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ABSTRACT 
 
Epigenetic age estimations based on DNA methylation (DNAm) can predict human chronological age with a high 
level of accuracy. These DNAm age algorithms can also be used to index advanced cellular age, when estimated 
DNAm age exceeds chronological age. Advanced DNAm age has been associated with several diseases and 
metabolic and inflammatory pathology, but the causal direction of this association is unclear. The goal of this 
study was to examine potential bidirectional associations between advanced epigenetic age and metabolic and 
inflammatory markers over time in a longitudinal cohort of 179 veterans with a high prevalence of posttraumatic 
stress disorder (PTSD) who were assessed over the course of two years.  Analyses focused on two commonly 
investigated metrics of advanced DNAm age derived from the Horvath (developed across multiple tissue types) 
and Hannum (developed in whole blood) DNAm age algorithms. Results of cross-lagged panel models revealed 
that advanced Hannum DNAm age at Time 1 (T1) was associated with increased (i.e., accounting for T1 levels) 
metabolic syndrome (MetS) severity at Time 2 (T2; p = < 0.001). This association was specific to worsening lipid 
panels and indicators of abdominal obesity (p = 0.001). In contrast, no baseline measures of inflammation or 
metabolic pathology were associated with changes in advanced epigenetic age over time. No associations 
emerged between advanced Horvath DNAm age and any of the examined biological parameters. Results suggest 
that advanced epigenetic age, when measured using an algorithm developed in whole blood, may be a prognostic 
marker of pathological metabolic processes. This carries implications for understanding pathways linking 
advanced epigenetic age to morbidity and mortality. 
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INTRODUCTION 
 
Recent advances demonstrate that DNA methylation 
(DNAm) levels at a subset of CpG loci in the genome can 
be used to construct “DNAm age” scores that predict 
chronological age with great accuracy [1-4]. In 
particular, the Horvath and Hannum algorithms use 
methylation status from 353 CpGs and 89 CpGs 

(Hannum DNAm age derived from the “all data” 
algorithm [1]), respectively, to determine DNAm 
informed estimates of chronological age. These estimates 
indicate advanced epigenetic age when DNAm age is 
over-estimated relative to chronological age. The 
Horvath algorithm is a multi-tissue predictor [2] while 
the Hannum metric was developed in whole blood [1]; 
both show approximately equivalent associations with 
chronological age and are highly correlated with each 
other [5].  However, they seem to capture different 
aspects of advanced epigenetic age given that metrics of 
over or under-estimated DNAm age relative to 
chronological age are only modestly correlated with each 
other (r = 0.44 to r = 0.56) [5-7]. Using these metrics, 
advanced DNAm age has been associated with increased 
risk for premature death [8-12], early onset of age-related 
disease [13, 14], changes in physical and cognitive 
fitness [10], and cancer [12].  
 
Several studies have also shown associations between 
advanced DNAm age and factors that contribute to age-
related diseases, including metabolic pathology, such as 
obesity [15], body mass index (BMI) [16, 17]; lipid 
levels, and inflammation [18]. For example, in a cross-
sectional study, Irvin et al. [18] investigated epigenetic 
age via both Horvath and Hannum algorithms and found 
that advanced Horvath DNAm age was associated with 
lower interleukin 2 receptor subunit alpha, increased 
postprandial high-density lipoprotein (HDL), and 
increased postprandial total cholesterol, whereas 
advanced Hannum DNAm age was associated with lower 
C-reactive protein (CRP), lower TNF-alpha, lower 
fasting HDL, and increased postprandial triglycerides 
(TG). These results suggest that advanced epigenetic age 
may be associated with a more pathological response to 
high-fat food consumption, which could contribute to the 
link between advanced epigenetic age and premature 
onset of cardiometabolic disorders. In another recent 
study, Quach et al. [17] investigated associations 
between lifestyle factors and multiple metrics of 
advanced epigenetic age in blood in postmenopausal 
women and in a second cohort of women and men. This 
study found that advanced DNAm age was cross-
sectionally associated with reduced poultry intake and 
increased BMI. In addition, a second metric of DNAm 
age that incorporated immune markers into the algorithm 
was cross-sectionally associated with dietary fish intake, 
moderate alcohol consumption, education, BMI, blood 

carotenoid levels, and CRP levels. These results suggest 
that health-related behaviors are associated with markers 
of advanced epigenetic age and that advanced epigenetic 
age is associated with metabolic pathology.  However, 
the causal direction of these associations is unclear as the 
majority of studies have focused on cross-sectional 
designs, and it is not evident if advanced epigenetic age 
gives rise to increasing metabolic pathology and 
inflammation or if metabolic pathology and 
inflammation contribute to advanced epigenetic age, or 
both.   
 
A small number of studies have investigated associations 
between advanced DNAm age and biological processes 
in longitudinal cohorts.  This is important because cross-
sectional associations cannot provide information 
concerning the correlates of accelerated DNAm age (i.e., 
the pace of epigenetic aging over time); rather, cross-
sectional studies can more accurately be thought of as 
identifying correlates of advanced epigenetic age (i.e., a 
snapshot of cellular age at one time point). Grant et al. 
[16] examined a small cohort (N=43) of women and 
found that epigenetic age acceleration over a 16-year 
time period was positively associated with subsequent 
BMI, and nominally associated with glucose levels, 
however, examination in a larger cohort across a three-
year time period did not replicate these findings. 
Longitudinal data spanning an average of 2.7 years was 
available in a subset (n=239) of the Quach et al. [17] 
cohort described in the preceding paragraph, and 
analyses in that data suggested that changes in BMI over 
time were associated with changes in metrics of 
advanced DNAm age over time (e.g., correlated change), 
however, baseline BMI did not predict change in 
methylation age acceleration over time and the 
longitudinal correlates of advanced baseline epigenetic 
age were not investigated. Given this paucity of 
longitudinal data and the conflicting nature of the reports 
from longitudinal studies, the causal direction of 
association between metabolic and inflammatory 
pathology and epigenetic age remains unclear.   
 
