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INTRODUCTION 
 
Esophageal adenocarcinoma (EAC) is one of the most 
aggressive malignancies with poor patient survival 
worldwide. Much progress has been made in the 
molecular understanding of EAC, including tumor 
suppressor gene mutations, aberrant protein expression 
and cancer stem cell identification. However, the  

 

precise molecular mechanism involved in EAC remains 
unclear.  Thus, understanding additional carcinogenesis 
mechanisms of EAC is urgently needed for developing 
new therapies for clinical application. 
 
Noncoding RNAs (ncRNAs), including miRNA, 
circRNA, and long noncoding RNA (lncRNA), account 
for more than 90 % of the human genome, while 
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ABSTRACT 
 
Long non-coding RNAs (lncRNAs) have involved in human malignancies and played an important role in gene 
regulations. The dysregulation of lncRNA MIR22HG has been reported in several cancers. However, the role of 
MIR22HG in esophageal adenocarcinoma (EAC) is poorly understood. Loss of function approaches were used to 
investigate the biological role of MIR22HG in EAC cells. The effects of MIR22HG on cell proliferation were 
evaluated by WST-1 and colony formation assays. The effects of MIR22HG on cell migration and invasion were 
examined using transwell assays. QRT-PCR and Western blot were used to evaluate the mRNA and protein 
expression of related genes. In this study, abrogation of MIR22HG inhibited cell proliferation, colony formation, 
invasion and migration in EAC 3 cell lines (OE33, OE19 and FLO-1). Mechanistically, MIR22HG silencing 
decreased the expression of STAT3/c-Myc/p-FAK proteins and induced apoptosis in EAC cell lines. These results 
delineate a novel mechanism of MIR22HG in EAC, and may provide potential targets by developing lncRNA-
based therapies for EAC. 
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protein-coding genes account for less than 2 % of 
human genome [1]. LncRNAs, which are 200-10,000 
nucleotide, control gene expression at epigenetic, 
transcriptional and post-transcriptional levels. It has 
been proven that lncRNAs can positively or negatively 
affect the coding gene expression by multiple 
mechanisms, such as chromatin remodeling, trans-
criptional interference, modulating alternatively splicing 
patterns, as well as many other mechanisms [2]. A 
number of studies have shown that ncRNAs are capable 
of influencing various cellular processes such as cell 
proliferation, cell cycle progression, cell growth, and 
apoptosis [3–6], and their misexpression confers tumor 
initiation, cancer cells growth and metastasis [7–9]. 
Thus, lncRNAs are linked with carcinogenesis and 
provide a new pathway in cancer research. In recent 
years, several lncRNAs, including taurine upregulated 
gene 1 (TUG1) [10], second chromosome locus 
associated with prostate-1(SChLAP1) [11], colorectal 
neoplasia differentially expressed (CRNDE) [12], and 
castration-resistant prostate cancer (CRPC) [13], have 
been reported to regulate tumor cell growth and 
progression by altering the balance between cell 
proliferation and apoptosis. LncRNAs also play 
essential roles in human malignancies and function as 
tumor suppressors or oncogenes [14–17]. Collectively, 
the results suggest that clinical-oriented research on 
lncRNAs in EAC should be undertaken and further 
research studies should be designed to discover more 
tumor-related lncRNAs as candidates of prognostic 
biomarkers and therapeutic targets. 
 
Recently, some reports show that one lncRNA 
MIR22HG suppresses the cell progression in several 
cancer, such as cholangiocarcinoma [18], hepatocellular 
carcinoma [19], gastric cancer [20], and lung cancer 
[21]. However, the role of MIR22HG and the under-
lying molecular mechanism in the development of EAC 
remains to be unexplored. In this study, we performed 
the functional and mechanistic study on lncRNA 
MIR22HG on EAC cells including OE19, OE33 and 
FLO1. We found that the proliferation, colony 
formation, migration and invasion were decreased after 
Knockdown of MIR22HG on EAC cell lines. The 
STAT3, c-Myc and p-FAK proteins were decreased 
upon MIR22HG abrogation. Thus, MIR22HG could 
potentially function as an oncogenic gene in EAC and 
may provide a potential therapeutic target in EAC.  
 
