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INTRODUCTION 
 
Skin cancer is the most commonly occurring type of 
cancer. Nonmelanoma skin cancer, the most prevalent 
form, includes two main histological subtypes: basal 
cell and squamous cell carcinoma [1]. Melanoma, on 
the other hand, originates in melanocytes, the skin cells 
that produce melanin. The most common subtypes of 
melanoma are cutaneous and uveal [1]. Though melanoma 
represents only 4% of skin cancer cases, it exhibits the 
most aggressive, complex and heterogeneous features 
among skin cancers [2], and accounts for more than 75% 
of skin cancer-related deaths worldwide [3]. Over the 
past few decades, the incidence of cutaneous melanoma 
has risen by ~3% per year in the United States [4]. 
 
The molecular characteristics of both uveal [5] and 
cutaneous melanoma [6] exhibit internal heterogeneity, 

 

which is the main obstacle to personalized medicine, 
and is a major determinant of drug resistance [7]. There 
is thus an urgent need to classify cutaneous melanoma 
patients accurately and identify molecular markers to 
improve overall survival (OS). This will require 
extensive knowledge of the heterogeneity on the level 
of the genome, transcriptome and epigenome. 
 
Genetic profiling has shown that the mutation rate of 
melanoma is the highest among all cancers [8]. Previous 
studies have divided melanomas into four groups based 
on the driver mutation: BRAF-mutant, NRAS-mutant, 
NF1-mutant and triple-wild-type [9]. However, 
subsequent studies showed that subtyping based on this 
genomic classification has little prognostic or diagnostic 
significance [9, 10]. On the other hand, a hierarchical 
clustering analysis based on gene expression identified 
three clusters of clinical relevance: “immune”, “keratin” 
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ABSTRACT 
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group of patients was identified, including 301 with better, 55 with poorer and 91 with intermediate prognoses. 
Immune genes were upregulated in the better prognostic group, and higher immune scores (representing a 
greater extent of immune cell infiltration into tumor tissues) were associated with better prognoses. Higher 
expression of 115 genes was determined to predict better outcomes. The better prognostic group also 
exhibited DNA hypomethylation, and immune pathways were enriched among the hypomethylated genes. 
Using exome-seq data from the same patients, we observed that the better prognostic group harbored the 
highest number of mutations. The mutational signature in the better prognostic group was associated with 
ultraviolet light exposure. These integrated investigations have potential therapeutic significance, as they 
clarify the molecular heterogeneity of cutaneous melanoma and enhance its classification. 
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and “microphthalmia-associated transcription factor 
(MITF)-low” [9]. In a study on 57 patients with Stage 
IV melanoma, unsupervised hierarchical clustering of 
gene expression data revealed four distinct subtypes, 
characterized by expression of immune-response, 
pigmentation-differentiation, proliferation or stromal-
composition genes [11]. All four subtypes harbored 
NRAS and BRAF mutations, and the proliferative 
subtype was associated with poor survival. In another 
study, microarray-based gene expression profiling was 
performed on 41 multiple-melanoma biopsies from 
eight individual tumors [12]. These multi-region 
samples were pooled and classified into four sub-
populations: high-immune (good prognosis), MITF-low 
proliferative (poor prognosis), MITF-high pigmentation 
(poor prognosis) and normal-like. Known mutations in 
BRAF and NRAS were either not detected or detected at 
very low levels in these samples. These studies 
indicated that gene expression profiles may be more 
informative than DNA mutations for classification. 
 
DNA methylation arrays, which measure the 
methylation status of thousands of CpG sites across the 
genome, can also be used for cancer classification, 
possibly revealing additional complexity that cannot be 
captured at the expression level or through genetic 
profiling [13–15]. Methylation profiling has been widely 
used to delineate biologically relevant tumor subgroups 
[13, 16]. In a previous study, unsupervised k-means 
partitioning of whole-genome methylation profiles from 
45 patients with Stage IIIC melanoma identified two 
classes of patients with significantly different OS [17]. 
 
Although dozens of classification schemes have been 
proposed to have clinical relevance, there is little 
agreement among these determinations, and the studies 
have used different patient groups, sample sizes and 
types of data. The heterogeneity among melanoma 
patients seems to depend on cues from the tumor 
microenvironment, but there is a lack of strong evidence 
on the mechanisms underlying interpatient hetero-
geneity, especially in terms of long-term survival. This 
prompted us to integrate gene expression and DNA 
methylation profiles in a larger study to identify 
prognostic subtypes with more favorable outcomes. 
 
In the present study, we collected gene expression, 
miRNA expression and methylation data from 447 
cutaneous melanoma patients in the Cancer Genome 
Atlas (TCGA), and employed these three genomic 
profiles in integrative and single-omics clustering 
analyses to identify patients with significantly different 
OS. Combining these data with gene expression data 
from three independent cohorts of melanoma patients, 
we identified and validated a list of genes that predicted 
better outcomes. 

RESULTS 
 
Identification of patients with long-term survival 
 
We downloaded the DNA methylation, mRNA-seq and 
miRNA-seq profiles of 447 patients with cutaneous 
melanoma from the Genomic Data Commons (GDC). 
Of the patients, 171 (38.3%) were female and 276 
(61.7%) were male (Supplementary Table 1). In total, 
there were 7 patients (1.6%) in Stage 0, 73 (16.3%) in 
Stage I, 128 (28.6%) in Stage II, 164 (36.7%) in Stage 
III, 23 (5.1%) in Stage IV and 52 (11.6%) of unknown 
clinical stage. 
 
Using these three omics datasets, we performed an 
integrative unsupervised clustering analysis, which 
distinguished four clusters (Supplementary Figure 1) 
that were associated with differences in OS (Figure 1A, 
1D). A total of 365 (365/447 = 81.7%) patients in both 
clusters 1 and 3 exhibited significantly better OS, and 
20 (20/447 = 4.5%) patients assigned to cluster 4 
displayed poor OS (hazard ratio [HR]: 4.01, 95% 
confidence interval [CI]: 1.38-11.71 [cluster 1 vs. 
cluster 4]; HR: 4.94, 95% CI: 1.67-14.57 [cluster 3 vs. 
cluster 4]; log-rank test, P < 0.01). 
 
In addition to the clustering based on multiple omics 
datasets, we also performed subtype discovery using 
single datasets. We first performed unsupervised 
consensus clustering with the DNA methylation data. 
Ward linkage clustering and k-means clustering 
methods were applied, and both methods distinguished 
four clusters of patients (Supplementary Figure 2). 
However, only the clusters identified by the Ward 
linkage clustering analysis exhibited survival 
differences (Figure 1A, 1B; Supplementary Figure 2D). 
Therefore, we used this method for the consensus 
clustering analysis. Cluster 3 (n = 88, 19.7%) 
exhibited significantly better OS than cluster 1 (n = 
73, 16.3%) (HR: 2.01, 95% CI: 1.20-3.35; log-rank 
test, P < 0.01). 
 
When mRNA-seq data were used to evaluate gene 
expression, unsupervised consensus clustering analysis 
divided patients into three distinct clusters 
(Supplementary Figure 3). Similar results were obtained 
by k-means clustering (Supplementary Figure 3C), and 
the clusters from Ward linkage clustering were used for 
subsequent analyses. These clusters also displayed 
differences in OS, with significantly better survival in 
cluster 2 (n = 188, 42.1%) than in cluster 3 (n = 85, 
19%) (HR: 2.06, 95% CI: 1.24-3.44; log-rank test, P < 
0.01; Figure 1A, 1C). We also performed an un-
supervised consensus clustering analysis on the 
miRNA-seq data, but found no obvious clustering 
structure. 
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The integrative clustering method identified more 
patients with better OS than the other two clustering 
methods. Among them, 82 (18.3%) and 169 (37.8%) 
patients were also marked by better OS in the 
methylation and mRNA-seq clusterings, respectively. 
An overlap of 52 patients (11.6%) was found between 
the two single-dataset clustering methods. In contrast, 
regarding patients with poorer OS, the methylation and 
mRNA-seq clusterings identified more patients than the 
integrative clustering. An overlap of 15 patients (3.4%) 
was observed between the two single-dataset 
clusterings. Only 1 patient in the methylation clustering 
and 17 patients (3.8%) in the mRNA-seq clustering 
were also marked by poorer OS in the integrative 
clustering. Thus, the patients exhibiting better/poorer 
OS in each clustering approach were different from 
those in the other two clusterings, so some patients 
would be missed if only one approach were used.  