The primary goal of this study was to evaluate potential 
bidirectional associations between advanced epigenetic 
age and metabolic and inflammatory markers over time. 
Furthermore, as we have previously shown that 
symptoms of posttraumatic stress disorder (PTSD) are 
cross-sectionally [5-7] and longitudinally [19] associated 
with advanced DNAm age and that PTSD is associated 
with metabolic [20-22] and inflammatory pathology 
[23], we also included PTSD (which is highly prevalent 
in our veteran sample) as a predictor in our models. This 
allowed us to differentiate effects attributable to 
advanced DNAm age from those associated with PTSD, 
and provided new information regarding PTSD-related 
changes in metabolic and inflammatory markers over 



www.aging-us.com 3489 AGING 

time. We evaluated this in a longitudinal cohort of 179 
military veterans in which we have previously shown that 
psychiatric conditions and symptoms (including 
posttraumatic stress disorder [PTSD] and alcohol-use 
disorders) are associated with an increasing pace of 
epigenetic age over time [19].   
 
RESULTS 
 
Cross-lagged models: Hannum DNAm age residuals 
 
The MetS CFA fit the data well at both T1 and T2 with 
all indicators loading significantly on their respective 
latent variables at the p ≤ 0.003 level (details available 
from corresponding author).  At both time points, the 
Lipid/Obesity factor showed the strongest loading on the 
higher-order MetS factor (βs = 0.92 – 0.96) followed by 
the Blood Pressure factor (βs = 0.48 – 0.53), and the 
Blood Sugars factor (βs = 0.23 – 0.48). The cross-lagged 
panel analysis examining bidirectional longitudinal 
associations between DNAm age residuals and MetS 
severity revealed significant autoregressive effects 
between each variable and itself over time as well as a 
significant cross-lagged association. Advanced DNAm 
age at T1 predicted increases in MetS severity at T2 
(standardized β = 0.17, p < 0.001), accounting for 
baseline levels of MetS (Figure 1A).  T1 MetS and T1 
DNAm age residuals were correlated with each other (r 
= 0.20, p = 0.006).  Notably, the competing cross-lagged 
path (from T1 MetS to T2 DNAm age residuals) was not 
significant (standardized β = -0.05, p = 0.32). We 
examined potential confounds of the T1 DNAm age to 
worsening T2 MetS association and found that this 
association remained significant when additionally 
controlling for demographic factors (race, education), 
psychiatric factors (cigarette use, major depression, 
alcohol abuse/dependence), medication use (including 
psychotropic and metabolic-related medications), and 
time between assessments (see Supplementary 
Materials). Of note, in these follow-up analyses, major 
depressive diagnoses at T1 also predicted increasing 
MetS severity over time (standardized β = 0.28, p = 
0.035).  To further ensure no influence of additional PCs 
on the reported results, we also ran secondary analyses 
investigating the potential effects of all 20 estimated 
ancestry PCs (see Supplementary Materials). 
 
There were no other cross-lagged effects between any of 
the other peripheral biomarkers and Hannum DNAm age 
residuals (see Figure S1), however associations between 
T1 DNAm age residuals and T2 CRP (standardized β = 
0.13, p = 0.053) and T2 WBCs (standardized β = 0.10, p 
= 0.068) just missed the threshold for statistical 
significance (Figure S1 A, B). When we re-analyzed 
these associations in follow-up models using DNAm age 
residuals that did not account for estimated WBCs (i.e., 

only age, sex, and the first two PCs were regressed out of 
DNAm age estimates), we found that results for 
measured WBCs were unchanged, but results for CRP 
were nominally significant, though they missed our a 
priori corrected p-value threshold (β = 0.15, p = 0.031; 
Figure S4).   A significant association between T1 PTSD 
symptom severity and worsening CD4/CD8 t-cell 
profiles (e.g., controlling for baseline CD4/CD8) 
emerged in that model (standardized β = -0.11, p = 0.013; 
Figure S1C).  
 
Given that the MetS factor scores were derived from a 
higher-order CFA, we wondered if the association 
between advanced DNAm age at T1 and increasing MetS 
at T2 would be evident in each of the lower-order factors 
that comprise MetS.  Therefore, we conducted additional 
cross-lagged models in which each of the lower-order 
metabolic factor scores (Lipids/Obesity, Blood Sugars, 
Blood Pressure) was included in the model in place of 
MetS, again residualized for age and sex.  Results 
revealed associations only between T1 DNAm age 
residuals and increasing Lipid/Obesity factor scores at 
T2 (standardized β = 0.16, p = 0.001), controlling for the 
significant baseline effects of the Lipid/Obesity factor 
scores (standardized β = 0.75, p < 0.001; Figure 1B; see 
Supplementary materials for results pertaining to 
individual indicators of this latent variable).  A T1 
correlation between advanced DNAm age and 
Lipid/Obesity factor scores was also evident (r = 0.21, p 
= 0.003).  No cross-lagged effects emerged with the 
Blood Pressure or Blood Sugar factor scores (Figure S2). 
 
Cross-lagged models: Horvath DNAm age residuals 
 
We found no significant cross-lagged associations 
between Horvath DNAm age residuals and any of the 
peripheral biomarkers evaluated (Figure S3).  There were 
also no significant concurrent correlations between 
Horvath DNAm age residuals and any of the peripheral 
biomarkers (Figure S3). As in the model with the 
Hannum DNAm age residuals, PTSD severity was 
associated with worsening CD4/CD8 T-cell profiles 
(Figure S3). 
 
