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INTRODUCTION 
 
Schizophrenia (SCZ) is a chronic and severe mental 
disorder, characterized by psychosis, apathy and 
withdrawal, and cognitive impairment. Depression, 
anxiety, and substance abuse are additional mental health 
problems of SCZ condition. The symptoms of SCZ  

 

typically appear gradually, start between ages 16 and 30, 
and never resolve in many cases. About 1% of the 
population is affected by SCZ during their lifetimes, 
which is associated with substantial morbidity and 
mortality, as well as personal and societal costs [1, 2]. 
Moreover, SCZ is ranked among the top 25 leading 
causes of disability worldwide [3]. 
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ABSTRACT 
 
Background: Schizophrenia is a complex mental disorder. The genetic mechanism of schizophrenia remains 
elusive now. 

Methods: We conducted a large-scale integrative analysis of two genome-wide association studies of 
schizophrenia with functional annotation datasets of regulatory single-nucleotide polymorphism (rSNP). The 
significant SNPs identified by the two genome-wide association studies were first annotated to obtain 
schizophrenia associated rSNPs and their target genes and proteins, respectively. We then compared the 
integrative analysis results to identify the common rSNPs and their target regulatory genes and proteins, shared 
by the two genome-wide association studies of schizophrenia. Finally, DAVID tool was used to conduct gene 
ontology and pathway enrichment analysis of the identified targets genes and proteins. 

Results: We detected 53 schizophrenia-associated target genes for rSNP, such as FOS (P value = 2.18×10-20), ATXN1 
(P value = 5.22×10-21) and HLA-DQA1 (P value = 1.98×10-10). Pathway enrichment analysis identified 24 pathways 
for transcription factors binding regions, chromatin interacting regions, long non-coding RNAs, topologically 
associated domains, circular RNAs and post-translational modifications, such as hsa05034:Alcoholism (P value = 
2.57×10-7) and hsa04612:Antigen processing and presentation (P value = 6.82×10-8). 

Conclusion: We detected multiple candidate genes, gene ontology terms and pathways for schizophrenia, 
supporting the functional importance of rSNPs, and providing novel clues for understanding the genetic 
architecture of schizophrenia. 
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SCZ is a multi-factorial disease, and its occurrence 
depends on environmental and genetic factors. The high 
heritability of SCZ points to a major role for inherited 
genetic variants in the etiology of SCZ, with estimated 
heritability up to 80% [1, 2]. In recent years, 
considerable progress has been done in the genetic 
studies of SCZ [4]. Multiple susceptibility genes have 
been identified for SCZ [2, 5], such as NRG1 [5], 
DISC1 [5] and DRD2 [2]. Major histocompatibility 
complex (MHC) [1] on chromosome 6p is the most 
significant region for SCZ, which contains many 
markers reaching genome-wide significance [4]. 
However, the genetic mechanism of SCZ remains 
largely unknown. 
 
Genome-wide association studies (GWAS) have great 
power to identify susceptibility genetic loci associated 
with complex diseases. Over the years, a number of 
creditable candidate genes for SCZ has been identified, 
largely by GWAS [2]. Because a stringent threshold 
requires a huge sample size to reliably identify risk 
genes, the significant loci identified by GWAS are 
usually limited and functionally independent, providing 
limited information for the mechanism studies of SCZ. 
Moreover, a large part of genetic variants detected by 
GWAS are located in non-coding chromosomal regions 
[4]. It is usually confusing how these non-coding 
regions implicated would be involved in the 
development of SCZ. 
 
Functional SNPs located in protein-coding and non-
coding genes are named regulatory single nucleotide 
polymorphisms (rSNPs), which usually have major 
impacts on gene functions [6]. They mainly include 
transcription factor binding regions (TFBRs), chromatin 
interactive regions (CIRs), topologically associated 
domains (TADs), long non-coding RNAs (lncRNAs) 
coding regions, and circular RNA (circRNA) regions. 
Additionally, some SNPs located in the protein coding 
regions can alter protein post-translational modifications 
(PTMs) [7], such as phosphorylation, methylation, 
acetylation, ubiquitination, and glycosylation. The 
implication of rSNPs in the development of complex 
diseases has been well documented in previous studies 
[8–10]. Integrating GWAS and functional rSNPs 
annotation information have improved GWAS power and 
provided novel clues for the genetic studies of complex 
diseases [11–13], such as periodontal diseases [13] and 
breast cancer [12]. To the best of our knowledge, limited 
efforts have been paid to explore the functional relevance 
of rSNPs with SCZ. 
 
