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INTRODUCTION 
 
Myocardial infarction (MI) is a major cause of coronary 
heart disease (CHD), and often causes ischemic 
cardiomyopathy and heart failure [1]. Cardiomyocytes 
are potently injured in the disease and appear to be the 
most critical cell type that requires effective 
regeneration or recovery from severe dysfunction to 
result in a successful therapy [2].  
 
More and more studies have shown that stem cells can 
play an important role in tissue repair and anti-
inflammation. In particular, mesenchymal stem cells 
(MSCs) have shown anti-inflammatory and 
immunological functions. Indeed, MSCs have also been 
shown to have the potential to enhance the recovery and 
regeneration of the infarcted myocardium [3–6]. The 
current belief on the role of MSCs in myocardial 
regeneration is their synthesis and secretion of 
cytokines and other trophic growth factors to signal to  

 

the injured myocardial cells [7], which may also involve 
anti-aging effects [8–10]. 
 
MSCs express specific surface markers, CD105, Sca-1, 
and CD90, and do not express CD34, CD45, and HLA-
DR [11–13]. Moreover, MSCs have multipotent 
differential capabilities of osteocytes, adipocytes and 
chondrocytes [14]. These properties are used to 
characterize MSCs. CD146 in a marker that expresses 
in capillary pericytes [15]. We have recently shown that 
the effects of transplantation of CD146+ MSCs on 
myocardial regeneration after MI exceeds the effects of 
transplantation of MSCs, likely resulting from reduction 
of aging-associated cellular reactive oxygen species in 
injured cardiac muscle cells (CMCs) [16].  
 
Many effects of MSCs on tissue repair and cell 
regeneration are conducted through their crosstalk with 
macrophages [17–19]. It is traditionally thought that 
Macrophage are deemed to be white blood cells with a 
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major functionality of swallowing and ingesting wastes, 
dying or dead cells, and impurities [20–23]. 
Nevertheless, recently studies have shown that 
macrophages have much more functions other than 
phagocytosis. Therefore, a more complicated 
classification of macrophages has been applied, in 
which 2 subtypes of macrophages are distinguished by 
two phenotypes. One was named as “M1” macrophages, 
while the other alternatively polarized one was named 
as “M2” macrophages, which function in regulation of 
humoral immunity and promotion of tissue repair  
[20–23]. CD206, CD163, arginase and CD301 are 
expressed by M2 macrophages, high levels of CD86, 
nitric oxide synthase (iNOS), reactive oxygen species 
(ROS) and tumor necrosis factor alpha (TNFα) are 
expressed by the M1 macrophages [20–23]. Since the 
role of macrophages in the MSC-mediated recovery of 
heart function after MI remains unclear, this question 
was thus addressed in the current study.  
 
We found that transplantation of MSCs did not alter the 
total number of the macrophages in the injured heart, 
but induced their polarization towards a M2-phenotype. 
Moreover, administration of TNFα into MSC-

transplanted mice, which prevented M2-polarization of 
macrophages, abolished the effects of MSCs on 
recovery of heart function and on the reduction of 
infarcted cardiac tissue.   
 
RESULTS 
 
Confirmation of MSC properties 
 
MSCs were isolated from mice and the MSC properties 
were confirmed sequentially by FAC-analysis on the 
expression of surface markers, including expression of 
Sca-1, CD90 and CD105, but null expression of CD34, 
CD45 and HLA-DR (Figure 1A), and by full potential 
of differentiation into osteocytes, adipocytes or 
chondrocytes in the corresponding differentiation media 
(Figure 1B).  
 
Transplantation of MSCs induces M2-polarization 
of macrophages 
 
MSCs were transplanted into MI mouse model as 
described [16]. We did immunostaining for F4/80, a pan- 
macrophage marker, or CD86, a M1-specific macrophage

 

 
 

Figure 1. Confirmation of MSC properties. (A) Mouse MSC surface markers (Sca-1, CD90, CD105, CD34, CD45 and HLA-DR) were 
examined by flow cytometry. Y-axis is the number of the cells, and the large scale is 105. X-axis is the level of the examined gene, and the 
large scale is a relative density value. (B) Differentiation assay for MSCs into osteocytes followed by Von kossa staining (left), into adipocytes 
followed by Oil red O staining (middle), and into chondrocytes followed by alcian blue staining (right). N=5. Scale bars are 50 µm. 
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marker, in the injured heart at 4 weeks after 
transplantation. We found that the total number of 
macrophages (by ratio of F4/80+ to the total cells) in the 
MI-heart did not alter by MSC transplantation, shown by 
representative images (Figure 2A), and by quantification 
(Figure 2B). However, the total number of M1 
macrophages (by ratio of CD86+ to the total cells) in the 
MI-heart significantly decreased by MSC transplantation, 
shown by representative images (Figure 2A), and by 
quantification (Figure 2B). These data indicate that M2 
macrophages may increase by MSC transplantation. To 
prove it, we digested the injured heart at 4 weeks after 
transplantation, and analyzed the dissociated cells by 
F4/80 and CD163, a M2-specific macrophage marker. 
Again, by FACS, we found that the total number of 
macrophages (by ratio of F4/80+ to the total cells) in the 
MI-heart did not alter by MSC transplantation, shown by 