Therefore, we pooled all the patients with significantly 
different OS from the three clustering approaches to 
identify a final prognostic grouping of patients (Figure 
1A). If both better and poorer OS were observed for a 
patient, the patient was pooled into the better 
prognostic group only if he/she exhibited significantly 
higher OS in at least two clusterings (Supplementary 
Figure 4). Similarly, a patient was pooled into the 
poorer prognostic group only if he/she exhibited 
significantly poorer outcomes in at least two 
clusterings. Ultimately, of the 447 cutaneous 
melanoma patients, we identified 301 patients with 
better prognoses, 55 patients with poorer prognoses 
and 91 patients with intermediate prognoses. In a 
survival analysis, the better prognostic group exhibited 
significantly better OS than the poorer prognostic 
group (HR: 2.07, 95% CI: 1.26-3.40; log-rank test, P < 
0.01; Figure 1E). 

 

 
 

Figure 1. Unsupervised clustering of 447 cutaneous melanoma patients and identification of the better prognostic group. (A) 
Integrative clustering (“Integrated”) based on three omics datasets (methylation, mRNA-seq and miRNA-seq) identified four clusters. 
Clustering analyses of methylation and mRNA-seq data divided patients into four clusters (“Methylation”) and three clusters (“mRNA”), 
respectively. Kaplan-Meier OS curves are shown for the clusters identified by the “Methylation” (B), “mRNA” (C) and “Integrated” (D) 
classifications. Patients were pooled into the better prognostic group if they exhibited significantly (P < 0.01) better OS in at least two 
clusterings. A similar identification technique was used for the poorer prognostic group. The final clustering identified 301 patients with 
better prognoses, 55 patients with poorer prognoses and 91 patients with intermediate prognoses (A), and the associated Kaplan-Meier OS 
curve is shown in (E). 
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Immune-related genes were upregulated in the 
better prognostic group 
 
We then performed a differential gene expression 
analysis on the three prognostic groups. The expression 
of 1,635 genes differed significantly between the better 
and poorer prognostic groups (Figure 2A, P < 0.001). 
Among these genes, 980 were upregulated and 653 
were downregulated in the better prognostic group. In 
addition, 90 genes were upregulated and 35 genes were 
downregulated in the better prognostic group compared 
with the intermediate prognostic group. No significant 
difference in gene expression was found between the 
poorer and intermediate prognostic groups. 
 
To explore the potential biological significance of the 
differentially expressed genes, we examined whether 
any pathways in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) were enriched. The genes that were 
upregulated in the better prognostic group versus the 
poorer prognostic group exhibited significant 
enrichment in the immune system, while the down-
regulated genes were most significantly involved in 
metabolic pathways (Figure 2B, adjusted P value < 
0.01; Supplementary Tables 2 and 3). There was no 
significant KEGG pathway enrichment for the genes 
that were differentially expressed between the better and 
intermediate prognostic groups. 
 
Higher immune scores were associated with 
significantly better OS 
 
It was interesting that immune related pathways were 
upregulated in the better prognostic group compared 
with the poorer prognostic group, as several previous 

studies have reported the existence of an immune 
subtype [9, 11, 12]. We further analyzed the association 
of the immune system with better outcomes in 
cutaneous melanoma by determining patients’ immune 
scores and stromal scores. As shown in Figure 3A, the 
average immune score of the better prognostic group 
ranked the highest of the three groups, followed by 
those of the intermediate and poorer prognostic groups. 
Similarly, the rank order of the stromal scores was 
better > intermediate > poorer prognostic group. 
However, the immune and/or stromal scores were not 
associated with the survival groups in the integrative, 
methylation and mRNA-seq clustering approaches 
(Supplementary Figure 5). Thus, the immune and 
stromal scores correlated meaningfully with patients’ 
OS only in the pooled classification. 
 
To validate the correlation of OS with the immune and 
stromal scores, we collected gene expression data from 
three independent cohorts comprising a total of 168 
melanoma patients. The immune and stromal scores for 
these patients were predicted separately by an 
ESTIMATE algorithm, and the three cohorts of patients 
were divided into high- and low-score groups. Survival 
analyses revealed that patients in the high-score group, 
especially for immune scores, displayed better OS than 
those in the low-score group (Figure 3B–3D; log-rank 
test, P < 0.05). These results supported the association 
of the stromal score and especially the immune score 
with patients’ long-term survival. 
 
Identification and validation of prognostic genes 
 
To explore the clinical relevance of the differentially 
expressed genes, we analyzed all 980 genes that were 

 

 
 

Figure 2. Differentially expressed genes between the better and poorer prognostic groups. (A) The significance of gene 
expression differences between the better and poorer prognostic groups. Each dot represents one gene. The x axis displays the gene 
expression difference as a log2-transformed fold-change. The y axis displays the significance as a -log10-transformed P value. The red vertical 
lines represent log2FoldChange values of -1 and 1, respectively. The horizontal red line represents a P value of 0.001. Genes were defined as 
differentially expressed if their absolute log2FoldChange values were greater than 1 and their P values were less than 0.001. A red dot 
indicates high expression, while a blue dot indicates low expression. (B) Bar plots display the significantly (adjusted P value < 0.01) enriched 
KEGG pathways for the upregulated (red) and downregulated (blue) genes identified by WebGestalt analysis. P values were adjusted by the 
method of Benjamini and Hochberg. 
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upregulated in the better prognostic group for their 
prognostic significance in terms of OS. High expression 
of 467 genes predicted significantly better OS in a log-
rank test (Supplementary Table 4). To determine 
whether these genes were also of prognostic sig-
nificance in other melanoma cases, we used the three 
independent cohorts for validation. Gene expression 
information on 295 of these genes was available for the 
three cohorts, and higher expression of 115 genes was 
validated to be linked to a significantly better prognosis 
(Supplementary Table 4). 
 
We next assessed whether the expression of these 
validated prognostic genes was associated with the 
immune or stromal score. Significant positive 
correlations were found between patients’ immune/ 
stromal scores and mRNA levels (Figure 4A, P < 0.01). 
We performed a KEGG pathway analysis to explore the 
functional significance of these genes. Similar to the 
aforementioned pathway enrichment analysis, these 
genes were significantly enriched in immune-related 
pathways (Figure 4B, adjusted P value < 0.01; 
Supplementary Table 5). These results provided further 
evidence that certain immune features are associated 
with a better prognosis. 

DNA hypomethylation was observed in the better 
prognostic group 
 
To determine whether there were DNA methylation 
differences across the three prognostic groups, we 
performed further analyses by genomic region locality. 
The better prognostic group displayed the lowest 
methylation level, while the poorer prognostic group 
had the highest methylation level across all genomic 
regions (Figure 5A; Student’s t test, P < 0.001).  
 
Three methyltransferases, DNMT1, DNMT3A and 
DNMT3B, establish and maintain the DNA 
methylation level. Thus, the expression of the genes 
encoding these enzymes was compared among the three 
groups. DNMT1 expression did not differ significantly, 
but both DNMT3A and DNMT3B levels were 
marginally lower in the better prognostic group than in 
the other groups (DNMT3A: P = 0.02 [better vs. poorer], 
P = 0.04 [better vs. intermediate]; DNMT3B: P = 0.04 
[better vs. poorer], P = 0.08 [better vs. intermediate]; 
Student’s t test).  
 