In this study, we conducted a large-scale integrative 
analysis of two GWAS datasets of SCZ with functional 
annotation datasets of rSNPs. The significant SNPs 
identified by the two GWAS were first annotated to 

obtain SCZ-associated rSNPs and their target gene and 
proteins, respectively. We then compared the integrative 
analysis results to identify the common rSNPs and their 
target gene and proteins, shared by the two GWAS of 
SCZ. Finally, DAVID tool was used to conduct gene 
ontology (GO) and pathway enrichment analysis of the 
identified target genes and proteins shared by the two 
GWAS of SCZ. 
 
RESULTS 
 
Analysis results of GWAS and rSNP annotation 
datasets 
 
For TFBRs, CIRs, lncRNAs regions, TADs and 
circRNAs, we identified 1,499 SCZ associated rSNPs, 
corresponding to 35 genes, such as FOS (P value = 
2.18×10-20), GABBR1 (P value = 2.18×10-20), MDK (P 
value = 1.89×10-10) and ATXN1 (P value = 5.22×10-21). 
For PTM, we detected 43 rSNPs, corresponding to 18 
genes, such as HLA-DQA1 (P value = 1.98×10-10), 
HLA-DRB1 (P value = 1.36×10-12) and ZSCAN31 (P 
value = 8.78×10-10) (Table 1). 
 
GO enrichment analysis 
 
GO enrichment analysis identified 15 GO terms 
enriched in the identified target genes of TFBRs, CIRs, 
lncRNAs, TADs and circRNAs, such as 
GO:0000786~nucleosome (P value = 1.84×10-10), 
GO:0046982~protein heterodimerization activity (P 
value = 5.97×10-7), GO:0000788~nuclear nucleosome 
(P value = 5.63×10-5) and GO:0006334~nucleosome 
assembly (P value = 5.70×10-5). For PTMs, we 
identified 37 SCZ-associated GO terms, such as 
GO:0002504~antigen processing and presentation of 
peptide or polysaccharide antigen via MHC class II (P 
value = 4.79×10-7), GO:0042613~MHC class II protein 
complex (P value = 1.03×10-6), GO:0042605~peptide 
antigen binding (P value = 2.26×10-6) and 
GO:0071556~integral component of lumenal side of 
endoplasmic reticulum membrane (P value = 2.43×10-6) 
(Table 2). 
 
Pathway enrichment analysis 
 
For TFBRs, CIRs, lncRNAs, TADs and circRNAs, we 
identified 3 pathways associated with SCZ, including 
ha05322:Systemic lupus erythematosus (P value = 
3.77×10-8), hsa05034:Alcoholism (P value = 2.57×10-7) 
and hsa05203:Viral carcinogenesis (P value = 1.78×10-2). 
For PTMs, we identified 21 pathways associated with 
SCZ, such as hsa04612:Antigen processing and 
presentation (P value = 6.82×10-8), hsa05310:Asthma  
(P value = 7.44×10-7), hsa05332:Graft-versus-host 
disease (P value = 1.00×10-6) and hsa04672:Intestinal  
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Table 1. List of SCZ associated rSNPs and their target regulatory genes and proteins shared by both SCZ 1 and SCZ 2. 