DISCUSSION 
 
This is the first study to examine potential bidirectional 
longitudinal associations (over the course of two years) 
between two measures of epigenetic age acceleration 
(Hannum and Horvath) and changes in peripheral 
metabolic and inflammatory markers in a well-assessed 
longitudinal cohort. A goal of the study was to 
understand the biological consequences of advanced 
epigenetic age, given that accelerated cellular age has 
previously demonstrated associations with a variety of 
diseases and early death [5, 8, 10-12]. We evaluated 
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potential bidirectional longitudinal associations, given 
untested assumptions in prior cross-sectional studies that 
inflammatory and metabolic parameters are causative in 
accelerating epigenetic age. We found that advanced 
Hannum DNAm age was strongly associated with 
increased MetS-related pathology approximately two 
years later (Figure 1A). Follow-up investigations 
revealed that the observed effect on MetS was specific to 
increased (more pathological) scores on the 
Lipid/Obesity factor (defined by BMI, waist/hip ratio, 
HDL, and TG (Figure 1B), suggesting that advanced 
DNAm age may lead to, or serve as a useful prognostic 
indicator of, increasing obesity and pathological lipid 
profiles, a risk factor for many age-related diseases [20, 
24]. In contrast, there was no evidence for the reverse 
direction of association (competing cross-lagged path); 
neither MetS nor Lipid/Obesity factor scores at T1, nor 
any other biological parameters investigated, predicted 
changes in DNAm age residuals at T2. 
 
Our findings are consistent with recent studies that have 
observed significant cross-sectional associations 
between DNAm age acceleration and BMI [15-17] lipid 
levels [18] and acute increases in triglyceride levels 
following a high-fat food challenge [18]. Quach et al. 
[17] also found that increases in BMI across a two-year 
period (but not initial BMI) were associated with 
increased epigenetic age at the follow-up two-year time 
point. Our results are, to our knowledge, the first to 
demonstrate that advanced epigenetic age at a baseline 
assessment is associated with increasing lipid and 
obesity-related parameters over time. The longitudinal 
nature of our study allowed us to untangle the temporal 
relationship between these parameters and lends support 
for a unidirectional association. These findings add to a 
broader literature demonstrating that MetS is an 
important clinical correlate of accelerated aging; MetS 

has also been associated with other markers of 
accelerated aging, including shorter telomere length [25] 
though in those studies, obesity predicted decreased 
telomere length over time, and this was found to be 
driven by insulin resistance [26]. Our results highlight 
MetS, and specifically Lipid/Obesity-related factors, as: 
1) a critical correlate of advanced cellular aging that may 
be indicative of a state of biochemical stress fueling 
negative health outcomes [27] and 2) a potential target 
for therapeutic intervention to reverse cellular aging. 
Notably, dietary and caloric restriction has been strongly 
associated with lifespan extension, changes in DNAm, 
and is one of the most robust predictors of slowed aging 
[28-30]. Further, our results emphasize that advanced 
DNAm age at baseline predicts worsening MetS 
pathology over and above the effects of baseline MetS, 
highlighting the potential clinical utility of DNAm age 
estimates. 
 
Our results also raised the possibility that advanced 
DNAm age may be associated with increased 
inflammatory responses, given that associations between 
advanced Hannum DNAm age and increasing CRP and 
WBC levels just missed the threshold for statistical 
significance (Figure S1 A, B). These results were 
essentially unchanged regardless of whether estimated 
WBC types were accounted for in the DNAm age 
residuals and highlight the need for additional research to 
further examine this association. An association between 
advanced epigenetic age and CRP would be consistent 
with existing research; for example, Quach et al. [17] 
found that advanced DNAm age was associated with 
greater CRP levels in a cross-sectional study, and Irvin et 
al. [18] found that advanced Hannum DNAm age was 
associated with elevated levels of the inflammatory 
markers CRP, IL2sRa, TNFa, and MCP1.  Higher WBC 
and CRP levels have been previously associated with 

 
 
 
Figure 1. The Figure shows the results of cross-lagged models examining longitudinal associations between Hannum DNAm age residuals 
and metabolic syndrome (MetS) severity factor scores (A), and Lipids/Obesity factor scores (B).  Measures of each marker were 
residualized on age and sex (applicable to A and B). (***p < 0.005, **p < 0.01, **p < 0.05). 
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age-related chronic diseases [31]. Aging has been 
associated with decreased innate immune system 
responding (i.e., immunosenescence [32-35]), as 
evidenced by poorer vaccine responses and loss of 
acquired immunity to pathogens, and with increased 
chronic inflammation, as evidenced by elevated pro-
inflammatory markers. “Inflamm-aging” refers to this 
chronic and heightened pro-inflammatory profile [36, 
37]. Increased epigenetic age has consistently been 
linked to adverse health outcomes, and additional 
research in larger samples is needed to further evaluate if 
advanced DNAm age leads to reduced integrity of the 
immune and inflammatory systems (and not the reverse 
direction). 
 
We also found that PTSD symptom severity at T1 
predicted decreasing (i.e., worsening) CD4/CD8 T-cell 
ratios at T2 (Figure S1C, S3C). The ratio of CD4 to CD8 
T-cells has been consistently used as a marker of 
dysregulated immune function and immunosenescence. 
A low ratio of CD4 to CD8 T-cells is indicative of 
decreases in naïve T-cells and increases in differentiated 
memory T-cells, which indicate a senescent T-cell 
phenotype [38, 39]. CD4/CD8 T-cell ratios have been 
associated with increased morbidity and mortality [40], 
and low CD4/CD8 T-cell ratios have been shown to 
predict mortality over a four-year time period [39]. Our 
findings are consistent with a cross-sectional study 
demonstrating significantly reduced CD4/CD8 ratios in 
individuals with PTSD [41], and further suggest that 
PTSD contributes to pathological changes in basic 
immune parameters over time. Trauma exposure and 
PTSD have been associated with increased risk for 
autoimmune and inflammatory diseases [41, 42], and our 
results raise the possibility that alterations in CD4/CD8 
ratio are a factor linking PTSD with these health 
conditions.  
 