representative flow charts (Figure 2C), and by 
quantification (Figure 2D). However, the total number of 
M2 macrophages (by ratio of CD163+ to the total cells) 
in the MI-heart significantly increased by MSC 
transplantation, shown by representative flow charts 
(Figure 2C), and by quantification (Figure 2D). Together, 
these data suggest that transplantation of MSCs does not 
alter the total number of the macrophages in the injured 
heart, but induces their polarization towards a M2-
phenotype. In order to prove it, MSCs and bone marrow 
derived macrophages were cultured in a transwell with 
and without presence of TNF-α, a cytokine that enhances 
M1- but prevents M2- differentiation of macrophages. 
We found that MSCs significantly increased arginase but 
did not change iNOS levels in macrophages (Figure 2E), 
while the effects of MSCs on arginase were significantly 
attenuated at presence of TNF-α (Figure 2E).  

 

 
 

Figure 2. Transplantation of MSCs induces M2-polarization of macrophages. (A–B) MSCs were transplanted into MI mouse model 
for 4 weeks, followed by immunostaining for F4/80, a pan-macrophage marker, or CD86, a M1-specific macrophage marker, in the injured 
heart, shown by representative images (A), and by quantification (B). (C–D) The injured heart at 4 weeks after transplantation was digested, 
and the dissociated cells were analyzed by F4/80 and CD163, a M2-specific macrophage marker, shown by representative flow charts (C), and 
by quantification (D). Y-axis is F4/80 staining, and the X-axis is CD163 staining. (E) ELISA for arginase and iNOS in cultured macrophages, 
with/without presence of MSCs, and with/without presence of TNF-α. *p<0.05. NS: non-significant. N=5. Scale bars are 100 µm. 
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MSC-induced M2-polarization of macrophages is 
essential for protection of heart function in MI-mice  
 
In order to evaluate the function of MSC-induced M2-
polarization of macrophages in MI-mice, we set up 4 
groups of mice. Group 1, mice received sham surgery 
and injection of saline (Sham). Group 2, mice received 
MI surgery and injection of saline (MI). Group 3, mice 
received MI surgery and injection of MSCs (MI+MSCs). 
Group 4, mice received MI surgery, injection of MSCs 
and injection of TNF-α, which helps to maintain a M1-
phenotype of macrophages (MI+MSCs+ TNF-α). Four 
weeks after MI/MSCs/TNF-α treatment, the mouse heart 
function was assessed using ventricular catheterization. 
We found that end systolic pressure-volume relationship 
(ESPVR) was significantly impaired in MI, compared to 
Sham. Transplantation of MSCs significantly improved 
ESPVR, which was significantly attenuated by TNF-α 
(Figure 3A). Moreover, left ventricular end systolic 
pressure (LVESP) was significantly impaired in MI, 
compared to Sham. Transplantation of MSCs 
significantly improved LVESP, which was significantly 
attenuated by TNF-α (Figure 3B). Furthermore, positive 
maximal pressure derivative (+dP/dt) was significantly 
impaired in MI, compared to Sham. Transplantation of 
MSCs significantly improved dP/dt, which was also 
significantly attenuated by TNF-α (Figure 3C). Hence, 
MSC-induced M2-polarization of macrophages appears 
to be essential for protection of heart function in MI-
mice.  
 
MSC-induced M2-polarization of macrophages is 
essential for reducing infarction area in MI-mice  
 
Next, we used Masson's trichrome staining to assess the 
fibrosis levels in these mice. We found that MI 

significantly increased the infarction area, which MSC 
transplantation significantly reduced MI-induced 
infarction area, shown by gross images (Figure 4A), and 
by quantification (Figure 4B). The reduction in MI-
induced infarction area by MSC-transplantation was 
significantly attenuated by TNF-α, shown by 
representative images (Figure 4A–4B), and by 
quantification (Figure 4C). Thus, MSC-induced M2-
polarization of macrophages is essential for reducing 
infarction area in MI-mice.  
 