SNP Gene SNP-related regulatory elements P value 
rs35001169 HIST1H3J TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 7.40× 10-27 
rs35001169 HIST1H2AM TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 7.40× 10-27 
rs35819751 MIR3143 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 9.52× 10-27 
rs66462181 HIST1H4A TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 1.06× 10-26 
rs17695758 DNAH8 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 1.52× 10-26 
rs141342723 HIST1H2BL TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 1.82× 10-26 
rs13209332 HIST1H2AK TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.10× 10-26 
rs2232423 ZSCAN12 PTMs 1.71× 10-23 
rs33932084 PGBD1 PTMs 5.00× 10-23 
rs41266839 BTN3A1 PTMs 4.77× 10-22 
rs34788973 OR2B2 PTMs 1.87× 10-21 
rs34197618 ATXN1 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 5.22× 10-21 
rs41266779 FOS TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.18× 10-20 
rs41266779 HIST1H2BK TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.18× 10-20 
rs41266779 NUP153 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.18× 10-20 
rs41266779 PKHD1 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.18× 10-20 
rs41266779 CLIC5 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.18× 10-20 
rs41266779 DCDC2 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.18× 10-20 
rs41266779 GABBR1 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.18× 10-20 
rs41266779 PRIM2 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.18× 10-20 
rs41266779 ANKH TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.18× 10-20 
rs41266779 HIST1H2AH TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.18× 10-20 
rs35050608 MBOAT1 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.37× 10-20 
rs35506517 LY86 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 3.25× 10-20 
rs9393718 HIST1H2BJ TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 3.32× 10-20 
rs35555795 BTN1A1 PTMs 9.83× 10-17 
rs79780963 RNU1-60P TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 7.51× 10-16 
rs13216828 BTN3A2 PTMs 1.59× 10-15 
rs9986596 ZKSCAN4 PTMs 5.51× 10-15 
rs3891176 HLA-DQB1 PTMs 3.29× 10-14 
rs11693528 BMPR2 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 5.62× 10-14 
rs16891235 HIST1H1A PTMs 1.59× 10-13 
rs769949 PLCL1 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.10× 10-13 
rs853678 ZSCAN31 PTMs 3.42× 10-13 
rs281786 MPP4 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 3.92× 10-13 
rs281786 AOX1 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 3.92× 10-13 
rs35220450 RAPH1 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 4.05× 10-13 
rs35220450 INO80D TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 4.05× 10-13 
rs281760 AOX2P TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 4.71× 10-13 
rs10734901 ATP6V0A2 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 4.83× 10-13 
rs3098341 BOLL TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 4.89× 10-13 
rs10431750 KLC1 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 5.69× 10-13 
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rs56155997 PDE11A TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 5.92× 10-13 
rs34525648 SLC17A2 PTMs 1.22× 10-12 
rs16822516 HLA-DRB1 PTMs 1.36× 10-12 
rs71417869 CDC42BPB TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 4.02× 10-12 
rs2075800 HSPA1L PTMs 6.00× 10-11 
rs35324223 MDK TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 1.89× 10-10 
rs707962 HLA-DQA1 PTMs 1.98× 10-10 
rs115817940 HLA-DRB5 PTMs 3.46× 10-10 
rs13201753 ZKSCAN3 PTMs 8.78× 10-10 
rs950169 ADAMTSL3 PTMs 9.17× 10-10 
rs13107325 SLC39A8 PTMs 5.03× 10-9 

Note: TFBRs, transcription factor binding regions; CIRs, chromatin interactive regions; TADs, topologically associated 
domains; PTMs, protein post-translational modifications. 
 
Table 2. List of SCZ associated gene ontology terms shared by both SCZ 1 and SCZ 2. 

Term Term description SNP-related regulatory elements P value 
GO:0000786 nucleosome TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 1.84× 10-10 
GO:0002504 Antigen processing and presentation 

of peptide or polysaccharide antigen 
via MHC class II 

PTMs 4.79× 10-7 

GO:0046982 protein heterodimerization activity TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 5.97× 10-7 
GO:0042613 MHC class II protein complex PTMs 1.03× 10-6 
GO:0042605 Peptide antigen binding PTMs 2.26× 10-6 
GO:0071556 Integral component of lumenal side 

of endoplasmic reticulum membrane PTMs 2.43× 10-6 

GO:0030658 Transport vesicle membrane PTMs 5.57× 10-6 
GO:0030669 Clathrin coated endocytic vesicle 

membrane PTMs 7.03× 10-6 

GO:0002381 Immunoglobulin production involved 
in immunoglobulin mediated 

immune response 
PTMs 8.50× 10-6 

GO:0050852 T cell receptor signaling pathway PTMs 9.71× 10-6 
GO:0012507 ER to Golgi transport vesicle 

membrane PTMs 1.45× 10-5 

GO:0002455 Humoral immune response mediated 
by circulating immunoglobulin PTMs 1.78× 10-5 