We also extracted probes annotated to the differentially 
expressed genes between the better and poorer  

 

 
 

Figure 3. Associations of immune and stromal scores with patients’ OS. (A) The distribution of immune scores (top panel) and 
stromal scores (bottom panel) in the three groups. The boxplot displays that the immune/stromal scores were significantly higher in the 
better prognostic group and lower in the poorer prognostic group. **P < 0.01; ***P < 0.001. (B–D) Three independent cohorts of melanoma 
patients from GEO were separately divided into two groups (the top and bottom tertiles) based on their immune (top panel) and stromal 
(bottom panel) scores. Kaplan-Meier OS curves are shown for each dataset. 
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prognostic groups, and categorized them according to 
their locality on different genomic regions. We then 
calculated the mean beta value for each category of 
probes across the three groups. All the intragenic and 
promoter regions of the upregulated genes displayed the 
lowest methylation level in the better prognostic group 
(Figure 5B). In particular, the methylation level of the 
promoter regions was significantly lower in the better 
prognostic group than in the other two groups (Figure 
5B; Student’s t test, P < 0.001). This indicated that the 
increases in gene expression resulted from reduced 
methylation of the gene promoters. In contrast, no 
obvious methylation differences were found in the 
downregulated genes across the three groups (Figure 
5C). Thus, some other regulatory mechanism seemed to 
be responsible for their downregulation. 
 
Differential methylation analysis revealed significant 
differences in the methylation of 37,164 probes between 
the better and poorer prognostic groups (Figure 5D). 
The majority of probes (34,816/37,164 = 93.7%) 

displayed significant hypomethylation in the better 
prognostic group, while 2,351/37,164 (6.3%) displayed 
hypermethylation in this group. Compared with the 
intermediate group, 18,868 probes were significantly 
hypomethylated in the better prognostic group, and 160 
probes were hypermethylated in the poorer prognostic 
group. These results were consistent with the afore-
mentioned observation that the rank order of 
methylation levels was poorer > intermediate > better 
prognostic group. 
 
Interestingly, further analysis of these significantly 
methylated probes by genomic region revealed that 
almost all genomic regions were hypomethylated in the 
better prognostic group compared with the other two 
groups (Figure 5E). This was consistent with the 
negative correlation between the expression and 
methylation of upregulated genes across genomic 
regions. However, the methylation level of enhancer 
regions was remarkably greater in the better prognostic 
group than in the poorer prognostic group (Figure 5E). 

 

 
 

Figure 4. Characterization of the validated upregulated prognostic genes. (A) Correlation of the expression of the 115 validated 
upregulated prognostic genes with immune scores (left) and stromal scores (right). Each dot represents one gene. The y axis displays the 
correlation coefficient. Gene expression was deemed to correlate significantly with the immune/stromal score if the P value was less than 
0.01 (red dot; a blue dot indicates P > 0.01). (B) Bar plots depict the significantly (adjusted P value < 0.01) enriched KEGG pathways. 
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Hypermethylation was also observed in the enhancer 
regions of the poorer versus the intermediate prognostic 
group. This indicated that the hypermethylation of 
enhancer regions may have inhibited gene expression in 
the better prognostic group.  
 
The functions of the differentially methylated genes 
were also examined by KEGG pathway analysis. Only 
the genes that were hypomethylated in the better versus 
the poorer prognostic group (n = 5,162) displayed 
significant pathway enrichment. Interestingly, immune-
related pathways were significantly hypomethylated 
(Figure 5F, adjusted P value < 0.01; Supplementary 
Table 6).  
 
The mutation burden was higher in the better 
prognostic group 
 
We then investigated whether there were differences in 
the mutation load across the three prognostic groups by 

calculating the number of nonsynonymous mutations. 
Surprisingly, the better prognostic group harbored the 
highest number of mutations, while the poorer 
prognostic group harbored the lowest number of 
mutations (Figure 6A; Student’s t test, P < 0.001). Of 
the known melanoma driver mutations (BRAF, NRAS 
and NF1), only BRAF was mutated significantly more 
frequently in the better than in the poorer prognostic 
group (162/301 vs. 16/55; Fisher’s exact test, P = 
0.001). 
 
We also extracted the mutational signature for each of 
the three groups separately to determine the 
contribution of a given mutational signature to an 
individual group. The overall mutational spectra were 
similar, with very strong enrichment of Signature 7, 
followed by Signature 1 substitutions (Figure 6B). 
Signature 7 has been found predominantly in skin 
cancers, and is likely due to ultraviolet light exposure. 
The weight assigned to Signature 7 was highest in the 

 

 
 

Figure 5. Methylation differences among the three groups. (A) Distribution of the mean beta values of probes across different 
genomic regions. The mean beta values of probes annotated to genes that were upregulated (B) or downregulated (C) in the better 
prognostic group versus the poorer prognostic group across different genomic regions are also shown. (D) Distribution of numbers of 
significantly methylated probes for each group comparison. (E) Genomic region enrichment of differentially methylated probes. We 
calculated the number of differentially methylated probes, along with the total number of probes on the bead array in each genomic region. 
Fisher’s exact test was used to test the enrichment. The heatmap displays the odds ratio, and the asterisks mark the significance (adjusted P 
value ≤ 0.001). “B.P._P.Hyper”: hypermethylated probes in the poorer versus the better prognostic group; “B.P._P.Hypo”: hypomethylated 
probes in the poorer versus the better prognostic group; “B.I._I.Hyper”: hypermethylated probes in the intermediate versus the better 
prognostic group; “P.I._I.Hypo”: hypomethylated probes in the intermediate versus the poorer prognostic group. (F) Significantly (adjusted P 
value < 0.01) enriched pathways of the hypomethylated genes in the better versus the poorer prognostic group. 
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better prognostic group and lowest in the poorer 
prognostic group, in agreement with the notion that 
ultraviolet light causes mutations in DNA. In contrast, 
the age-associated signature (Signature 1) exhibited the 
highest weight in the poorer prognostic group and the 
lowest weight in the better prognostic group. Indeed, the 
poorer prognostic group included the oldest patient 
population (mean age: 60.55 years, Figure 6C); the 
average ages of the better and intermediate prognostic 
groups were 57.67 and 57.96 years, respectively. These 
results demonstrated that the temporal dynamics of 
mutagenesis contributed to the differences among these 
groups. 
 
DISCUSSION 
 
Melanoma is highly heterogeneous on the genetic, 
expression, and epigenetic levels [18]. Rapid advance-
ments in understanding this heterogeneity have 

enabled the molecular classification of melanoma and 
personalized medicine for its management [9–12, 17]. 
Despite this considerable progress, the underlying 
mechanisms driving interpatient heterogeneity, 
especially in terms of long-term survival, have remained 
unclear. 
 
In the present study, we performed integrative and 
single-dataset clustering analyses of gene expression, 
miRNA expression and methylation data from 447 
cutaneous melanoma patients. We identified a novel 
group of 301 patients with significantly better 
prognoses and 55 patients with poorer prognoses. The 
better prognostic group was characterized by high 
immune gene expression, high immune scores, DNA 
hypomethylation, a high mutation burden and a 
mutation signature associated with ultraviolet light 
exposure, while the poorer prognostic group exhibited 
the opposite characteristics. 

 

 
 

Figure 6. Assessment of mutational differences among the three groups. (A) The total number of nonsynonymous mutations is 
shown for each group. The P value was calculated by a two-sided Student’s t test. **P < 0.01; ***P < 0.001. (B) The 96-trinucleotide 
mutational spectra of mutations in the better (top panel), intermediate (middle panel) and poorer (bottom panel) prognostic groups were 
inferred by deconstructSigs. The fraction of mutations found in each trinucleotide context is displayed. Mutational Signatures 1 (associated 
with age) and 7 (associated with ultraviolet light exposure), together with the weights contributing to each group, are shown above each 
figure. (C) Distribution of ages in the three groups. 
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Previous profiling studies have mainly included 
melanoma patients at later clinical stages [11, 17], 
whereas the present study included patients across all 
clinical stages, enabling more patients with similar 
molecular profiles to be clustered. In addition, unlike 
previous classifications based on either gene expression 
or DNA methylation data [9–12, 17], our classification 
was based on both integrative clustering and single-
dataset clusterings, enabling us to decipher a much 
broader spectrum of interpatient heterogeneity. 
Moreover, to our knowledge, this was the largest 
sample size used for classification, and the results were 
applicable for a wide range of patients. 
 
Our data corroborated the results of several other 
studies demonstrating the existence of an immune 
subtype. Melanoma cells are highly plastic and able to 
adapt quickly to changing microenvironmental 
conditions, such as the oxygen level and the immune 
cell composition [7]. These cues from the surrounding 
microenvironment activate intracellular molecular 
changes, resulting in tumor heterogeneity. The immune 
gene enrichment in the better prognostic group may 
have been influenced by the microenvironment.  
 