RESULTS  
 
Knockdown of MIR22HG suppresses cell 
proliferation in EAC cells  
 
To evaluate the biological roles of MIR22HG on EAC, 
we first tested the MIR22HG expression in OE33, FLO-

1 and OE19 cell lines and found this gene was 
expressed in these cells (Figure 1A). and then we 
performed MIR22HG knockdown with siRNA in these 
3 EAC cell lines. QRT-PCR assays indicated that 
MIR22HG expression was significantly reduced more 
than 80% after transfection with MIR22HG siRNA 
(Figure 1B). Functionally, we found that the cell 
proliferation measured by WST-1 assays was 
significantly decreased upon knockdown of MIR22HG 
in OE33, FLO-1 and OE19 cells (Figure 1C).  In con-
sistent with WST -1 assay results, knockdown of 
MIR22HG significantly inhibited the colony formation 
ability of the EAC cells compared with the non-target 
control (Figure 1D and 1E). These results suggested that 
MIR22HG may play an oncogenic role in regulating 
EAC cell growth. 
 
Knockdown of MIR22HG inhibits EAC cell 
migration and invasion 
 
To further determine whether MIR22HG is involved in 
the cell migration and invasion, we performed matrigel-
coated transwell experiments. We observed that 
knockdown of MIR22HG significantly decreased the 
migration and invasion potential in OE33 and FLO-1 
cells (Figure 2A and 2B), indicating that MIR22HG 
may have a role in EAC metastasis or tumor 
progression. 
 
MIR22HG abrogation inhibits STAT3, c-Myc and  
p-FAK proteins expression and induces apoptosis 
 
To understand the mechanisms of MIR22HG roles in 
regulating EAC cell proliferation in OE33 and FLO-1 
cells, we performed western blot and found that 
knockdown of MIR22HG resulted in reduced total and 
phosphor STAT3 (t-STAT3 and p-STAT3) as well as 
phosphor FAK (p-FAK) proteins expression in OE33 
and FLO-1 cell lines, while c-Myc protein was 
decreased in FLO-1 cells but unchanged in OE33 cells 
(Figure 3A). The mRNA levels of STAT3, c-MYC and 
FAK were not decreased after MIR22HG knockdown 
(Figure 3B) indicating that MIR22HG affected STAT3, 
c-Myc and p-FAK proteins may be at the post-
transcriptional level. We did not find that MET, EGFR, 
AKT and ERK1/2 proteins were changed after 
MIR22HG siRNA treatment at 72 hours (Figure 3C), 
indicating that MET and EGFR signaling were not 
involved in MIR22HG regulation in EAC.  
 
It has been known that cleavage of PARP (c-PARP) is 
one of apoptosis marker. We found that the c-PARP 
was increased after knockdown of MIR22HG with 
siRNA at 72 h (Figure 3A), suggested that MIR22HG 
could regulate both cell proliferation and programs cell 
death in esophageal cancer cells. 



www.aging-us.com 4589 AGING 

MIR22HG regulates c-Myc/p-FAK and apoptosis via 
STAT3 
 
To further make clear the relationship among 
MIR22HG, STAT3, c-Myc and p-FAK proteins and 
roles in EAC proliferation and apoptosis, we performed 
knockdown of STAT3 with siRNA in OE33 and FLO-1 
cells (Figure 4A). The cell proliferation was decreased 
by 40% upon STAT3 knockdown in OE33 and FLO-1 
cells at 120 h (Figure 4B) and apoptosis was induced in 
OE33 (Figure 4C). We found that p-FAK protein was 
decreased in OE33 and FLO1 cells, while c-Myc was 
decreased in FLO-1 cells and unchanged in OE33 cells 
(Figure 4C), which was similar as MIR22HG 
knockdown in EAC cell lines (Figure 3A). While the 
mRNAs of c-Myc and FAK were not changed (Figure 
4D). These results suggest that MIR22HG mediated 

control of EAC cell proliferation and apoptosis may 
occur via the STAT3/c-Myc/p-FAK axis (Figure 5). 
 
