and CDON was also assessed by 
bc-GenExMiner. P-value < 0.05 was considered as 
statistically significant. 
 
Kaplan Meier-Plotter database analysis 
 
Kaplan Meier-Plotter database is established using gene 
expression data and survival information of cancer 
patients downloaded from the Gene Expression 
Omnibus database [27]. The database was used to 
analyze associations between PIEZO2 expression and 
overall survival, relapse-free survival, distant 
metastases-free survival or post-progression survival in 
breast cancer. In this study, briefly, PIEZO2 was firstly 
entered into the database to obtain Kaplan Meier 
survival plots. PIEZO2 expression above or below the 
median classified these cases into a low expression 
group and a high expression group. These cohorts were 
then compared with a Kaplan-Meier survival plot, and 
hazard ratio (HR), 95% confidence interval (CI), and 
logrank P-value were determined and displayed on the 
webpage. In addition, the prognostic values of predicted 
miRNAs, IFT88, INTU, WDR19, WDR35, GLI3, 
CDON and CSNK1G3 in breast cancer were also 
evaluated using Kaplan Meier-Plotter database. A 
logrank P-value < 0.05 was considered as statistically 
significant. 
 
PrognoScan database analysis 
 
The correlation between the expression of PIEZO2 and 
survival in breast cancer was also determined using the 
PrognoScan database which is a database for meta-
analysis of the prognostic values of genes in human 
cancers, including bladder cancer, blood cancer, brain 
cancer, breast cancer, colorectal cancer, esophagus 
cancer, head and neck cancer, lung cancer, ovarian 
cancer, prostate cancer, renal cell carcinoma, skin 
cancer and soft tissue cancer [28, 29]. A Cox P-value < 
0.05 was considered as statistically significant. 
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starBase database 
 
The upstream miRNAs of PIEZO2 were predicted using 
starBase database, which is an open-source platform for 
studying the miRNA-ncRNA, miRNA-mRNA, ncRNA-
RNA, RNA-RNA, RBP-ncRNA and RBP-mRNA 
interactions from CLIP-seq, degradome-seq and RNA-
RNA interactome data [30, 31]. starBase database was 
also employed to assess the inverse correlations of each 
miRNA expression and PIEZO2 expression. R < -0.1 
and P-value < 0.05 were set as the thresholds for further 
identifying potential miRNAs that could target PIEZO2. 
 
OncomiR database analysis 
 
OncomiR database is an online resource for exploring 
pan-cancer microRNA dysregulation in cancer [32]. 
miRNA expression in breast cancer was determined 
using OncomiR database. P-value < 0.05 was 
considered as statistically significant. 
 
GEPIA database analysis 
 
GEPIA, a newly developed interactive web server for 
analyzing the RNA sequencing expression data of 9,736 
tumors and 8,587 normal samples from the TCGA and 
the GTEx projects, was used to identify the co-
expressed genes of PIEZO2 in breast cancer [33]. The 
similar genes listed on the webpage were directly 
downloaded. 
 
cBioPortal database analysis 
 
cBioPortal is an online database for integrative analysis 
of complex cancer genomics and clinical profiles, which 
currently provides access to data from more than 48,668 
tumor samples from 172 cancer studies in the TCGA 
pipeline [34, 35]. It was also used to obtain the co-
expressed genes of PIEZO2 in breast cancer. Only 
correlated genes with PCC > 0.3 were selected for 
subsequent investigation. 
 
Enrichr database analysis 
 
Enrichr, a comprehensive gene set enrichment analysis 
web server, was employed to conduct Gene Ontology 
(GO) functional annotation and pathway enrichment 
analysis for these commonly appeared co-expressed 
genes of PIEZO2 [36, 37]. The top ten enriched GO 
items and pathways were displayed on the webpage and 
directly downloaded. 
 
Oncomine analysis 
 
Oncomine database is a web-based data mining 
platform for cancer research [38]. The expression of 

CDON in breast cancer was evaluated by Oncomine 
analysis of Cancer vs. Normal and meta-analysis. P-
value < 0.0001 and fold change > 1.5 were set as the 
thresholds. 
 
Cell culture 
 
All cell lines (HBL-100, MCF-7, Bcap37, MDA-MB-
468 and MDA-MB-231) used in this study were 
purchased from the cell bank of Chinese Scientific 
Academy (Shanghai, China). HBL-100, MDA-MB-468 
and MDA-MB-231 were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM; Gibco, 12430047) 
supplemented with 10% fetal bovine serum (FBS; 
Biological Industries, 04-0101-1, Cromwell, CT, USA) 
and MCF-7 and Bcap37 were maintained in Roswell 
Park Memorial Institute (RPMI) 1640 medium (Gibco, 
31800105, Life Technologies, Carlsbad) containing 
10% FBS under a humidified atmosphere of 5% CO2 at 
37℃. 
 
Patient and sample collection 
 
16 clinical breast cancer tissues and matched adjacent 
normal tissues were collected from breast cancer 
patients who underwent surgery at the Zhejiang Cancer 
Hospital (Hangzhou, China) between 2016 and 2017. 
All procedures performed in this study involving human 
participants were conducted in accordance with the 
ethical standards of the Zhejiang Cancer Hospital and 
written informed consent from every participant was 
obtained. 
 