In addition to detecting greater expression of immune 
genes in the better prognostic group, we found for the 
first time that higher immune scores were associated with 
better prognoses in cutaneous melanoma. These results 
were validated in an extension study on three 
independent cohorts of melanoma patients. Patients with 
higher immune scores exhibited better OS, suggesting 
that the immune score could be applied for the 
classification of cancer patients. Indeed, a previous report 
also raised this possibility [19]. Furthermore, in a very 
recent study, the immune score was determined to be a 
reliable estimate of the risk of colon cancer recurrence, 
and was thus implemented as a new component of cancer 
classification [20]. Further efforts to divide patients 
accurately based solely on their immune scores should 
enhance the area of cancer classification. 
 
We also found that the better prognostic group 
displayed the lowest level of DNA methylation. 
Moreover, the expression of upregulated genes in the 
better prognostic group correlated negatively with their 
methylation levels, possibly due to the hypomethylation 
of their promoters. Immune pathways were also 
hypomethylated. Therefore, DNA hypomethylation 
greatly distinguished patients with better prognoses. 
 
Two DNA methyltransferase genes, DNMT3A and 
DNMT3B, were downregulated in the better prognostic 
group, though not significantly so. Interestingly, previous 
studies have indicated that ultraviolet B radiation can 
enhance DNA hypomethylation by inhibiting the 

catalytic activity of DNMT1 [21, 22]. However, both 
DNA hypermethylation and hypomethylation have been 
reported in skin tumors exposed to ultraviolet radiation 
[23, 24], indicating possible methylation heterogeneity. 
In our data, the better prognostic group exhibited 
hypomethylation, while the poorer prognostic group 
exhibited hypermethylation. In addition, the mutational 
signature in the better prognostic group was associated 
with ultraviolet light exposure, while this signature was 
assigned the lowest weight in the poorer prognostic 
group. The reduced expression of DNMT3A and 
DNMT3B in the better prognostic group may have been 
responsible for the hypomethylation of genes in response 
to ultraviolet exposure. However, previous studies have 
also indicated that DNA methylation is strongly 
associated with histone acetylation upon ultraviolet skin 
exposure [23, 25]. This correlation is poorly understood 
and requires deeper investigation. 
 
A few previous studies have evaluated ultraviolet light 
exposure and survival among melanoma patients. In a 
population study of cutaneous melanoma patients based 
on self-reported personal behavior in the sun, an 
independent inverse association was detected between the 
presence (versus absence) of solar elastosis (a histologic 
indicator of cutaneous sun damage) and disease-specific 
mortality (HR 0.40, 95% CI: 0.20-0.80) [26]. Another 
study also demonstrated that solar elastosis was associated 
with a better prognosis of melanoma [27], supporting 
ultraviolet light exposure as a protective prognostic factor. 
In a large multicenter cohort study with detailed sun 
exposure data, a sunburn within ten years of a melanoma 
diagnosis was found to reduce the HR of death (HR 0.27, 
95% CI: 0.09-0.85) [28]. These results are in line with the 
results of the present study, suggesting that ultraviolet 
light exposure is associated with increased survival in 
patients with cutaneous melanoma. 
 
The mechanisms whereby ultraviolet light exposure 
enhances the survival of melanoma patients remain 
speculative. The proposed mechanisms include 
increased vitamin D, nitric oxide [29] and melanin 
production, altered DNA damage-repair mechanisms 
[26, 30] and BRAF mutations [31]. Sun exposure is the 
primary source of vitamin D, and high vitamin D levels 
have been associated with reduced risks of cancer and 
overall mortality [32, 33]. Interestingly, there is 
evidence that certain genes in the vitamin D signaling 
pathway promote DNA demethylation [34], which may 
also account for the hypomethylation we observed in 
the better prognostic group. 
 
A surprising finding of this study was that the mutational 
burden was the highest in the better prognostic group. We 
propose that this may have been due to ultraviolet light 
exposure. Consistently, in a previous study examining the 
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relationship between the mutational burden and the 
outcomes of immunotherapy-treated patients with diverse 
cancers, a higher mutational burden was associated with 
better outcomes [35]. A higher number of mutations could 
generate a greater number of neo-antigens to be 
recognized by the immune system. The age of the patients 
did not seem to be associated with their mutational 
burden, because the patients in the poorer prognostic 
group were the oldest. Notably, older melanoma patients 
have been reported to have poorer prognostic outcomes 
because they have a higher incidence of developing other 
diseases [36]. Furthermore, being greater than 60 years 
old may be associated with having more aggressive 
histological features [37]. These reports support the 
rationality and biological meaningfulness of our 
classification and feature characterization. 
 
In summary, we provided a novel and reasonable 
classification scheme for cutaneous melanoma. By 
integrating multiplatform data, we systematically 
characterized the molecular features of different 
subgroups, especially the better prognostic group. This 
study has enhanced our understanding of the mechanisms 
contributing to heterogeneity among cutaneous 
melanoma patients. Furthermore, the prognostic genes 
we identified and validated have potential applications in 
biomarker development and personalized medicine. 
 
METHODS 
 
Data source 
 
We downloaded gene expression data (reads per 
kilobase per million mapped reads [RPKM] values) 
based on mRNA-seq; miRNA expression data based on 
miRNA-seq; methylation data (Illumina Human 
Methylation 450 platform, beta values) and clinical 
information for 447 skin cutaneous melanoma patients 
from TCGA under the GDC (https://portal.gdc. 
cancer.gov/) (April 12, 2018). Of the 470 samples 
available in the GDC, 447 had data for both 
transcriptome and DNA methylation profiling, and were 
used in subsequent analyses. 
 
For validation, microarray expression profiles were 
obtained from the National Center for Biotechnology 
Information Gene Expression Omnibus (NCBI GEO, 
https://www.ncbi.nlm.nih.gov/geo/). The accession 
numbers for the three cohorts were GSE19234, 
GSE22153 and GSE53118. 
 
Clustering of molecular data for all cutaneous 
melanoma cases 
 
In total, 485,577 probes were used to explore the DNA 
methylation profiles on the genomic scale. Beta values 

between 0 and 1 were used to represent the relative 
methylation level, which was measured as the ratio of 
the methylated probe intensity to all the methylation 
probe intensities. The top 10% most variable probes 
(those displaying the highest median absolute deviation 
across beta values) were included in consensus 
clustering analysis, which was performed with the 
widely used R package ConsensusClusterPlus [38].  
 
The following settings were used in the consensus 
clustering: number of resamplings = 1000; pItem = 0.90 
(resampling frequency samples); pFeature = 0.90 
(resampling frequency); Pearson distance metric; Ward 
linkage clustering method. Consensus matrices were 
analyzed for the number of clusters k from 2 to 6, and a 
cumulative distribution function (CDF) was constructed 
for each k. The optimal number of clusters was 
determined from the CDFs and consensus matrices. The 
purpose of the consensus matrix plots was to find the 
“cleanest” cluster partition, while the purpose of the 
CDFs was to find the k at which the distribution reached 
an approximate maximum. The most robust result was 
found with a four-cluster solution. Alternatively, the k-
means clustering method was used, and four clusters 
were identified. 
 
For the mRNA-seq data, the RPKM values were log2-
transformed. Similarly, the miRNA expression values 
(reads per million miRNAs mapped) were log2-
transformed. The top 20% most variable genes and 
miRNAs (those with the highest median absolute 
deviation across all 447 patients) were separately 
retained for clustering. The number of clusters k from 
2 to 6 was analyzed by ConsensusClusterPlus with the 
same parameters used for methylation clustering. The 
most robust result for the mRNA-seq data was  
found with a three-cluster solution, whereas no 
obvious clustering structure was found for the 
miRNA-seq data. 
 
An integrative clustering analysis was conducted on all 
three datasets by a new method, moCluster [39], which 
performed robustly with a fast computation time. Gap 
statistics with respect to 1 to 12 clusters were analyzed, 
and a four-cluster structure was found to be the optimal 
choice.  
 