GO:0019882 Antigen processing and presentation PTMs 1.81× 10-5 
GO:0030666 Endocytic vesicle membrane PTMs 2.98× 10-5 
GO:0060333 Interferon gamma mediated signaling 

pathway PTMs 3.90× 10-5 

GO:0031295 T cell costimulation PTMs 5.17× 10-5 
GO:0000788 nuclear nucleosome TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 5.63× 10-5 
GO:0006334 nucleosome assembly TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 5.70× 10-5 
GO:0032588 Trans Golgi network membrane PTMs 5.92× 10-5 
GO:0019886 Antigen processing and presentation 

of exogenous peptide antigen via 
MHC class II 

PTMs 8.46× 10-5 

GO:0032395 MHC class II receptor activity PTMs 8.78× 10-5 
GO:0003677 DNA binding TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.20× 10-4 
GO:0005737 cytoplasm TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 5.83× 10-4 
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GO:0043565 Sequence specific DNA binding PTMs 1.19× 10-3 
GO:0005765 Lysosomal membrane PTMs 1.96× 10-3 
GO:2001179 Regulation of interleukin 10 

secretion PTMs 2.86× 10-3 

GO:0006342 chromatin silencing TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.91× 10-3 
GO:0032673 Regulation of interleukin 4 

production PTMs 3.81× 10-3 

GO:0072643 Interferon gamma secretion PTMs 6.65× 10-3 
GO:0006955 Immune response PTMs 6.87× 10-3 
GO:0003700 Transcription factor activity, 

sequence specific DNA binding PTMs 1.10× 10-2 

GO:0042088 T helper 1 type immune response PTMs 1.14× 10-2 
GO:0016020 Membrane PTMs 1.17× 10-2 
GO:0016045 Detection of bacterium PTMs 1.23× 10-2 
GO:0002437 Inflammatory response to antigenic 

stimulus PTMs 1.42× 10-2 

GO:0000139 Golgi membrane PTMs 1.64× 10-2 
GO:0031047 gene silencing by RNA TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 1.67× 10-2 
GO:0042405 nuclear inclusion body TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.19× 10-2 
GO:0032689 Negative regulation of interferon 

gamma production PTMs 2.64× 10-2 

GO:0035774 Positive regulation of insulin 
secretion involved in cellular 
response to glucose stimulus 

PTMs 2.73× 10-2 

GO:0016021 Integral component of membrane PTMs 2.81× 10-2 
GO:0010507 Negative regulation of autophagy PTMs 3.38× 10-2 
GO:0007040 Lysosome organization PTMs 3.38× 10-2 
GO:0042130 Negative regulation of T cell 

proliferation PTMs 3.47× 10-2 

GO:0051262 Protein tetramerization PTMs 3.75× 10-2 
GO:0005654 nucleoplasm TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 3.77× 10-2 
GO:0005887 Integral component of plasma 

membrane PTMs 3.81× 10-2 

GO:0007214 gamma-aminobutyric acid signaling 
pathway TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 3.86× 10-2 

GO:0070062 extracellular exosome TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 3.98× 10-2 
GO:0000790 nuclear chromatin TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 4.24× 10-2 
GO:0002227 innate immune response in mucosa TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 4.38× 10-2 
GO:0032200 telomere organization TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 4.72× 10-2 

Note: TFBRs, transcription factor binding regions; CIRs, chromatin interactive regions; TADs, topologically associated 
domains; PTMs, protein post-translational modifications.  

immune network for IgA production (P value =  
2.96×10-6) (Table 3). 
 