Injection of TNF-α antagonizes MSC-induced M2-
polarization of macrophages in MI-mice 
 
To confirm that injection of TNF-α in MI-mice preserved 
heart function through antagonizing MSC-induced M2-
polarization of macrophages in vivo, we digested the 
heart at 4 weeks after treatments and analyzed F4/80 and 
CD163 for macrophages as well as CD4 (a T-helper cell 
marker) and CD8 (a cytotoxic T cell marker) by FACS. 
We found that the total number of macrophages (by ratio 
of F4/80+ to the total cells) in the MI-heart did not alter 
by injection of TNF-α, shown by representative flow 
charts (Figure 5A), and by quantification (Figure 5B). 
However, the total number of M2 macrophages (by ratio 
of CD163+ to the total cells) in the MI-heart significantly 
decreased by injection of TNF-α, shown by 
representative flow charts (Figure 5A), by quantification 
(Figure 5B), and by ELISA for arginase and iNOS 
(Figure 5C). On the other hand, the number of CD4+ or 
CD8+ cells in the MI-heart was not altered by injection 
of TNF-α, shown by representative flow charts (Figure 
5D), and by quantification (Figure 5E). Together, these 
data suggest that injection of TNF-α antagonizes MSC-
induced M2-polarization of macrophages, but does not 
affect T-cells in MI-mice.  

 

 
 

Figure 3. MSC-induced M2-polarization of macrophages is essential for protection of heart function in MI-mice. In order to 
evaluate the function of MSC-induced M2-polarization of macrophages in MI-mice, we set up 4 groups of mice. Group 1, mice received sham 
surgery and injection of saline (Sham). Group 2, mice received MI surgery and injection of saline (MI). Group 3, mice received MI surgery and 
injection of MSCs (MI+MSCs). Group 4, mice received MI surgery, injection of MSCs and injection of TNF-α, which helps to maintain a M1-
phenotype of macrophages (MI+MSCs+ TNF-α). Four weeks after MI/MSCs/TNF-α treatment, the mouse heart function was assessed using 
ventricular catheterization. (A) End systolic pressure-volume relationship (ESPVR) (B) left ventricular end systolic pressure (LVESP) (C) Positive 
maximal pressure derivative (+dP/dt). *p<0.05. N=5.  
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Figure 4. MSC-induced M2-polarization of macrophages is essential for reducing infarction area in MI-mice. (A–B) Masson's 
trichrome staining to determine the fibrotic heart tissue, shown by gross images (A), by representative histological images (B), and by 
quantification (C). *p<0.05. N=5. 

 

 
 

Figure 5. Injection of TNF-α antagonizes MSC-induced M2-polarization of macrophages in MI-mice. (A–D) The injured heart at 4 
weeks after transplantation was digested, and the dissociated cells were analyzed by F4/80 and CD163, shown by representative flow charts 
(A), by quantification (B), and by ELISA for arginase and iNOS (C), or analyzed by CD4 and CD8, shown by representative flow charts (D), and 
by quantification (E). In panel A, Y-axis is F4/80 staining, and the X-axis is CD163 staining. In panel C, Y-axis is CD4 staining, and the X-axis is 
CD8 staining. *p<0.05. NS: non-significant. N=5.  
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DISCUSSION 
 
The therapeutic benefits of MSCs could be partially 
stemmed from their modulation of inflammation 
response, since after MSCs treatment, the features and 
properties of macrophages in the injured heart was 
significantly changed, while the macrophage phenotypic 
changes are more likely appearing a M2-like alteration. 
Compared to M1, M2 macrophages have less pro-
inflammatory potential, but produce and release many 
cytokines and growth factors to improve cell survival, 
proliferation, and to reduce cellular apoptosis [24]. Of 
note, proinflammatory cytokine TNFα is a cytokine 
primarily released by M1 macrophages, and also have a 
functionality of inducing M1 macrophage differentiation. 
Here, we successfully used TNFα to antagonize MSC-
induced M2-polarization of macrophages. Moreover, 
since TNFα may also induce T-cell differentiation and 
affect T-cell subpopulation, we checked the changes in 
CD4+ versus CD8+ cells. As both CD4+ and CD8+ cells 
were not altered by TNFα, its main target in the current 
experimental model should be macrophages. We have 
also tried to use other M2-differentiation inhibitory 
cytokines, e.g. IFN-gamma, but the positive effects on T-
cell differentiation precluded us from drawing conclusion 
and thus was not used here. 
 