To explore the expression status of MIR22HG in 
primary EAC tumors, we first performed RT-PCR for 
MIR22HG expression from University of Michigan 
samples including EAC, high grade dysplasia (LDH), 
low grade dysplasia (LDH)  and Barrett’s. There was no 
significant different among these groups (Figure 6A). 
We then analyzed MIR22HG expression from TCGA 
RNA-seq data including 88 EAC and 95 esophageal 
squamous cell carcinomas (ESCC). There was no 
significantly finding regarding patient survival, stage 
and EAC vs. ESCC (Figure 6B). We also performed 
DAVID Gene Ontology/pathway analysis of MIR22HG 
correlated (Pearson correlation) genes based on TCGA 
data, we found that the cell cycle and DNA replication

 

 
 

Figure 1. Effects of knockdown of MIR22HG on EAC cells viability. (A) relative expression of MIR22HG in OE33, FLO-1 and OE19 cell 
lines. (B) The MIR22HG expression level indicating the knockdown efficiency of siRNA determined by qRT-PCR in 3 EAC cells transfected with 
siMIR22HG. (C) WST-1 assays were used to determine the cell viability after MIR22HG knockdown with siRNA in OE33, FLO-1 and OE19 cells. 
(D), Colony formation in OE33 and FLO1 cells after MIR22HG knockdown. (E) Bar chart counting the number of colonies from Figure 1D. 
Values represented the mean ± s.d. from three independent experiments. **P < 0.01. 
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Figure 2. Knockdown of MIR22HG inhibits cancer cell migration and invasion. Migration (A) and invasion (B) were decreased 
after MIR22HG siRNA transfection in OE33 and FLO-1 cells. The bar chart shows the relative number of migration and invasion 
cells. Scale bar: 5mm. Values represented the mean ± s.d. from three independent experiments. *P < 0.05, **P < 0.01. 

 

 
 

Figure 3. Proteins and mRNAs regulated by knockdown of MIR22HG. (A) Protein levels of t-STAT3, p-STAT3 and p-FAK were 
regulated by MIR22HG siRNA in OE33 and FLO cells, and c-Myc was changed in FLO1 cells by Western blotting. PARP cleavage was also 
induced by MIR22HG siRNA in OE33 and FLO1 cells.  GAPDH was used as a protein loading control. (B) qRT-PCR showing the mRNA 
expressions of STAT3, c-MYC and FAK in OE33 and FLO1 cells. GAPDH was used as control. (C) MET, EGFR, AKT and ERK1/2 proteins were not 
changed after MIR22HG siRNA treatment at 72 hours. 
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Figure 4. Cell proliferation, proteins and mRNAs regulated by knockdown of STAT3. (A) STAT3 mRNA expression was decreased by 
more than 80% after STAT3 knockdown with siRNA on OE33 and FLO1 cells measured by qRT-PCR. (B) WST-1 assays were used to determine 
the cell viability for STAT3 siRNA transfecting OE33 and FLO1 cells. Values represented the mean ± s.d. from three independent experiments. 
(C) Protein levels of t-STAT3 and p-FAK were regulated by STAT3 siRNA in OE33 and FLO cells, and c-Myc was also changed in FLO1 cells by 
Western blotting. PARP cleavage was also induced by STAT3 siRNA in OE33 cells. GAPDH was used as a protein loading control. (D) qRT-PCR 
showing the mRNA expression of c-MYC and FAK in OE33 and FLO1 cells. GAPDH was used as control. Values represented the mean ± s.d. 
from three independent experiments. *P < 0.05, **P < 0.01. 

 

 
 

Figure 5. Schematic the potential signaling affected by knockdown of MIR22HG. MIR22HG siRNA inhibits STAT3 proteins, then 
affects c-MYC and FAK proteins to modulate the cells proliferation, migration, invasion and induced apoptosis in esophagus cancer. 

Author
Please insert ** in Figure 4A and 4B avove all red bars
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pathways were the most significantly involved 
pathways in both EAC and ESCC (Figure 6C, 6D).  
 
DISCUSSION  
 
In the present study, we identified MIR22HG as an 
oncogenic player and revealed a previously unknown 
mechanism involving MIR22HG in EAC biology. We 
found that knockdown of endogenous MIR22HG 
expression significantly cell proliferation, migration and 
migration. 
 