DISCUSSION 
 
Considering that most of SCZ variants identified by 
GWAS were not causal, integration of the GWAS 
results with functional rSNPs information is a 
powerful approach to discover novel candidate genes 

for SCZ [4]. To evaluate the roles of rSNPs in the 
pathogenesis of SCZ, we conducted a large-scale 
integrative genomics analysis of two GWAS datasets 
of SCZ with functional annotation datasets of rSNPs. 
We identified multiple candidate genes, GO terms, and 
biological pathways for SCZ. Our study results support 
the functional importance of rSNPs in the genetic 
mechanism of SCZ, and provide novel clues for 
understanding the genetic architecture of SCZ.  
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Table 3. List of SCZ associated pathways shared by both SCZ 1 and SCZ 2. 

Term description Term ID SNP-related regulatory elements P value 

Systemic lupus erythematosus hsa05322 TFBRs, CIRs, lncRNAs regions, TADs, 
circRNAs, PTMs 3.37× 10-8 

Antigen processing and presentation hsa04612 PTMs 6.82× 10-8 
Alcoholism hsa05034 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 2.57× 10-7 
Toxoplasmosis hsa05145 PTMs 3.06× 10-7 
Asthma hsa05310 PTMs 7.44× 10-7 
Graft-versus-host disease hsa05332 PTMs 1.00× 10-6 
Allograft rejection hsa05330 PTMs 1.42× 10-6 
Influenza A hsa05164 PTMs 1.94× 10-6 
Type I diabetes mellitus hsa04940 PTMs 2.10× 10-6 
Intestinal immune network for IgA 
production hsa04672 PTMs 2.96× 10-6 

Autoimmune thyroid disease hsa05320 PTMs 4.03× 10-6 
Staphylococcus aureus infection hsa05150 PTMs 4.52× 10-6 
Viral myocarditis hsa05416 PTMs 5.33× 10-6 
Inflammatory bowel disease (IBD) hsa05321 PTMs 7.58× 10-6 
Leishmaniasis hsa05140 PTMs 1.04× 10-5 
Rheumatoid arthritis hsa05323 PTMs 1.99× 10-5 
Epstein-Barr virus infection hsa05169 PTMs 5.30× 10-5 
Systemic lupus erythematosus hsa05322 PTMs 7.03× 10-5 
Cell adhesion molecules (CAMs) hsa04514 PTMs 8.36× 10-5 
Phagosome hsa04145 PTMs 9.84× 10-5 
Tuberculosis hsa05152 PTMs 1.61× 10-4 
Herpes simplex infection hsa05168 PTMs 1.78× 10-4 
HTLV-I infection hsa05166 PTMs 4.71× 10-4 
Viral carcinogenesis hsa05203 TFBRs, CIRs, lncRNAs regions, TADs, circRNAs 1.78× 10-2 
Note: TFBRs, transcription factor binding regions; CIRs, chromatin interactive regions; TADs, topologically associated 
domains; PTMs, protein post-translational modifications. 
 
We identified several candidate genes for SCZ, such as 
FOS, GABBR1, MDK, ATXN1 and ZSCAN31. FOS 
is classified as one of the immediate early genes 
(IEGs), which encode not only transcription factors, 
but also a much wider variety of proteins, including 
signaling molecules, growth factors and cytoskeletal 
proteins [14]. Alteration in the expression of IEGs is 
linked to neuron generation and neuronal cell death. 
Nadia Cattane et al. have reported that FOS was 
significantly upregulated in the fibroblasts of SCZ 
patients [14]. Defects in synaptic plasticity are 
involved in the pathophysiology of SCZ. Interestingly, 
SNPs either protective (rs1063169) or positively 
associated with SCZ (rs7101T) were identified, 
showing transcription factor c-fos was important in the 
regulation of synaptic plasticity [15]. Huang et al. 
observed high FOS expression in non-neural 
peripheral samples and low FOS expression in the 
brain tissues of SCZ patients compared with healthy 
controls, which suggests that FOS is a sensitive marker 
for SCZ [16]. In addition, detection of FOS in blood 
samples may be helpful for SCZ diagnosis [16]. These 
combined results support the functional relevance of 
FOS with SCZ [14–16], which is consistent with our 
study results. 