Analysis of differentially expressed genes and gene 
function 
 
The mRNA-seq raw reads counts for 60,488 genes were 
downloaded from TCGA under the GDC (April 12, 
2018). The DESeq [40] package in R software was used 
to identify differentially expressed genes. P values were 
adjusted by the method of Benjamini and Hochberg. A 
gene was defined as differentially expressed if the 
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absolute value of the log2FoldChange was greater than 
1 and the adjusted P value was less than 0.001.  
 
Gene function analyses of all the differentially 
expressed genes were performed with WebGestalt [41] 
and the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) [42]. In WebGestalt, 
overrepresentation enrichment analysis was selected as 
the method of interest, and genome protein-coding was 
selected as the reference set. P values were adjusted by 
the method of Benjamini and Hochberg. A pathway was 
considered to be significantly enriched if the adjusted P 
value was less than 0.01. 
 
Immune score and stromal score analyses 
 
Based on gene expression data, immune scores and 
stromal scores were predicted by the ESTIMATE 
algorithm [43]. In general, the immune score represents 
the level of immune cell infiltration, while the stromal 
score represents the presence of stromal cells in tumor 
tissue. Two-sided Student’s t tests were used to evaluate 
the differences in immune or stromal scores  
between groups. Pearson’s correlation analysis was 
performed to assess the association of the immune or 
stromal score with gene expression across patients. A 
two-sided P value less than 0.01 was considered 
statistically significant. 
 
Differential methylation analysis 
 
For each methylation probe, log2 transformation was 
performed to evaluate the methylation intensity ratio. 
The significance of differences in probe methylation 
between subgroups was determined with the Samr [44] 
package in R software. Probes with fold-changes greater 
than 1.25 and q values less than 0.01 were deemed to be 
highly methylated (hypermethylated), while those with 
fold-changes less than 0.8 and q values less than 0.01 
were deemed to be hypomethylated. 
 
Genes were defined as differentially methylated if their 
promoters contained differentially methylated probes. 
We excluded genes with promoters harboring both 
hypermethylated and hypomethylated probes. 
Differentially methylated genes were functionally 
analyzed with WebGestalt and DAVID. P values were 
adjusted by the method of Benjamini and Hochberg. A 
pathway was considered to be significantly enriched if 
the adjusted P value was less than 0.01. 
 
Genomic region distribution 
 
Genomic regions including the 5’ untranslated region 
(UTR), whole exon regions, whole intron regions and 3’ 
UTR were obtained from the University of California 

Santa Cruz genome browser [45] (http://genome.ucsc. 
edu/). The melanoma enhancer region was obtained 
from the EnhancerAtlas [46] (http://enhanceratlas.org/ 
index.php). The promoter region was defined as the 
3,000 bp around the transcription start site, with 1,500 
bp upstream and 1,500 bp downstream. A probe was 
considered to be located in a given genomic region if its 
location overlapped with the corresponding region.  
 
For differentially expressed genes, we extracted the 
probes that were annotated to each gene by the 
Infinium HumanMethylation 450 BeadChip array from 
TCGA methylation profiles. Probes were categorized 
based on their locality on the promoter, 5’ UTR, 3’ 
UTR, exon or intron region. Then, the mean beta 
values of the probes in each category were calculated 
for each patient group. A two-sided Student’s t test was 
used to compare the mean methylation level between 
each pair of subtypes. A P value less than 0.001 was 
considered significant. 
 
We extracted all the probes in the Infinium 
HumanMethylation 450 BeadChip array from TCGA 
methylation profiles, and calculated the number of 
probes located in each genomic region. For the 
differentially methylated probes, we also calculated the 
number of probes located in each genomic region. 
Fisher’s exact test was used to test the enrichment. 
Odds ratios and P values were obtained, and P values 
were adjusted by the method of Benjamini and 
Hochberg. 
 
Gene mutation analysis 
 
We obtained nonsynonymous mutations from the 
exome-sequencing data of the same cutaneous 
melanoma patients from the GDC. A two-sided 
Student’s t test was used to evaluate the difference in 
the number of nonsynonymous mutations between 
groups. For the analysis of the gene mutation burden, 
the number of patients harboring the mutated gene in 
each group was calculated, and the differences between 
groups were assessed by Fisher’s exact test. A P value 
less than 0.01 was considered significant.  
 
The mutational spectra of all three groups were 
analyzed with deconstructSigs [47], and the signatures 
were extracted based on the Wellcome Trust Sanger 
Institute Mutational Signature Framework [48]. The 
deconstructSigs package identifies a linear combination 
of pre-defined signatures that most accurately 
reconstructs the mutational profile of a tumor sample. 
Each mutational signature is assigned a calculated 
weight representing its contribution to the tumor 
samples, where a higher weight value indicates a greater 
relative contribution of the signature. 
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Survival analysis 
 
For each gene, the top quartile of patients in terms of 
gene expression was selected as the high expression 
group, and the bottom quartile of patients was selected 
as the low expression group. For the three cohorts of 
melanoma patients from GEO, the top and bottom 
tertiles of patients in terms of gene expression were 
chosen as the high and low expression groups, 
respectively, due to the small sample size. Survival 
curves were generated by the Kaplan-Meier method, and 
differences were evaluated by the log-rank (Mantel-Cox) 
test. OS was calculated from the time of initial diagnosis 
to death, or was censored to the time when the patient 
was last known to be alive. All tests were two-sided, and 
all calculations were performed with R Version 3.3.1 
statistical software (R Core Team, Vienna, Austria). The 
codes are provided in the Supplementary File. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. Cluster determination in the integrative clustering. (A) Permutation test to determine the number of 
latent variables to include in the clustering. The boxplot displays the eigenvalues for a 100-permutation test; the error bars represent the 95% 
confidence interval. The results suggested that the top six latent variables accounted for the concordance structures across the datasets. (B) 
Gap statistics with respect to 1 to 12 subclusters indicated that a four-cluster model was the optimal choice. 
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Supplementary Figure 2. Consensus clustering of DNA methylation data. (A) Consensus clustering matrices for k = 3 to k = 5 using 
the Ward linkage clustering method. The heatmap visually represents the consensus matrix, which is a matrix of sample pairs. Each matrix 
entry measures the proportion of times that the samples of the pair are clustered together across resampling iterations. The consensus 
clustering CDF is shown for k = 2 to k = 6. The optimal number of clusters was determined from the CDF and consensus matrices. (B) 
Consensus clustering was performed by the k-means clustering method. (C) The heatmap displays the patient separation in each clustering. 
Ward: Ward linkage clustering; KM: k-means clustering. (D) Kaplan-Meier OS curves are shown for the clusters identified by k-means 
clustering. 
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Supplementary Figure 3. Consensus clustering of mRNA-seq data. (A) Consensus clustering matrices for k = 2 to k = 4 using the Ward 
linkage clustering method. The consensus clustering CDF is shown for k = 2 to k = 6. The optimal number of clusters was determined from the 
CDF and consensus matrices. (B) Consensus clustering was performed by the k-means clustering method. (C) The heatmap displays the 
patient separation in each clustering. Ward: Ward linkage clustering; KM: k-means clustering. 
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Supplementary Figure 4. Illustration of pooling patients to identify the final prognostic patient grouping. If a patient exhibited 
better OS in only one clustering, this patient was considered to have a better prognosis, and likewise for patients with poorer OS. When a 
patient exhibited better OS in one clustering, but poorer OS in other one clustering, the patient was identified as having neither a better nor a 
poorer prognosis. In other words, a patient was pooled into the better prognostic group only if the patient exhibited significantly better OS in 
at least two clusterings. A patient exhibiting better OS in all three clusterings was included in the better prognostic group. A similar pooling 
technique was used for patients with poorer OS. 
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Supplementary Figure 5. Distributions of the immune and stromal scores in the integrated, methylation and mRNA-seq 
clusterings. Boxplots display the distributions of the immune scores (top panel) and stromal scores (bottom panel) across the three groups 
in the “Integrated”, “Methylation” and “mRNA” clusterings. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of  
Supplementary Table 1. Clinical information on the patients in this study. 
 