The crosstalk between MSCs and macrophages has been 
acknowledged in other regenerating models. For 
example, on therapeutic approaches on liver fibrosis and 
lower limb ischemia in mice [25, 26]. The 
immunomodulatory effects of MSCs have also been 
demonstrated, such as sepsis [27], renal artery stenosis 
[28] and myocardial infarction [29]. A previous study has 
shown that the MSCs that were injected into 
atherosclerosis-mice were preferentially trafficked to the 
plaque and likely migrated toward macrophages [30].  
 
Among all immune cells in the injured heart, 
macrophages are the main source of cytokine 
production and produce proinflammatory cytokines as 
well as anti-inflammatory cytokines. Proinflammatory 
cytokines such as TNFα could reinforce the tissue and 
cell damage in MI. On the other hand, anti-
inflammatory cytokines such as IL-10 should be able to 
suppress proinflammatory cytokines production, inhibit 
matrix metalloproteinases to favor heart function 
recovery and myocardial cell survival, since IL-10 also 
induces a polarization of macrophage to M2 type. Co-
culture of MSCs with macrophages showed conversion 
of macrophages into M2 phenotype, resulting in the 
secretion of IL-10 and decreasing the production of 
TNFα [31]. Since blocking IL-10 receptor in 
macrophages induced higher NF-кB activation [32], the 
suppressing effects of IL-10 on inflammatory mediators 
might also be attributed to the inhibition of NF-кB 

activity [33]. This signaling pathway network may 
regulate the crosstalk between MSCs and macrophages. 
 
To the best of our knowledge, our study is the first one 
to reveal a meaningful regulatory relationship between 
MSCs and macrophages on MI, which deserves further 
investigation on the detailed mechanisms that could 
provide important evidence for future application in 
treating MI in patients.  
 
MATERIALS AND METHODS 
 
Protocol approval 
 
All the cell and animal experimental methods have 
received approval from the research committee at the 
Shanghai Chest Hospital.  
 
Manipulation of mouse MSCs 
 
MSCs were obtained from euthanized male C57/BL6 
mice of 12 weeks of age (Shanghai Laboratory Animal 
Center, Shanghai, China) and cultured in specific media 
as described before [16]. Phenotype analysis was 
determined by flow cytometry analysis and adipocyte, 
osteocyte and chondrocyte differentiation assay with 
corresponding kits (American Type Culture Collection 
(ATCC), Rockville, MD, USA; Catalog number: PCS-
500-052, PCS-500-050 and PCS-500-051), and 
evaluated by Oil red O staining, Von kossa staining and 
Alcian blue staining, respectively.  
 
Flow cytometry 
 
The flow cytometry for MSC surface markers included 
PEcy7-conjugated anti-Sca-1, CD105, CD90, CD45, 
CD34 and HLA-DR (Becton-Dickinson Biosciences, 
Shanghai, China). Macrophage or T-cell subtype 
analysis used PEcy5-conjugated anti-F4/80 or anti-CD4, 
and APC-conjugated anti-CD163 or anti-CD8 (Becton-
Dickinson Biosciences). Flow cytometry data were 
analyzed and presented with FlowJo software (Flowjo 
LLC, Ashland, OR, USA). 
 
MI mouse model, MSC transplantation and injection 
of TNFα 
 
MI was induced in male C57/BL6 mice at 12 weeks of 
age by ligation of the left anterior descending artery, as 
described [16]. One hour after ligation, mice received 
injection of saline (Sham or MI) or 6X105 MSCs at 6 
points along the ligation. Recombinant mouse TNF-
α (Ab9642, Abcam, Seattle, WA, USA) was dissolved 
in sterile saline prior to intraperitoneal injection twice 
per week at a dose of 200µg/kg. The mice were then 
kept for 4 weeks before analysis. 
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Hemodynamic assessments 
 
After anesthetization, ventricular catheterization was 
performed on mice, as described [16]. 
 
ELISA and immunostaining 
 
ELISA was done using appropriate kits. Heart tissue 
was fixed in 4% formalin, followed by paraffin 
embedding and sectioning. The immunostaining for 
F4/80 (Invitrogen, Shanghai, China) or CD86 (Abcam) 
was done as routine. Masson's trichrome staining was 
done with a specific kit (Sigma-Aldrich) as introduced 
by the manual. 
 
Statistical analysis  
 
GraphPad prism version 8.0 (GraphPad Software, Inc. 
La Jolla, CA, USA) was used to analyze the data with a 
one-way analysis of variance (ANOVA) test followed 
by the Fisher’s Exact Test to compare two groups. All 
values represent the mean ± standard deviation (SD). A 
value of p<0.05 was considered statistically significant 
after Bonferroni correction. 
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