GABBR1 is another SCZ-associated gene identified by 
this study. γ-aminobutyric acidB (GABAB) is an 
inhibitory transmitter molecule acting at neuronal 
synapses. Functional GABAB receptor requires both the 
GABBR1 and GABBR2 subunits. GABAB receptor can 
modulate the release of a number of neurotransmitters, 
including dopamine, serotonin, noradrenaline, 
somatostatin, glutamate and GABA [17]. Interestingly, 
the reduction of GABBR1 in pyramidal cells, and 
consequent reduction of GABAB receptors, can result in 
the dysfunction of inhibitory mechanism and increase 
signal output [18]. Previous studies have also observed 
association between GABBR1 and SCZ. Fatemi et al. 
observed a significant reduction of GABBR1 protein in 
the lateral cerebellum of the subjects with SCZ, bipolar 
disorder, and major depression [17]. In addition, Zai et al. 
conducted a case-control study and detected a positive 
association between GABBR1 and SCZ [19]. 
 
Genetic variation in a region on chromosome 11 that 
contains MDK was significantly associated with SCZ 
[20]. In addition, MDK also accumulated in senile 
plaques in the hippocampus of patients with 
Alzheimer’s disease [20, 21]. Notably, ATXN1 serves 
as one of the hub genes in the protein-protein 
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interaction network containing many known SCZ risk 
genes [22]. Actually, ATXN1 is highly expressed in 
prefrontal cortex, and SCZ patients had significantly 
decreased ATXN1 expression [22]. In addition, Takeo 
Saito et al. have revealed an association of rs7779855 in 
ZSCAN31 with SCZ [23]. 
 
GO analysis detected several GO terms for SCZ. One 
important finding of this study is the disclosure of the 
MHC class II protein complex (GO:0042613), a class of 
MHC molecules like human leukocyte antigens HLA-
DQA1 and HLA-DQB1, which present antigens to 
CD4-positive T-lymphocytes. The association between 
SCZ and the immune system has been repeatedly 
revealed in genetic, epidemiological and post mortem 
studies [24]. The protein encoded by HLA-DQA1 gene 
binds to the protein encoded by HLA-DQB1. Together, 
they form a functional protein complex called an 
antigen-binding DQαβ heterodimer, which displays 
foreign peptides to immune system to trigger body's 
immune response. Interestingly, HLA alleles were 
previously shown to be associated with SCZ risk [25]. 
rs9272105 within HLA-DQA1 explained 1–3% of 
variation in attentional control, and to a lesser extent, 
premorbid intelligence quotient in psychotic patients 
[26]. Additionally, rs9272105 within HLA-DQA1 was 
also individually associated with variation in 
neuropsychological function [26]. It has been 
demonstrated that the level of HLA-DRB1 in SCZ was 
decreased in peripheral blood samples in contrast with 
increased level in prefrontal cortex [27]. Moreover, 
HLA-DPA1 and CD74, which are integral components 
of the MHC Class II protein complex, were both 
reduced in hippocampus, amygdala, and dorsolateral 
prefrontal cortex regions in SCZ [28].  
 
T helper 1 type immune response (GO:0042088) is 
another significant GO term detected by this study. 
Delayed hypersensitivity reaction is the classic cell-
mediated immune response with sensitized T helper-1 
cells. Michael et al. found an attenuated skin reactivity 
to various antigens in SCZ patients [29]. They also 
observed significantly diminished responses of 
schizophrenics to antigen stimulation with tetanus and 
diptheria antigen presentation [29]. Significantly 
increased serum level of interleukin-18, a cytokine 
known to activate T helper 1 type cells in immune 
responses, has been previously observed in SCZ 
patients [30].  
 
In addition, we also identified several other GO terms 
associated with SCZ, such as Golgi membrane 
(GO:0000139) and GABA signaling pathway 
(GO:0007214). Previously, it was shown that 
differentially expressed genes related to Golgi 
apparatus, vesicular transport and membrane association 

were over-represented in SCZ [31]. In line, Devor et al. 
identified a large number of GABA-associated genes 
for SCZ [32].  
 