Cell transfection 
 
Cell transfection was performed as we previously 
described [12, 13, 39]. miRNA inhibitors, siRNAs and 
their negative control oligonucleotides (NC) were 
purchased from RiboBio Co. Ltd (Guangzhou, China). 2 
x 105 of MCF-7 cells were seeded onto six-well plates, 
and cultured for 12 hours under a humidified 
atmosphere of 5% CO2 at 37℃. Subsequently, these 
cells were transfected with 50 nM of these 
oligonucleotides using Liopfectamine 3000 reagent 
(Invitrogen, Shanghai, China) according to the 
manufacturer’s instructions. The sequences of siRNA 
used in this work were listed in Table S2. 
 
RNA isolation and quantitative real-time polymerase 
chain reaction  
 
RNA isolation and quantitative real-time polymerase 
chain reaction (qRT-PCR) were performed as described 
previously [12]. RNAiso plus Reagent (TaKaRa 
biotechnology, 9109, Kusatsu, Japan) was utilized to 
extract total RNA from cell lines and clinical samples. 
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Then, total RNA was reversely transcribed into 
complementary DNA (cDNA) by the PrimeScriptTM RT 
Reagent Kit (TaKaRa biotechnology, RR037A). 
Subsequently, the cDNA was used for real-time 
polymerase chain reaction (RT-PCR) analysis with 
gene-specific primers. Real-time PCR was performed in 
a Roche LightCycle480 II Real-Time PCR Detection 
System through SYBR Premix Ex Taq (TaKaRa 
biotechnology, RR420A). Glyceralddehyde-2-
phosphate dehydrogenase (GAPDH) and U6 was used 
as the internal control for genes and miRNAs, 
respectively. The primers used in this study were listed 
in Table S2. The expression of PIEZO2 or miRNAs was 
normalized to GAPDH or U6, and calculated using the 
comparative threshold method (2−ΔΔCT). 
 
Western blot 
 
Western blot assay was performed to determine 
PIEZO2 protein level as we previously described [40]. 
β-Actin was used for normalization of protein loading. 
Experiments were repeated at least three times. 
 
Statistical analysis 
 
All experiments were performed in triplicates. 
GraphPad prism 7 software (GraphPad Software, Inc., 
LaToIIa, CA, USA) was used to analyze expression 
data for statistical significance. The results were shown 
as mean ± SD. Differences between two groups were 
determined using Student’s t-test. The Chi-Square test 
was applied to the examination of relationship between 
PIEZO2 levels and clinicopathological features. A P-
value < 0.05 was considered as statistically significant. 
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SUPPLEMENTARY MATERIAL 
 
Please browse the links in Full Text version of this manuscript to see Supplementary Table S1. 
 
Table S1. Potential miRNAs that regulate PIEZO2 (Predicted by starBase database). 

 
 
 
  

 
Figure S1. PIEZO2 expression changes after knockdown of the five potential upstream miRNAs. (A) The mRNA expression 
levels of PIEZO2 in MCF-7 treated with inhibitors for miR-454-3p, miR-196a-5p, miR-301a-3p, miR-130b-3p, miR-421 and negative 
control; (B) the protein expression levels of PIEZO2 in MCF-7 treated with inhibitors for miR-454-3p, miR-196a-5p, miR-301a-3p, miR-
130b-3p, miR-421 and negative control. *P<0.05. Errors bars indicate respective standard deviations. 
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Figure S2. Correlation of PIEZO2 and CDON expression in breast cancer analyzed by GEPIA (A), UALCAN (B), bc-GenExMiner (C) and 
cBioPortal (D). 
 



www.aging-us.com 2651 AGING 

 

 
 

Figure S3. Expression of CDON in breast cancer. (A) Comprehensive meta-analysis of CDON expression across 4 datasets from 
Oncomine database; (B-E) comparison of CDON expression between breast cancer tissues and normal breast tissues in each of the 
four datasets; (F) CDON protein expression level in breast cancer tissue and normal breast tissue was analyzed using 
immunohistochemical staining from HumanProteinAtlas database. 
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Table S2. Sequences of primers and siRNAs used in this study. 

qRT-PCR primers  Sequences 

PIEZO2 Forward primer ATGGCCTCAGAAGTGGTGTG 

PIEZO2 Reverse primer ATGTCCTTGCATCGTCGTTTT 

CDON Forward primer TATCTCATGGCTGCATAACGGA 

CDON Reverse primer TGTCAGAGTCCCCTGATGAATC 

GAPDH Forward primer AATGGACAACTGGTCGTGGAC 

GAPDH Reverse primer CCCTCCAGGGGATCTGTTTG 

siRNA    

siRNA-PIEZO2 Sense 5’-UAAUGUAAUUGGUCAACGA-3’ 

 Antisense 5’-UCGUUGACCAAUUACAUUA-3’ 

siRNA-CDON Sense 5’-GGAUCUUGGACCCUUAUGU-3’ 

 Antisense 5’-ACAUAAGGGUCCAAGAUCC-3’ 
 