Supplementary Table 2A. Functions of the genes that were upregulated in the better versus the poorer prognostic 
group. 

geneset description link P Value FDR1 overlapGene 

hsa04060 

Cytokine-cytokine 
receptor interaction - 
Homo sapiens 
(human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04
060 

4.22E-08 1.28E-05 

CXCL13;TNFSF13B;CCR8;C
SF2RB;IFNG;IL2RA;FASLG;I
L7;IL12A;IL15;TNFRSF9;CX
CL10;CXCL9;IL21;CXCL11;
XCL1;XCL2;CCR2;TNFSF10;
IL18RAP;IL18R1 

hsa05162 Measles - Homo 
sapiens (human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa05
162 

2.43E-06 0.000368 

CDK6;DDX58;IFNG;IL2RA;F
ASLG;IL12A;SH2D1A;PIK3C
G;IFIH1;STAT1;TLR2;TNFSF
10;CD3G 

hsa04650 

Natural killer cell 
mediated cytotoxicity 
- Homo sapiens 
(human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04
650 

1.28E-05 0.001295 

FCGR3A;KLRK1;LAT;IFNG;
FASLG;KLRC2;KLRC3;KLR
D1;LCP2;SH2D1A;PIK3CG;T
NFSF10 

hsa04062 
Chemokine signaling 
pathway - Homo 
sapiens (human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04
062 

1.73E-05 0.001314 

CXCL13;CCR8;DOCK2;PLCB
1;GNGT1;CXCL10;ITK;CXC
L9;PIK3CG;CXCL11;XCL1;S
TAT1;XCL2;CCR2 

hsa05321 

Inflammatory bowel 
disease (IBD) - 
Homo sapiens 
(human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa05
321 

3.72E-05 0.002108 IFNG;IL12A;IL21;STAT1;ST
AT4;TLR2;IL18RAP;IL18R1 

hsa04620 

Toll-like receptor 
signaling pathway - 
Homo sapiens 
(human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04
620 

4.17E-05 0.002108 
IL12A;CXCL10;CXCL9;TLR8
;PIK3CG;CXCL11;STAT1;TL
R2;TLR3;CD80 

hsa05143 

African 
trypanosomiasis - 
Homo sapiens 
(human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa05
143 

5.43E-05 0.002349 PLCB1;IFNG;FASLG;IL12A;I
DO1;VCAM1 

hsa04621 

NOD-like receptor 
signaling pathway - 
Homo sapiens 
(human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04
621 

0.000126 0.004759 
TANK;GBP4;GBP5;CYBB;PL
CB1;GBP1;GBP2;GBP3;NAIP
;STAT1;CASP5;AIM2 

hsa05164 Influenza A - Homo 
sapiens (human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa05
164 

0.000165 0.00557 

DDX58;IFNG;FASLG;IL12A;
CXCL10;CIITA;PIK3CG;IFIH
1;STAT1;TLR3;TNFSF10;RS
AD2 

hsa04660 

T cell receptor 
signaling pathway - 
Homo sapiens 
(human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04
660 

0.000214 0.00649 
RASGRP1;LAT;ICOS;IFNG;I
TK;LCP2;PIK3CG;PTPRC;CD
3G 

hsa04630 
Jak-STAT signaling 
pathway - Homo 
sapiens (human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04
630 

0.000273 0.007531 
CSF2RB;IFNG;IL2RA;IL7;IL1
2A;IL15;PIK3CG;IL21;STAT1
;STAT4;IL27RA 
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1P value was adjusted using the Benjamini and Hochberg method by WebGestalt. 
Supplementary Table 2B. Functions of the genes that were upregulated in the better versus the poorer prognostic 
group. 

Category Term P Value Benjamini1 Genes 
KEGG_PATHWAY hsa04060:Cytokine-

cytokine receptor 
interaction 

3.26E-08 6.14E-06 IL18R1, IL2RA, IL18RAP, IL7, CXCL9, 
FASLG, IL15, CXCL11, IL21, CXCL10, 
CCR8, TNFRSF9, TNFSF10, TNFSF13B, 
CXCL13, CCR2, IFNG, IL12A, CSF2RB, 
XCL1, XCL2 

KEGG_PATHWAY hsa05162:Measles 8.69E-06 8.16E-04 PIK3CG, IFIH1, IL2RA, CD3G, TLR2, 
FASLG, CDK6, STAT1, DDX58, TNFSF10, 
SH2D1A, IFNG, IL12A 

KEGG_PATHWAY hsa04062:Chemokine 
signaling pathway 

5.67E-05 0.0035478 PIK3CG, ITK, CXCL9, STAT1, CXCL11, 
CXCL10, CCR8, GNGT1, DOCK2, CXCL13, 
CCR2, PLCB1, XCL1, XCL2 

KEGG_PATHWAY hsa04620:Toll-like 
receptor signaling 
pathway 

1.94E-04 0.0090657 PIK3CG, CD80, IL12A, TLR2, CXCL9, 
TLR3, CXCL11, STAT1, TLR8, CXCL10 

KEGG_PATHWAY hsa05321:Inflammatory 
bowel disease (IBD) 

2.14E-04 0.0080151 IL18R1, STAT4, IL18RAP, IFNG, IL12A, 
TLR2, STAT1, IL21 

1P value was adjusted using the Benjamini and Hochberg method by DAVID. 
 
Supplementary Table 3A. Functions of the genes that were downregulated in the better versus the poorer prognostic 
group. 

geneset description link P Value FDR1 overlapGene 
hsa00190 Oxidative 

phosphorylat
ion - Homo 
sapiens 
(human) 

http://www.keg
g.jp/kegg-
bin/show_path
way?hsa00190 

6.26E-11 1.90E-08 NDUFA11;COX6B1;CYC1;NDUFS7;ATP
6;COX3;CYTB;ND1;ND3;NDUFA3;NDU
FB7;NDUFC2;NDUFV1;NDUFS8;NDUF
A13;ATP5D;ATP5G2;ATP6V0C;ATP6V0
A1;ATP6AP1;NDUFB11;COX4I2;ATP6V
0D1 

hsa01100 Metabolic 
pathways - 
Homo 
sapiens 
(human) 

http://www.keg
g.jp/kegg-
bin/show_path
way?hsa01100 

3.49E-10 5.29E-08 ALG3;PEMT;AGPAT2;CERS1;ADSSL1;
NDUFA11;COMT;COX6B1;CYC1;CYP27
A1;POLR3H;AHCY;AK1;FAH;ALDH3B1
;ALDOA;DOLK;PGLS;GALK1;GAMT;G
APDH;GBA;GPI;GSTZ1;GYS1;IDH3G;A
CADS;APRT;ITPKB;NDUFS7;MPST;ATP
6;COX3;CYTB;ND1;ND3;NAGLU;NDUF
A3;NDUFB7;NDUFC2;NDUFV1;NDUFS
8;NME4;NOS3;ACO2;PAFAH1B3;NDUF
A13;DCXR;ATP5D;ISYNA1;ATP5G2;PF
KL;ATP6V0C;ATP6V0A1;ATP6AP1;DP
M3;POLR2I;NDUFB11;NT5M;PYCR1;PC
YT2;PYCRL;SMPD2;TKT;TST;TSTA3;T
YR;TYRP1;ALG8;HSD17B8;CERS4;PTG
ES2;FLAD1;PTDSS2;COX4I2;DGAT1;GP
AA1;ATP6V0D1;UAP1L1;G6PC3;NAPRT
;PPT2 

hsa05012 Parkinson's 
disease - 
Homo 
sapiens 

http://www.keg
g.jp/kegg-
bin/show_path
way?hsa05012 

4.55E-08 4.59E-06 NDUFA11;COX6B1;CYC1;NDUFS7;ATP
6;COX3;CYTB;ND1;ND3;NDUFA3;NDU
FB7;NDUFC2;NDUFV1;NDUFS8;NDUF
A13;ATP5D;ATP5G2;SEPT5;NDUFB11;C
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(human) OX4I2 
hsa05010 Alzheimer's 

disease - 
Homo 
sapiens 
(human) 

http://www.keg
g.jp/kegg-
bin/show_path
way?hsa05010 

4.10E-06 0.00031 NDUFA11;COX6B1;CYC1;GAPDH;NDU
FS7;ATP6;COX3;CYTB;NDUFA3;NDUF
B7;NDUFC2;NDUFV1;NDUFS8;NDUFA
13;ATP5D;ATP5G2;NDUFB11;PSENEN;
COX4I2 