Several subsets of genes that act by either activating 
oncogenes or silencing tumor suppressor genes precisely 
regulate tumor development and progression [22]. Recent 
studies showed oncogenes were usually activated by 
genetic or epigenetic alterations in cancer cells [23, 24]. 
Su et al. [21] reported that MIR22HG triggered cell 

survival via MET gene. MIR22HG suppressed gastric 
cancer progression through attenuating NOTCH2 
signaling [20] MIR22HG repressed cell proliferation, 
migration and invasion in CCA by negatively regulating 
the Wnt/β-catenin signaling pathway [18]. Until now, we 
don’t know which signal pathway genes are involved in 
EAC. To explore the molecular mechanism through 
which MIR22HG contributes to proliferation in EAC, we 
investigated potential target proteins involved in 
proliferation. We identified which genes were differen-
tially expressed upon knockdown of MIR22HG, in 
comparison with untreated cells. The protein levels of t-
STAT3, p-STAT3 and p-FAK were down regulated by 
MIR22HG siRNA in OE33 and FLO cells, and c-Myc 
was also decreased in FLO1 cells. The mRNAs of these 
genes were not changed suggest that MIR22HG affects. 
STAT3, c-Myc and p-FAK protein at the post-
transcriptional level. We didn’t find that MET, EGFR,

 
 

 
 

Figure 6. MIR22HG expression in esophageal tissues and pathway involved by MIR22HG negative correlated genes. (A) 
MIR22HG expression of esophageal adenocarcinomas (EAC), high grade dysplasia (LDH), low grade dysplasia (LDH) and Barrett’s measured 
by RT-PCR. There is no significant different among them (p > 0.05). (B) MIR22HG expression from TCGA RNA-seq data including 88 esophageal 
adenocarcinomas (EAC) and 95 esophageal squamous cell carcinomas (ESCC). There is no significant different between EAC vs. ESCC (p > 
0.05).  (C and D), DAVID pathway analysis of MIR22HG negative correlated genes indicating that the cell cycle and DNA replication pathways 
were the most significantly involved pathways in both EAC and ESCC (p < 0.001). 
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AKT and ERK1/2 proteins were changed after 
MIR22HG siRNA treatment at 72 hours in EAC.  
 
STAT3 becomes inappropriately and constitutively 
activated in a high percentage of solid malignancies 
including melanoma, multiple myeloma, and cancers of 
the breast, ovary, prostate, head and neck, and pancreas 
[25]. Hyper activated STAT3 promotes the expression of 
genes involved in cell proliferation, self-renewal, 
angiogenesis, inflammation-phenotypes and survival, 
which collectively contribute to malignant trans-
formation and progression [26, 27]. A recent study 
showed that overexpression of FAK has been shown to 
block the caspase-3-mediated apoptosis; conversely, 
inhibition of FAK leads to apoptosis in cancer cells [28]. 
Cytoskeletal remodeling is critical for cancer cell 
migration, therefore indispensable for cancer metastasis. 
FAK signaling that resulted from ECM-induced integrin 
clustering is intimately involved in the reorganization of 
cytoskeleton and cell motility [29, 30]. Numerous 
numbers of evidence indicate that FAK is predominately 
involved in the promotion of tumor invasion, implicating 
that FAK is a potential target for anticancer therapeutics. 
In the process of cancer invasion, the activation of FAK 
in cancer cells could transmit numerous downstream 
signal pathways in regulating a variety of cellular events, 
including cytoskeletal remodeling and EMT, to control 
cell fate [31–33]. During the occurrence of EMT, 
degradation of E-cadherin can promotes cancer invasion 
by allows the release of cell-cell restriction, which is in 
accordance with the disruption of adherent junctions 
[34]. These results are supporting evidence that 
MIR22HG abrogation induced apoptosis and decreased 
migration and invasion ability may be through the 
inhibition of FAK signaling. 
 
In summary, we found that knockdown of MIR22HG 
has the effect of suppressing EAC proliferation, cell 
migration and invasion in vitro by inhibiting STAT3/c-
Myc/p-FAK proteins (Figure 5). Further insights into 
the functional and clinical implications of MIR22HG 
and its targets may help with the treatment of EAC. 
 
 MATERIALS ANS METHODS  
 
Cell culture 
 
The human EAC-derived cell lines OE19, OE33 and 
FLO1 were obtained from the American Type Culture 
Collection. OE19 and OE33 cells were grown in RPMI-
1640 medium (Gibco, Carlsbad, CA, USA), FLO1 cells 
were grown in DMEM medium (Gibco, Carlsbad, CA, 
USA). All mediums were supplemented with 10% fetal 
bovine serum (Gibco BRL, Gaithersburg, MD, USA) 
and were maintained in a 37 °C incubator with a 
humidified atmosphere containing 5% CO2. 