The involvement of cell adhesion molecules (CAMs) in 
the pathophysiology of SCZ has long been 
hypothesized. In this study, CAMs (hsa04514) pathway 
was detected for SCZ. The CAMs pathway is 
implicated in a variety of neurocognitive processes, 
including memory and attention-related reaction time. 
Multiple CAM genes has been reported to be associated 
with SCZ risk [26]. Neural CAMs are very important 
members of the exclusive group of the molecules 
responsible for precise wiring of nervous system. 
Neural CAMs serve as ‘‘glue’’ in cell-to-cell adhesion 
and contact-mediated attraction [33]. They can interact 
with numerous matrix components, and are involved in 
many aspects of neuronal development, synaptogenesis, 
and myelination, which guide brain morphology and 
support highly-coordinated brain activity [33]. 
Cerebrospinal fluid neuronal CAMs were significantly 
increased in SCZ patients [34]. Additionally, the plasma 
levels of intercellular adhesion molecule-1 was also 
elevated in SCZ patients [35]. Honer et al. found that 
syntaxin immunoreactivity in the cingulate cortex from 
schizophrenics was increased, along with neural CAMs 
and the CAMs to synaptophysin ratio [36]. Besides, it 
has been reported that L1 cell adhesion molecule 
interaction was involved in neuronal function [37].  
 
Another interesting SCZ associated pathway is 
alcoholism (hsa05034). Recent studies have suggested 
that alcoholism has a wide-reaching influence on the 
clinical course of SCZ, contributing to shape 
abnormalities in hippocampus and subcortical shape 
differences [38]. We also observed that systemic lupus 
erythematosus (SLE) (hsa05322) was associated with 
SCZ. Despite the fact that SCZ is not classified as a 
typical autoimmune diseases, the dysregulation of the 
immune system cannot be excluded [39, 40]. 
Interestingly, DNA and myelin basic protein (MBP)-
hydrolyzing antibodies, which play an important 
harmful role in SLE pathogenesis, were also detected in 
the sera of SCZ patients. In addition, light chains of 
IgGs from SCZ patients were similar to those of SLE 
patients [41].  
 
The majority of SNPs identified by GWAS are enriched 
in non-coding regions [4], and contribute to complex 
traits and diseases through various molecular 
mechanisms. These include effects on transcription 
factor binding affinities, which can result in differential 
gene expression [11]. However, significant loci 
identified by GWAS have rarely been tracked to causal 
polymorphisms thus far. Integrative analysis of GWAS 
with functional rSNPs is helpful to improve GWAS 
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power and provide novel clues for pathogenetic studies 
of SCZ. Notably, the functional SNPs data can assist to 
exclude unlikely genes/loci, effectively reducing the 
number of tests needed for unbiased searches across the 
genome, thus, improving the power to discover novel 
causal loci [4]. To the best of our knowledge, this is the 
first large-scale integrative analysis of GWAS and 
rSNPs for SCZ. The implication of rSNPs in the 
development of SCZ was systematically investigated 
considering TFBRs, CIRs, lncRNAs regions, TADs, 
circRNAs, and PTMs in our study. Nevertheless, one 
limitation of this study should be noted. The SCZ-
associated SNP sets were driven from previous GWAS. 
The accuracy of our integrative analysis may be 
affected by the power of previous GWAS of SCZ. 
Therefore, further studies are warranted to confirm our 
findings. 
 
In conclusion, we conducted a large-scale integrative 
genomics analysis of two GWAS datasets of SCZ with 
functional annotation datasets of rSNPs to explore the 
genetic basis of rSNPs in the pathogenesis of SCZ. We 
observed multiple candidate genes, GO terms and 
pathways for SCZ. We hope that our study results could 
provide novel clues for the pathogenic and therapic 
studies of SCZ. 
 