hsa05016 Huntington's 
disease - 
Homo 
sapiens 
(human) 

http://www.keg
g.jp/kegg-
bin/show_path
way?hsa05016 

6.66E-06 0.000404 CLTB;NDUFA11;COX6B1;CYC1;BBC3;
NDUFS7;ATP6;COX3;CYTB;NDUFA3;N
DUFB7;NDUFC2;NDUFV1;NDUFS8;ND
UFA13;ATP5D;ATP5G2;POLR2I;NDUFB
11;COX4I2 

hsa03010 Ribosome - 
Homo 
sapiens 
(human) 

http://www.keg
g.jp/kegg-
bin/show_path
way?hsa03010 

1.06E-05 0.000536 MRPL21;MRPL2;MRPS2;RPL8;RPL18;R
PL18A;MRPL23;RPL28;MRPS12;RPS2;R
PS3;RPS10;RPS15;RPS19;RPS28;UBA52 

hsa04932 Non-
alcoholic 
fatty liver 
disease 
(NAFLD) - 
Homo 
sapiens 
(human) 

http://www.keg
g.jp/kegg-
bin/show_path
way?hsa04932 

0.000158 0.006841 NDUFA11;COX6B1;CYC1;NDUFS7;COX
3;CYTB;NDUFA3;NDUFB7;NDUFC2;ND
UFV1;NDUFS8;NDUFA13;PIK3R2;NDU
FB11;COX4I2 

1P value was adjusted using the Benjamini and Hochberg method by WebGestalt. 
 
Supplementary Table 3B. Functions of the genes that were downregulated in the better versus the poorer prognostic 
group. 

Category Term P Value Benjamini1 Genes 
KEGG_PATHWAY hsa01100:Metabolic 

pathways 
1.39E-09 2.96E-07 ATP5D, PTGES2, ATP6AP1, CYC1, 

ALG3, ITPKB, ALG8, FAH, 
NDUFS7, TYR, IDH3G, NT5M, 
NDUFS8, GSTZ1, NOS3, 
ATP6V0D1, PCYT2, AGPAT2, 
PTDSS2, NDUFB11, ACO2, PFKL, 
ACADS, COX4I2, NDUFC2, 
NDUFA13, ALDH3B1, NDUFA11, 
NAPRT, NME4, PYCR1, PGLS, 
DGAT1, CYP27A1, FLAD1, MPST, 
ALDOA, PYCRL, TYRP1, NAGLU, 
AHCY, NDUFB7, POLR2I, GPAA1, 
PPT2, ATP5G2, CERS4, COMT, 
G6PC3, ATP6V0C, GALK1, 
ISYNA1, CERS1, PEMT, COX6B1, 
PAFAH1B3, TSTA3, GAPDH, 
GBA, HSD17B8, ADSSL1, 
POLR3H, NDUFA3, AK1, TKT, 
UAP1L1, APRT, DOLK, TST, GPI, 
NDUFV1, ATP6V0A1, DPM3, 
GAMT, QPRT, DCXR, SMPD2 

KEGG_PATHWAY hsa00190:Oxidative 
phosphorylation 

1.08E-06 1.15E-04 ATP5D, NDUFB11, NDUFA3, 
NDUFB7, ATP6AP1, CYC1, 
NDUFC2, COX4I2, NDUFA13, 
ATP5G2, NDUFA11, NDUFS7, 
ATP6V0C, NDUFV1, NDUFS8, 
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COX6B1, ATP6V0A1, ATP6V0D1 
KEGG_PATHWAY hsa03010:Ribosome 2.89E-05 0.002046409 MRPL2, RPL18, MRPS12, RPS2, 

RPL28, MRPS2, RPS3, MRPL23, 
RPS19, MRPL21, RPS28, RPL18A, 
RPL8, RPS15, RPS10, UBA52 

KEGG_PATHWAY hsa05012:Parkinson's disease 1.81E-04 0.009616315 SEPT5, ATP5D, NDUFB11, 
NDUFA3, NDUFB7, CYC1, 
NDUFC2, COX4I2, NDUFA13, 
ATP5G2, NDUFA11, NDUFS7, 
NDUFV1, NDUFS8, COX6B1 

1P value was adjusted using the Benjamini and Hochberg method by DAVID. 
 
Supplementary Table 4. Association of upregulated gene expression with OS, and validation in three GEO cohorts. 
(see Full text version) 

 
Supplementary Table 5A. Functions of the validated prognostic genes. 

geneset description link P Value FDR1 overlapGene 
hsa04060 Cytokine-cytokine 

receptor interaction - 
Homo sapiens (human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04060 

7.15E-07 0.000217 CXCL13;TNFSF13B;CCR
8;CSF2RB;IFNG;IL2RA;F
ASLG;IL7;TNFRSF9;CX
CL10;CXCL9;IL18R1 

hsa04620 Toll-like receptor 
signaling pathway - 
Homo sapiens (human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04620 

1.46E-06 0.000222 CXCL10;CXCL9;TLR8;PI
K3CG;STAT1;TLR2;TLR
3;CD80 

hsa05162 Measles - Homo 
sapiens (human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa05162 

9.53E-06 0.000962 IFNG;IL2RA;FASLG;SH2
D1A;PIK3CG;STAT1;TL
R2;CD3G 

hsa04630 Jak-STAT signaling 
pathway - Homo 
sapiens (human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04630 

2.85E-05 0.002159 CSF2RB;IFNG;IL2RA;IL
7;PIK3CG;STAT1;STAT4
;IL27RA 

hsa04621 NOD-like receptor 
signaling pathway - 
Homo sapiens (human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04621 

4.82E-05 0.002923 GBP4;CYBB;GBP1;GBP2
;GBP3;NAIP;STAT1;CAS
P5 

hsa04658 Th1 and Th2 cell 
differentiation - Homo 
sapiens (human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04658 

7.68E-05 0.003878 LAT;IFNG;IL2RA;STAT1
;STAT4;CD3G 

hsa04640 Hematopoietic cell 
lineage - Homo sapiens 
(human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04640 

0.000103 0.004469 IL2RA;IL7;CD1D;CD2;C
D3G;CD38 

hsa05321 Inflammatory bowel 
disease (IBD) - Homo 
sapiens (human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa05321 

0.000146 0.005387 IFNG;STAT1;STAT4;TL
R2;IL18R1 

hsa04660 T cell receptor 
signaling pathway - 
Homo sapiens (human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04660 

0.00016 0.005387 RASGRP1;LAT;IFNG;PI
K3CG;PTPRC;CD3G 

hsa04659 Th17 cell 
differentiation - Homo 
sapiens (human) 

http://www.kegg.jp/kegg-
bin/show_pathway?hsa04659 

0.000178 0.005387 LAT;IFNG;IL2RA;STAT1
;CD3G;IL27RA 

1P value was adjusted using the Benjamini and Hochberg method by WebGestalt. 
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Supplementary Table 5B. Functions of the validated prognostic genes. 

Category Term P Value Benjamini1 Genes 
KEGG_PATHWAY hsa04060:Cytokine-

cytokine receptor 
interaction 

6.06E-07 6.96E-05 TNFRSF9, IL18R1, CCR8, IL2RA, 
TNFSF13B, CXCL13, IL7, IFNG, 
CXCL9, CSF2RB, FASLG, CXCL10 

KEGG_PATHWAY hsa04620:Toll-like 
receptor signaling 
pathway 

7.40E-06 4.26E-04 PIK3CG, CD80, TLR2, CXCL9, TLR3, 
STAT1, TLR8, CXCL10 

KEGG_PATHWAY hsa05162:Measles 3.28E-05 0.0012563 PIK3CG, SH2D1A, CD3G, IL2RA, IFNG, 
TLR2, FASLG, STAT1 

KEGG_PATHWAY hsa04640:Hematopoietic 
cell lineage 

3.22E-04 0.0092085 CD38, CD3G, IL2RA, IL7, CD2, CD1D 

1P value was adjusted using the Benjamini and Hochberg method by DAVID. 
 