We observed significant longitudinal associations 
between advanced epigenetic age and peripheral 
biomarkers as measured via the Hannum algorithm; 
however, there were no effects of Horvath DNAm age 
residuals on biological parameters at T2. A primary 
difference between the two DNAm age algorithms is that 
the Hannum metric was developed in whole blood 
whereas the Horvath metric was designed to be a multi-
tissue age predictor. The Hannum metric may be more 
sensitive to pathological changes in blood, potentially 
accounting for the variability in results across the two 
metrics.  Other studies, including those from our group, 
have observed differing results across DNAm age 
predictors and have previously suggested that they may 
each be sensitive to different underlying biological 
processes [3, 19].  
 
Results carry implications for those seeking to identify 
subtle yet important shifts in an individual’s underlying 

biology that may be a marker for increasing metabolic 
pathology over time. More specifically, the findings 
reported here were observed while including MetS at T1 
in the model, suggesting that advanced DNAm age can 
provide unique and additional information regarding 
individuals at risk for worsening MetS pathology, 
beyond what is evident from baseline MetS parameters. 
Our longitudinal results also raise the possibility that the 
Hannum DNAm age index will be valuable for 
monitoring meaningful biological outcomes and tracking 
responses to interventions across time. Early detection 
and identification of individuals with high risk could 
allow for earlier targeted interventions focused on 
metabolic health.  
 
Study limitations 
 
Results from this study should be interpreted with several 
limitations in mind. First, the study cohort was composed 
primarily of white male veterans. Future work is needed 
to establish that these results generalize to populations 
with more diverse compositions of ancestry and sex. 
Second, other biological variables that were not 
interrogated here may also play an important role. For 
example, unmeasured third variables (e.g. physical 
health diagnoses) could account for the predictive effects 
of either DNAm age residuals or PTSD on biological 
changes at T2. That said, this was a young adult cohort 
and individuals with neurological diseases and diabetes 
were excluded, which attenuates this concern. It remains 
to be seen if DNAm age residuals at T1 play a causative 
or etiological role in predicting negative health outcomes 
at T2, or if they are simply a marker for an underlying 
biological process. Third, though longitudinal, our study 
only covered a two-year period; our results should be 
interpreted with this in mind, as some associations of 
epigenetic aging and biological markers may not be 
detectable across this relatively short period. However, 
the unreliability in DNAm age estimates would be 
expected to be more impactful when examining change 
in DNAm age estimates over a relatively short compared 
to long period of time. Furthermore, DNAm age for 
individuals in the sample increased, on average, 
approximately one year for every chronological year, 
providing greater confidence that changes in DNAm age 
and DNAm age residuals over time are meaningful and 
not a function of error.  Finally, our study was limited to 
analysis of DNAm and biological parameters in blood; 
we did not investigate tissue-specific cellular aging in the 
brain or other organs.  
 
CONCLUSION 
 
This study provides a longitudinal investigation of the 
bidirectional association between cellular age as assessed 
by DNAm age, and key peripheral metabolic and 
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inflammatory biomarkers. We found that DNAm age is 
associated with increasing MetS two years later, and 
furthermore, that this association is specific to increasing 
markers of Lipids/Obesity (Figure 1). Importantly, the 
longitudinal study design allowed us to show that while 
advanced epigenetic age predicts increasing metabolic 
pathology, there were no significant contributions of 
metabolic (or inflammatory) pathology to accelerated 
epigenetic age over time.  These results could inform 
targeted lifestyle interventions that make use of DNAm 
age as a way to identify individuals at risk for worsening 
metabolic pathology and track their responses to health-
promoting interventions. Altogether, our results suggest 
that metabolic and inflammatory processes may be key 
biological mechanisms by which advanced epigenetic 
age is associated with age-related health outcomes and 
problems. 
 
METHODS 
 
Participants 
 
Participants were previously described in Wolf et al. 
[19]. They were U.S. military veterans (post-9/11 
conflicts) who enrolled in the Translational Research 
Center for TBI and Stress Disorders (TRACTS) 
longitudinal study at the US Department of Veterans 
Affairs (VA) Rehabilitation Research and Development 
Traumatic Brain Injury Center of Excellence at VA 
Boston Healthcare System. The TRACTS longitudinal 
study has been described in detail previously [43]. In 
brief, it is an ongoing research protocol evaluating 
traumatic stress, traumatic brain injury (TBI), health, and 
neural and cognitive factors among returning veterans. 
Exclusion criteria for the study included the following: 
history of seizures unrelated to head injury, severe or 
unstable psychological diagnosis preventing participa-
tion, acute psychotic or bipolar disorder, neurological 
illness, acute homicidal and/or suicidal ideation with 
intent to act, and cognitive disorder due to general 
medical condition not related to TBI. As in Wolf et al. 
[19], the cohort investigated in this study was based on a 
subset of 179 TRACTS participants with DNAm data 
from two time points, Time 1 (T1) and Time 2 (T2), at 
the time of the second data freeze when DNA was 
processed. The clinical and sociodemographic 
characteristics of the study cohort are shown in Table 1.  
 
Procedure 
 
Participants provided written informed consent, and then 
completed a comprehensive interview and self-report-
based psychological assessment. All diagnostic 
interviews were administered by doctoral-level 
psychology professionals. A team of psychologists 
reviewed each interview to determine consensus ratings 

of presence or absence of psychological diagnoses. For 
each time point (T1 and T2), blood was drawn for DNA 
extraction and metabolic assays. T1 and T2 assessments 
were conducted an average of 1.89 years apart (Table 1). 
The study was approved by the VA Boston Healthcare 
System IRB. All T1 and T2 samples were processed 
using the Illumina EPIC chip. 
 