MATERIALS AND METHODS 
 
The first GWAS dataset of SCZ (SCZ1) 
 
A large GWAS meta-analysis data of SCZ was driven 
from the Psychiatric Genomics Consortium (PGC) [42], 
totally containing 33,426 SCZ cases and 32,541 
controls. Genotypes from all studies were processed by 
the PGC using unified quality control procedures 
followed by imputation of SNPs and insertion-deletions 
using the 1000 Genomes Project reference panel [43]. 
Quality control and imputation were performed on each 
of the study cohort datasets, according to the standard 
procedures established by the PGC [42]. Genotype 
imputation was performed using the pre-
phasing/imputation stepwise approach implemented in 
IMPUTE2 [44] and SHAPEIT [45]. The imputation 
reference set consists of 2,186 phased haplotypes from 
the full 1000 Genomes Project dataset. Logistic 
regression was conducted to control for 13 components 
of ancestry, study sites and genotyping platform. 
Detailed description of sample characteristics, 
experimental design, statistical analysis and quality 
control can be found in the previous studies [42]. 
 
The second GWAS dataset of SCZ (SCZ2) 
 
Another independent GWAS data of SCZ [2] was used 
here. Briefly, this GWAS included 36,989 SCZ cases 

and 113,075 controls, from 49 ancestry matched, non-
overlapping case-control samples (46 of European and 
three of East Asian ancestry, 34,241 cases and 45,604 
controls) and 3 family-based samples of European 
ancestry (1,235 parent affected-offspring trios). 
Genotypes from all studies were processed by the PGC 
using unified quality control procedures. The 1000 
Genomes Project reference panel was used for SNPs 
imputation [43]. In each sample, association testing was 
conducted using imputed SNP dosages and principal 
components to control for population stratification. 
After quality control (imputation INFO score ≥ 0.6, 
MAF ≥ 0.01, and successfully imputed in ≥ 20 samples), 
they considered around 9.5 million variants. An inverse-
weighted fixed effects model was used for final meta-
analysis. Detailed description of sample characteristics, 
experimental design, statistical analysis and quality 
control can be found in the previous study [2]. 
 
rSNPs annotation datasets 
 
The rSNPs annotation information were driven from the 
rSNPBase 3.1 database (http://rsnp3.psych.ac.cn) [46] 
and the AWESOME database (http://www.awesome-
hust.com) [7]. rSNPBase 3.1 provided rich functional 
annotation for human SNP-related regulatory elements 
and their target regulatory genes, including TFBRs, 
CIRs, mature microRNA (miRNA) regions, predicted 
miRNA target sites, lncRNA regions, TADs and 
circRNAs. AWESOME database is an analysis tool that 
systematically evaluates the role of SNPs on nearly all 
kinds of PTMs based on 20 available tools. They 
construct a comprehensive platform to collect and 
integrate SNPs and multiple PTM information, utilizing 
24 published database or tools. 1,043,608 germline 
missense variants from the dbSNP was used and each 
SNP was matched with its protein sequence in 
AWESOME. Detailed description of the two rSNPs 
annotation database can be found in the published 
studies [7, 46]. 
 
Statistical analysis 
 
The significant SNPs with GWAS P value < 5.0 × 10-8 

were selected from the two GWAS of SCZ (SCZ1 and 
SCZ2). The selected SCZ-associated SNPs were then 
annotated by the rSNPBase 3.1 database [46] and the 
AWESOME database to obtain SCZ associated rSNPs 
and their target regulatory genes and proteins. We then 
compared the integrative analysis results to identify the 
common rSNPs and their target genes and proteins 
shared by the two GWAS of SCZ. To explore the 
functional relevance of identified target regulatory genes 
and proteins with SCZ, GO and pathway enrichment 
analyses of the identified common target genes and 
proteins shared by the SCZ1 and SCZ2 were performed 
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by the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) tool [47]. 
 
Abbreviations 
 
GWAS: genome wide association studies; rSNP: 
regulatory SNP; TFBRs: transcription factor binding 
regions; CIRs: chromatin interactive regions; lncRNAs: 
long non-coding RNA regions; TADs: topologically 
associated domains; circRNAs: circular RNAs; PTMs: 
protein post-translational modifications; GO: gene 
ontology; SCZ: Schizophrenia. 
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