Esophageal tissues  
 
Esophageal tissues including adenocarcinomas (EAC), 
high grade dysplasia (LDH), low grade dysplasia 
(LDH) and Barrett’s were collected from patients 
undergoing cancer surgery during the period from 1994 
to 2014 at the University of Michigan Health System. 
None of the patients included in this study received any 
preoperative radiation or chemotherapy. Informed 
consents were provided by the patients, and all 
experimental protocols were approved by the 
University of Michigan Institutional Review Board and 
Ethics Committee. Resected specimens were frozen in 
liquid nitrogen first and then stored at −80°C until used 
for RNA isolation. 
 
RNA extraction and real-time PCR 
 
Total RNA was isolated using Trizol reagent 
(Invitrogen, Carlsbad, CA, USA). First strand cDNA 
was generated using the Reverse Transcription System 
Kit (Applied Biosytems) according to manufacturer 
instructions. For mRNA and lncRNA analyses, real-
time PCR was performed as previously described [35]. 
Expressions of mRNA and lncRNA were normalized 
with GAPDH. For miRNA analysis, real-time PCR was 
performed using Power SYBR Green Master Mix (Life 
Technology Inc.) and was performed with an ABI 
StepOne Real-Time PCR System (Applied Biosystems) 
as done previously [35]. The real-time PCR reactions 
were performed in triplicate. The relative levels of gene 
expression were represented using the formula ΔCt = 
Ctgene − Ctreference, and the fold change of gene 
expression was calculated by the 2−ΔΔCt method. 
 
siRNA mediated knockdown MIR22HG in EAC cells 
 
Transfections were performed using the Lipofectamine 
iMAX kit (Invitrogen) according to the manufacturer’s 
instructions. The siRNAs of MIR22HG or STAT3 and 
scrambled siRNA (siCtrl) were purchased from 
Dharmocom. After 48-72 hours incubation with siRNAs 
(10 nM), cells were harvested for RNA and protein 
extraction.  
 
Cell proliferation assay 
 
The cell proliferation was assessed using WST-1 
(Roche) according to manufacturer instructions. 
Briefly, a total of approximately 1 × 103 EAC cells 
were plated in 96-well plates, at 96 h after trans-
fection with siRNA, added 10 µl/well of WST-1 
solution during the last 1 h of culture, and the cell 
proliferation curves were plotted using the 450 nm 
and 630nm absorbance at each time point. All 
experiments were performed in triplicate. 
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Colony formation assay 
 
Two hundred siRNAs treated EAC cells were plated 
into 6-well plates and incubated in RPMI-1640 and 
DMEM medium with 10% FBS at 37 °C. Fourteen days 
later, the cells were fixed and stained with 0.1% crystal 
violet. The number of colonies was counted, with a 
colony being defined as greater than 50 cells. 
 
Basement membrane matrix invasion assays  
 
For invasion assays, cells were treated with the indicated 
siRNAs. After 48 h transfection, cells were trypsinized, 
counted with a Coulter counter and diluted to a desired 
concentration (OE33: 2.5 × 104; FLO1: 2.5 × 104. 0.5 ml 
cell suspension per well). Cells were seeded onto 
basement membrane matrix Boyden chambers (8-mm 
pore size, BD) present in the insert of a 24-well culture 
plate (Matrigel was purchased from BD Company). 20% 
FBS was added to the lower chamber as a 
chemoattractant. After 12-24 h, the non-invading cells and 
EC matrix were gently removed with a cotton swab. 
Invasive cells located on the lower side of the chamber 
were stained with Diff-QuikTM Stain Set (SIEMENS), air 
dried and photographed. 
 
Western blot analysis 
 
Total cell lysates were prepared with sample buffer and 
boiled at 95 °C for 5 min. The samples were transferred 
to SDS–PAGE at 80 V for 3 h and then transferred to 
PVDF membranes for another 3 h. After incubation 
with specific antibodies for STAT3, FAK, PARP, c-
Myc, CREB, MET, AKT, ERK1/2 and GAPDH at 4 °C 
overnight, the membranes then were washed by 1% 
TBST for three times, incubated with secondary 
antibodies for 1 h, and the membranes were developed 
using ECL and exposed to X-ray film.  
 
Statistical analysis 
 
Data were analyzed using GraphPad Prism 6 (GraphPad 
software) and R software. All data are continuous 
variables and follow a normal distribution. The other 
data such as proliferation were evaluated by unpaired 
Student’s t-test. A two-tailed p value < 0.05 was 
considered significant.  
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