Measures 
 
The Clinician Administered PTSD Scale for DSM-IV 
(CAPS, [44]), a well-validated diagnostic interview, was 
used to assess PTSD status and symptom severity. The 
CAPS was administered by doctoral-level psychologists. 
Additional information regarding the administration and 
rating of interviews is provided in the Supplementary 
Materials. In this manuscript, our analyses focused on a 
dimensional index of current PTSD symptom severity at 
T1. Additional measures that were included in supple-
mentary analyses are described in the Supplementary 
Materials.  
 
DNA extraction, genotyping, and ancestry-based 
principal components analysis 
 
Full details on genotyping protocols, techniques, and 
data cleaning procedures are detailed in Logue et al. [45], 
and are also summarized here. DNA extraction was 
performed using a Qiagen AutoPure instrument with 
Qiagen reagents. DNA concentrations were normalized 
using the Quant-iTTM PicoGreen dsDNA fluorescent 
assay (Invitrogen). To determine DNA quality and quan-
tity, TaqMan RNase P Detection assay was used 
(Applied Biosystems Assay, Life Technologies, Carls-
bad, CA) with fluorescence detection on a 7900 Fast Real 
Time PCR Instrument (Applied Biosystems, Life Tech-
nologies, Carlsbad, CA). DNA was then whole-genome 
amplified, fragmented, precipitated, resuspended, and 
was then hybridized on Illumina HumanOmni2.5-8 bead-
chips for 20 hours at 48°C according to manufacturer’s 
instructions (Illumina, San Diego, CA), followed by a 
single-base extension and multi-layered staining process. 
Beadchips were imaged using the Illumina iScan System, 
and results were processed with the Illumina Ge-
nomeStudio v2011.1 software and the Genotyping v1.9.4 
module. Genotypes were then used to develop principal 
components (PCs) to model ancestry: PCs were deter-
mined using 100,000 randomly chosen common (minor 
allele frequency >5%) single nucleotide polymorphisms 
(SNPs) in PLINK version 1.9 [46]; PCs were used as an-
cestry covariates in subsequent analyses. 
 
Methylation 
 
DNA was hybridized to the Infinium MethylationEPIC 
BeadChip  per  manufacturer’s  instructions.  T1 and  T2 
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Table 1. Demographic and clinical characteristics of the longitudinal sample. 

Variable T1 Mean (SD) T2 Mean (SD) % (n) 
Chronological age (years) 33.31 (9.25) 35.20 (9.19)  
Years between T1 and T2 1.89 (0.65)   
Sex (male)   88.3 (158) 
Race    
White   74.9 (134) 
Black   9.6 (17) 
Latino/a   12.4 (22) 
Asian   1.7 (3) 
American Indian   0.6 (1) 
Education     
High school grad or less   31.8 (57) 
Some college or completed college   68.2 (122) 
Beyond college   0.0 (0) 
Cigarette smoking (Yes)   42.0 (23.5) 
Current PTSD symptom severity  47.40 (28.42) 45.57 (30.30)  
Measured White blood cell counts  6.27 (1.63) 6.50 (1.78)  
Estimated CD4/CD8  2.50 (1.83) 2.90 (2.76)  
CRPa  0.219(0.416) 0.317 (0.549)  
Metabolic syndrome (MetS)b  -0.025(0.049) 0.000023 (0.047)  
Blood pressure (mm Hg)c     
Systolic  116.4 (12.4) 121.85 (12.2)  
Diastolic  76.55 (9.55) 79.13 (9.75)  
Lipid/obesityd     
HDL Cholesterol (mg/dL) 47.7 (11.1) 48.4 (12.8)  
Waist-to-hip ratio 0.881 (0.074) 0.890 (0.078)  
BMIf 28.0 (4.31) 28.8 (4.60)  
Triglycerides (mg/dL)g 138.0 (129.5)  138.6 (95.7)   
Blood sugarh     
Fasting glucose (mg/dL)i 85.6 (11.7) 92.4 (9.54)  
A1c (% of hemoglobin) 5.36 (0.273)  5.42 (0.326)  