Supplementary Table 6A. Functions of the genes that were hypomethylated in the better versus the poorer 
prognostic group. 

geneset description link P Value FDR1 OverlapGene 
hsa04060 Cytokine-

cytokine 
receptor 
interaction - 
Homo 
sapiens 
(human) 

http://www.kegg.jp/ke
gg-
bin/show_pathway?hsa
04060 

1.41E-06 0.000426 EDAR;CCR1;CCR4;CCR6;CCR7;CNTFR
;CSF2;CSF2RB;CSF3R;IFNLR1;EDA;EG
F;EGFR;EPO;FLT3;FLT4;IL17RA;IFNL1
;CXCL2;CXCL3;IFNAR2;IFNG;IFNGR2;
IL1A;IL2RA;IL2RG;IL4;IL6R;IL7;CXCR
1;IL9;CXCR2;IL10RA;IL12RB1;IL13RA
1;IL15;IL15RA;IL17A;INHBB;CCL4L1;
LIF;LIFR;LTA;LTB;LTBR;OSM;IL21R;I
L22;IL23A;PDGFRB;TNFRSF19;PDGFC
;ACKR3;CXCL16;IL22RA1;CCL1;CCL3;
CCL4;CCL8;CCL11;CCL13;CCL14;CCL
15;CCL16;CCL22;CCL23;CXCL5;CXCL
12;CXCR5;TGFB2;TNF;TNFRSF1B;TNF
SF4;TNFRSF4;IL1R2;TSLP;TNFRSF25;
TNFSF14;TNFSF12;TNFSF10;TNFRSF1
8;TNFRSF10D;OSMR;CD27;TNFRSF8;T
NFSF8;CD40 

hsa04080 Neuroactive 
ligand-
receptor 
interaction - 
Homo 
sapiens 
(human) 

http://www.kegg.jp/ke
gg-
bin/show_pathway?hsa
04080 

6.59E-06 0.000741 NPFFR2;GPR83;CHRM3;CHRM4;CHRN
A5;CHRNB1;CHRNB2;CHRNB3;CHRN
B4;CHRND;CHRNE;CHRNG;ADCYAP1
R1;CNR2;ADORA1;CRHR1;CRHR2;AD
RA1A;CTSG;ADRA2C;ADRB3;DRD1;A
PLNR;S1PR1;LPAR1;GABRR3;F2RL1;F
2RL2;GABBR1;GABRA1;GABRA2;GA
BRA4;GABRA6;GABRG3;GALR1;GHS
R;GIPR;P2RY10;GLP1R;GLRB;NPBWR
1;NPBWR2;MCHR1;GRIA1;GRIA3;GRI
A4;GRID1;GRIK2;GRIK3;GRIK4;GRIN2
A;GRM6;GRM8;GZMA;HRH2;HTR1B;
HTR1E;HTR2A;HTR2C;HTR5A;HTR7;L
HCGR;MC3R;MTNR1A;MTNR1B;NMB
R;NPY1R;OPRL1;P2RY6;P2RY11;AVPR
1B;AVPR2;PTGDR;PTGER2;PTGER3;P
TGER4;BDKRB2;SCTR;SSTR1;TACR3;
THRB;C3AR1;TSHB;VIPR2;MCHR2;F2
RL3;TAAR5;GPR50 
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hsa04640 Hematopoiet
ic cell 
lineage - 
Homo 
sapiens 
(human) 

http://www.kegg.jp/ke
gg-
bin/show_pathway?hsa
04640 

7.33E-06 0.000741 CR1;CR2;CSF2;CSF3R;DNTT;EPO;FLT
3;ANPEP;HLA-DMA;HLA-DMB;HLA-
DOA;HLA-DPA1;HLA-
DRA;IL1A;IL2RA;IL4;IL6R;IL7;ITGA3;I
TGA4;ITGA5;ITGB3;MME;TNF;IL1R2;
CD1A;CD1B;CD1C;CD1D;CD1E;CD3E;
CD5;CD7;CD8A;MS4A1;CD22;CD33;C
D34;CD38 

hsa04950 Maturity 
onset 
diabetes of 
the young - 
Homo 
sapiens 
(human) 

http://www.kegg.jp/ke
gg-
bin/show_pathway?hsa
04950 

3.64E-05 0.002758 RFX6;NR5A2;HHEX;MNX1;FOXA2;HN
F4G;ONECUT1;INS;PDX1;NKX2-
2;NKX6-
1;NEUROG3;PAX4;PAX6;HNF1B 

1P value was adjusted using the Benjamini and Hochberg method by WebGestalt. 
 
Supplementary Table 6B. Functions of the genes that were hypomethylated in the better versus the poorer 
prognostic group. 

Category Term P Value Benjamini1 Genes 
KEGG_PATHWAY hsa04060:Cytokine-

cytokine receptor 
interaction 

2.11E-06 5.98E-04 OSMR, IL21R, CXCR1, TNFSF14, 
CXCR2, IL15, TNFSF12, CXCL12, 
IL17RA, TGFB2, IFNL1, CXCR5, IFNG, 
CSF3R, IL15RA, CSF2RB, IL13RA1, 
LTB, IFNGR2, IL1A, LTA, IFNLR1, 
LTBR, LIFR, CCL4L1, ACKR3, EDAR, 
CD40, IL6R, IL22, INHBB, OSM, 
IFNAR2, CCR7, CCR6, CCR4, 
TNFRSF10D, EDA, CCL1, IL1R2, CSF2, 
CCL3, TNF, IL22RA1, CXCL5, 
TNFRSF25, CCR1, CXCL3, CXCL2, 
CCL8, TNFRSF8, CNTFR, CCL4, 
TNFRSF4, LIF, IL17A, CCL22, 
TNFRSF1B, IL12RB1, IL23A, CCL23, 
IL10RA, TNFRSF18, TNFRSF19, IL2RG, 
CD27, EPO, IL4, IL2RA, TNFSF4, IL7, 
IL9, CCL16, CCL15, TNFSF8, CCL11, 
TSLP, CCL13, TNFSF10, CCL14, 
CXCL16 

KEGG_PATHWAY hsa04080:Neuroactive 
ligand-receptor 
interaction 

6.63E-06 9.38E-04 GPR83, F2RL2, F2RL3, MCHR1, 
MCHR2, TACR3, THRB, GRIK2, GRIK3, 
GRIK4, F2RL1, LHCGR, GABBR1, 
LPAR1, VIPR2, ADORA1, SCTR, 
HTR1B, S1PR1, GALR1, CHRNA5, 
TAAR5, HTR5A, GRID1, HTR1E, 
PTGER2, GABRG3, PTGER3, PTGER4, 
GZMA, NPBWR1, NPBWR2, GRIN2A, 
CRHR1, GABRR3, CRHR2, CHRM4, 
CHRM3, SSTR1, GRM8, HTR7, GRM6, 
PTGDR, GIPR, GPR50, GLP1R, CTSG, 
C3AR1, AVPR2, DRD1, ADCYAP1R1, 
TSHB, BDKRB2, ADRB3, APLNR, 
P2RY6, HRH2, CNR2, NPFFR2, 
ADRA2C, MC3R, GABRA2, GLRB, 
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GABRA1, GABRA4, OPRL1, GABRA6, 
GRIA3, GRIA4, NPY1R, P2RY10, 
P2RY11, GRIA1, AVPR1B, MTNR1B, 
CHRNB4, ADRA1A, CHRNB3, CHRND, 
CHRNB2, CHRNB1, NMBR, GHSR, 
HTR2C, CHRNE, HTR2A, MTNR1A, 
CHRNG 

KEGG_PATHWAY hsa04640:Hematopoietic 
cell lineage 

4.41E-05 0.004152929 IL1R2, CSF2, TNF, CD8A, MME, 
ANPEP, ITGB3, DNTT, MS4A1, CSF3R, 
CD22, CD5, IL1A, EPO, CD7, IL4, CR1, 
CR2, IL2RA, IL7, FLT3, CD3E, CD1C, 
CD1B, CD1A, ITGA3, IL6R, ITGA4, 
CD1E, CD1D, CD38, CD34, ITGA5, 
CD33, HLA-DRA 

1P value was adjusted using the Benjamini and Hochberg method by DAVID. 
 