Note. SD = standard deviation; T1 = time point 1; T2 = time point 2; PTSD = posttraumatic stress disorder; CRP = C-reactive 
protein; HDL = high-density lipoprotein; BMI = body mass index. Missing observations: Current PTSD symptom severity 
(T2) (n=1), measured WBC counts (T1) (n=3), measured WBC counts (T2) (n=5), estimated CD4/CD8 (T1) (n=6), estimated 
C4/CD8 (T2) (n=6), CRP (T1) (n=5), CRP (T2) (n=6), MetS (T1) (n=1), MetS (T2) (n=2), systolic blood pressure (T2) (n=5), 
diastolic blood pressure (T2) (n=5), HDL cholesterol (T1) (n=7), HDL cholesterol (T2) (n=7), waist-to-hip ratio (T1) (n=6), 
waist-to-hip ratio (T2) (n=6), BMI (T2) (n=7), triglycerides (T1) (n=5), triglycerides (T2) (n=4), fasting glucose (T1) (n=4), 
fasting glucose (T2) (n=6), A1c (T1) (n=2).aCRP values reported above are raw values. logCRP values were used in reported 
analyses. bMetabolic syndrome (MetS) severity was determined using confirmatory factor analysis (CFA) of raw laboratory 
values and physiologic measurements. The lower order factors represented: (a) blood pressure (indicated by two diastolic 
and systolic readings), (b) lipids/obesity (indicated by waist-to-hip ratio, body mass index [BMI], high density lipoprotein, 
and triglycerides); and (c) blood sugars (indicated by fasting glucose and glycated hemoglobin A1c levels). These three 
factors were specified to load together (i.e., to be accounted by) a higher-order factor representing overall MetS severity. 
cBlood pressure, dlipids, and hsugar are reported above as raw values. Indicators of these variables were used for the MetS 
CFA. 
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samples were run together on the same chip, balancing 
the presence of cases and controls across chips and chip 
positions in order to reduce systematic bias. We utilized 
the processing pipeline established by the Psychiatric 
Genetics Consortium (PGC) PTSD Epigenetics 
workgroup [47] for the Illumina HumanMethylation450 
BeadChip updated to apply to the EPIC chip. We used 
GenomeStudio to derive individual-level background-
corrected probe data and idat files, and cleaned DNAm 
data using the CpGassoc package [48] and the ChAMP 
package [49] in R (R Development Core Team, 2008). 
Individual methylation values that did not meet a 
detection p < 0.001 were set to missing, and probes with 
>10% missing values were dropped. One chip had 7 out 
of 8 failed samples based on a criteria of >5% missing 
values; data for this chip were discarded and samples 
were rerun on a new chip. Subsequently no samples had 
>5% missing data, and all were retained for analysis. No 
samples had intensity <50% of the experiment-wide 
mean or with intensity <2,000 arbitrary units (AU). Cross 
hybridizing probes [50] and “underperforming” EPIC 
probes according to Illumina Product Quality 
Notification PQN0223 04/19/2017 were also excluded. R 
v. 3.1.0 was used for data cleaning. 
 
Epigenetic age calculation 
 
For Hannum DNAm age estimates, data were normalized 
using the beta mixture quantile dilation (BMIQ) method 
in the wateRmelon R package [51] as previously 
described [5, 7, 19] and batch correction was performed 
using an empirical Bayes method implemented in 
COMBAT [52]. Horvath DNAm age estimates were 
determined following an R script based on 335 probes 
assessed on the EPIC chip that passed quality control 
(QC). We have previously shown that DNAm age 
estimate correlations with chronological age are similar 
across the EPIC and 450K chips [7, 53]. The association 
between Hannum DNAm age estimates derived from the 
EPIC chip in this cohort and chronological age was r = 
0.88 (p < 0.001) and r = 0.85 (p < 0.001) at T1 and T2, 
respectively, and for the Horvath algorithm, the 
association was r = 0.90 (p < 0.001) and r = 0.91 (p < 
0.001) at T1 and T2, respectively [7]. Hannum and 
Horvath DNAm age estimates were correlated with each 
other at both time points (T1, r = 0.88, p < 0.001; T2, r = 
0.87, p < 0.001), as were Hannum and Horvath DNAm 
age residuals (r = 0.44, p < 0.001, for both T1 and T2) 
[19]. 
 
MetS (lipid/obesity, blood pressure, sugar levels) 
 
Height, weight, and waist-to-hip ratio were measured 
along with two standing and two seated blood pressure 
readings (taken at 1-minute intervals). Blood samples 
were obtained, processed immediately upon collection, 

and shipped the same day to a commercial laboratory 
(Quest Diagnostics, Cambridge, MA).  This laboratory 
assessed HDL cholesterol, triglycerides, and glucose 
(fasting glucose and glycated hemoglobin A1c levels). 
These metabolic measures were included in an overall 
index of Metabolic Syndrome (MetS) severity using 
confirmatory factor analysis (CFA) as described in the 
analysis section below. Total white blood cell counts 
were also measured via complete blood chemistry.  
 
Estimated white blood cell count and CD4/CD8 ratio 
 
Specific white blood cell (WBC) type proportions at T1 
and T2 were not available from the Quest metrics and 
instead were estimated based on the methylation data. In 
brief, CD4 and CD8 T-cells, natural killer cells, b-cells, 
and monocytes were estimated based on the methylation 
data using the R minifi package [54] according to 
procedures described by Houseman et al. [55], Jaffe and 
Irizarry [56], and Fortin et al. [57]. CD4 and CD8 T-cell 
estimates were used to calculate a ratio of CD4 to CD8 
T-cells, which has previously been shown to be an index 
of immunosenescence (see also: Holbrook et al. [58]). 
 
C-reactive protein (CRP) serum levels 
 
Serum CRP was assessed in blood samples as previously 
described in Miller et al. [23]. Serum CRP levels were 
measured in a commercial laboratory (Quest 
Diagnostics, Cambridge, MA) using a nephelometric 
assay with CRP monoclonal antibodies (analytical 
sensitivity = 0.10 mg/dL). Laboratory assay procedures 
were standardized to CRP reference preparations 
(International Federation of Clinical Chemistry and 
Laboratory Medicine/Bureau Communautaire de 
Reference/College of American Pathologists). The 
sample mean at T1 was 0.19 mg/dl (SD=1.13; range: 
0.09-0.69 mg/dl), and at T2 was 0.29 mg/dl (SD=0.37; 
range: 0.09-2.34 mg/dl). Data were log-transformed for 
analysis (referred to as “CRP log” due to the distribution 
of raw CRP values being positively-skewed as in Miller 
et al. [23]. Two outliers were removed (one from each 
time point) as their CRP estimates were 12 SDs above 
the mean.  
 
Data analysis 
 
An overall index of MetS severity was calculated using 
CFA of raw laboratory values and physiologic 
measurements as previously described in Wolf et al. [20]. 
CFA is ideal for measuring the common metabolic 
factors that underlie the covariation of various biological 
assays because it models their relationship to a shared 
latent (or common) variable.  Factor scores on the latent 
variable can then be generated to reflect the severity of 
the metabolic pathology for each subject. This approach 
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avoids concerns about arbitrary diagnostic thresholds for 
metabolic disease and instead models the severity and 
comorbidity of the metabolic components dimensionally. 
As in Wolf et al. [20], we developed a higher-order CFA. 
The lower order factors represented: (a) Blood Pressure 
(indicated by two seated diastolic and systolic readings); 
(b) Lipid/Obesity (indicated by waist-to-hip ratio, body 
mass index (BMI), high density lipoprotein, and 
triglycerides); and (c) Blood Sugars (indicated by fasting 
glucose and glycated hemoglobin A1c levels). The above 
factors were specified to load together (i.e., to be 
accounted by) on a higher-order factor representing 
overall MetS severity.  The model was tested separately 
in the T1 and T2 data and factor scores on all latent 
variables were saved for subsequent analyses. Of note, 
insulin was not available for the majority (94%) of the 
subjects at T1, as this test was added later to the protocol, 
and thus insulin levels were not included in the MetS 
CFA. 
 
We conducted cross-lagged panel models (a form of path 
analysis) to simultaneously evaluate bidirectional 
longitudinal associations between advanced epigenetic 
age and each peripheral biomarker of interest (Figure 2). 
In this analysis, each variable measured at T2 is regressed 
on the same variable at T1 (i.e., the auto-regressive 
effect) and on the competing variable at T1 (i.e., the 
cross-lagged effect).  For example, in the model 
examining MetS, T2 advanced epigenetic age (as defined 
by DNAm age residuals) was regressed on T1 DNAm 
age residuals and on T1 MetS factor scores while T2 
MetS was simultaneously regressed on T1 MetS and T1 
DNAm age residuals.  The association between T1 PTSD 

severity and both T2 variables was also modeled. The 
concurrent correlations among the predictors at T1 and 
the residual correlation among dependent variables at T2 
were also evaluated. A significant cross-lagged path 
would indicate, for example, that T1 Mets predicts 
changes in T2 advanced epigenetic age, controlling for 
T1 advanced epigenetic age. DNAm age residuals at each 
time point were generated by regressing raw DNAm age 
estimates on age, sex, estimated WBCs (CD4-T, CD8-T, 
NK, b cells, monocytes) from the respective time point, 
and the top two ancestry PCs and saving the 
unstandardized residuals from this equation. For analyses 
predicting estimated CD4/CD8 ratios, DNAm age 
residuals were calculated by regressing raw DNAm age 
estimates on age, sex, and the top two ancestry PCs (but 
not on estimated WBCs as these were the focus of this 
analysis). In a similar set of analyses, we also 
investigated measured WBCs and CRP phenotypes using 
Horvath and Hannum DNAm age residuals that did not 
take into account the estimated WBCs from DNAm age 
(regressing raw Horvath and Hannum DNAm estimates 
on age, sex, and the top two ancestry PCs, but not on 
estimated WBCs). 
 
For the sake of simplicity and consistency with the 
DNAm age residuals, each peripheral biomarker was also 
first regressed on age and sex and the residuals from this 
equation saved for use in the path models.  This approach 
controls for variance in these demographic covariates by 
removing them from both the T1 and T2 variables.    
 
This cross-lagged panel approach was followed, in 
separate analyses, for each peripheral biomarker of 

 
 

Figure 2. The Figure shows the cross-lagged model used to examine longitudinal associations between DNAm age residuals (Hannum 
or Horvath) and biological variables of interest (MetS, lab-based WBC measurement, CRP levels, CD4/CD8 T-cell ratio).  Measures of 
each biological marker were residualized on age and sex for all analyses. DNAm age residuals at each time point were generated by 
regressing raw DNAm age estimates on age, sex, estimated WBCs (CD4-T, CD8-T, NK, b cells, monocytes) from the respective time point, 
and the top two ancestry PCs and saving the unstandardized residuals from this equation. For analyses predicting estimated CD4/CD8 
ratios, DNAm age residuals were calculated by regressing raw DNAm age estimates on age, sex, and the top two ancestry PCs (but not 
on estimated WBCs as these were the focus of this analysis). 
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interest (MetS, lab-based WBC totals, CRP, and 
estimated CD4/CD8 ratios) and for both the Horvath and 
Hannum algorithms.  For analyses with significant cross-
lagged associations, we conducted follow-up regressions 
which included a series of potential confounding 
variables to determine if they accounted for the 
significant cross-lagged associations, including 
demographic variables (education and self-reported 
racial/ethnic minority), psychological variables 
(cigarette use, current major depressive diagnosis, 
current alcohol abuse or dependence diagnosis), 
medication variables (current use of anti-hypertensives, 
cholesterol lowering medication, diabetes medication, 
antidepressants, anti-epileptics, sedatives/hypnotics, and 
pain medications; see Supplementary Materials), and 
time between assessments. 
 
As each analysis was executed twice (once for Horvath 
and once for Hannum-based indices), we took into 
account the correlation between the two advanced 
epigenetic age metrics by adjusting for 1.8 tests and set 
the p-value threshold for statistical significance for 
individual parameters of interest (e.g., the association 
between DNAm age residuals and the T2 biological 
variable controlling for the same biological variable at 
T1) in a model at p = 0.028. This p-value correction was 
derived from a permutation testing procedure as 
described in Miller et al. [23] and Wolf et al. [6]; based 
on the r = 0.49 Horvarth/Hannum DNAm age residual 
association in the larger cross-sectional dataset, the 
adjusted p-value was found to represent 1.8 tests. There 
was no multiple testing correction across analyses for 
different biological variables of interest as these analyses 
investigate distinct hypotheses across different families 
of tests. All analyses were conducted with Mplus 8.0 
statistical modeling software [59]. As all models were 
just identified (i.e., fully saturated such that df = 0), 
model fit will always be perfect and thus is not reported 
here.   
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SUPPLEMENTARY MATERIAL 
 
Supplementary Methods 
 
Supplementary Measures 
 
The CAPS was administered by doctoral-level 
psychologists. The CAPS assesses the frequency and 
intensity of 17 symptoms of PTSD, based on DSM-IV 
criteria. The DSM-IV algorithm (e.g., requiring 
endorsement of at least 1 reexperiencing symptom, 3 
avoidance and numbing symptoms, and 2 hyperarousal 
symptoms) was used to determine PTSD diagnoses; 
symptoms were considered present if item frequency ≥ 
1 and intensity ≥ 2. The Structured Clinical Interview 
for DSM-IV Disorders [1] was administered to assess 
for other psychiatric diagnoses, including major 
depression and alcohol abuse/dependence. All 
diagnoses were reviewed by an expert team that 
included at least two psychologists to arrive at a 
consensus diagnosis. A dichotomous index of current 
cigarette use was obtained from the Fagerström Test for 
Nicotine Dependence (FTND) [2]. Self-reported level 
of education was categorized into the following groups 
for analysis: “high school graduation or less,” “some 
college or completed college,” or “beyond college” for 
use as covariates. 
 
Supplementary Results 
 
Given the significant association between advanced 
Hannum epigenetic age at T1 and increasing metabolic 
syndrome severity factor scores at T2, we conducted 
several additional analyses to examine potential 
confounds of this association. We retained the same 
model as that depicted in Figure 1 and added in the 
following additional covariates of T2 metabolic 
syndrome severity factor scores in four analyses: 
potential demographic confounds (self-reported 
racial/ethnic minority and education), psychiatric 
conditions (cigarette use, major depression, alcohol 
abuse/dependence), medication use (anti-hypertensives, 
cholesterol-lowering medication, diabetes medication, 
antidepressants, sedatives/hypnotics, anti-epileptics, 
and pain-related medications), and time between 
assessments. 
 
Only one significant association between any of these 
variables and T2 metabolic syndrome severity factor 
scores emerged: major depressive disorder diagnoses at 
T1 were associated with worsening metabolic syndrome 
severity scores at T2, (standardized β = 0.28, p = 0.035), 
though Hannum DNAm age residuals were also still 
significantly associated with worsening metabolic 
syndrome scores in the same model (standardized β = 
0.18, p < 0.001). In all other covariate models, the 

covariates were not associated with T2 MetS while 
Hannum DNAm age residuals remained significant (p ≤ 
0.001). 
 
Across all analyses we have included the top two 
principal components (PCs) to control for ancestry 
within this cohort of white, non-Hispanic subjects. To 
further ensure no influence of additional PCs on the 
reported results, we first investigated all 20 PCs 
predicting Hannum DNAm age at T1 and T2, 
controlling for age, sex, and WBCs, and found that none 
of the PCs were significantly associated with Hannum 
DNAm age at either time point. We also retained the 
same model as that depicted in Figure 1A using a new 
Hannum DNAm age residual which was residualized 
for all 20 PCs, age, sex, and WBCs for both time points. 
Using this new Hannum DNAm age residual variable, 
we re-analyzed the cross-lagged model and found no 
change in the reported results; Hannum DNAm age at 
T1 (residualized for all 20 PCs, age, sex, and WBCs) 
significantly predicted MetS at T2 (controlling for MetS 
at T1; standardized β = 0.15, p = 0.001). 
 
To further investigate individual indicators of the lower-
order Lipid/Obesity latent variable, we residualized 
each of the individual indicators (BMI, waist-to-hip 
ratio [WHR], HDL cholesterol, and triglycerides) at 
each time point on age and sex and re-analyzed the 
cross-lagged models (retaining the same model as that 
depicted in Figure 1A). Hannum DNAm age residuals 
at Time 1 predicted increasing BMI (β = 0.14, p = 
0.003), WHR (β = 0.19, p < 0.001), and triglycerides (β 
= 0.13, p = 0.026), and there was a trending, though non-
significant, effect for HDL (β = -0.10, p = 0.073) in the 
expected direction. Thus, results suggested that multiple 
obesity-related metabolic components showed 
worsening profiles over time as a function of advanced 
DNAm age at time 1. 
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Supplementary Figures 
 

  

 
 
Figure S1. The Figure shows the results of cross-lagged model models examining longitudinal associations between Hannum 
DNAm age residuals and measured white blood cells (A), C-reactive protein (B), and CD4/CD8 t- cell ratios (C). Results for 
metabolic syndrome severity factor scores can be found in Figure 1. Measures of metabolic and inflammatory markers were 
residualized on age and sex (applicable to all figures). ***p < 0.005, **p < 0.01, **p < 0.05. 
 

 
 

Figure S2. The Figure shows the results of cross-lagged models examining longitudinal associations between Hannum DNAm 
age residuals and Blood Pressure (A) and Blood Sugar (B) factor scores. Results for the Lipids/Obesity factor scores can be found 
in Figure 1. ***p < 0.005, **p < 0.01, **p < 0.05. 
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Figure S3. The Figure shows the results of cross-lagged model models examining longitudinal associations between Hannum DNAm 
age residuals and measured white blood cells (A), C-reactive protein (B), CD4/CD8 t- cell ratios (C), and metabolic syndrome severity 
factor scores (D). ***p < 0.005, **p < 0.01, **p < 0.05. 
 

 
 
 

Figure S4. The Figure shows the results of cross-lagged model models examining longitudinal associations between Hannum DNAm 
age residuals and C-reactive protein. 1Hannum DNAm age residuals for each time point were generated by regressing raw DNAm age 
estimates on age, sex, and the top two ancestry PCs and saving the unstandardized residuals from this equation (estimated WBCs were 
not included). ***p <0.005, **p < 0.01, **p < 0.05. 
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