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INTRODUCTION 
 
Colorectal cancer (CRC) is the second leading cause  
of cancer-related death among all malignancies  
worldwide [1]. Despite surgical operation, radiotherapy, 
chemotherapy and personalized medicine have strongly 
prolonged survival of CRC patients, the 5-year relative 
survival remains less than 50% [2]. In view of genomic 
variations, epigenomic alterations and transcriptional 
deregulation, CRC is often signatured with heterogeneous 
behaviors and a couple of molecular subtypes have been 
proposed, which describe detailed pictures of tumor 
biology mechanisms.  
 
Copy number variation (CNV) is defined as a pattern  
of genetic structural variation, and generally refers to  
the increase or decrease in copy number of genomic 
fragments between 1 kb and 3 Mb [3]. Copy number  

 

amplifications or deletions in cancer genomes often 
induce oncogenes expression or deactivation of tumor 
suppressor genes and harbor significant influence on 
cellular functions, including adhesion, recognition, 
communication [4, 5]. Increase in copy number of IGHG3 
located at 14 chromosome often contributes to over-
expression of this gene and high prevalence and mortality 
in prostate cancer [6]. Not only referring to tumor biology, 
CNVs are also familiar with dosage effects in some 
intricately immunological diseases. Enhanced HIV/  
acquired immunodeficiency syndrome (AIDS) 
susceptibility is visible in individual who has CCL3L1 
copy number aberrations [7]; CNV of human Fcgr3 gene 
is a determinant of glomerulonephritis [8]; Low copy 
number of component C4 is a danger factor and high copy 
number is a shielding factor in systemic lupus erythe-
matosus (SLE) [9]. In the light of these expounded 
findings, bulks of investigations have shed light on 
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ABSTRACT 
 
Copy number variations (CNVs) are crucial genetic change elements in malignancies, and lncRNAs deregulation 
induced by genomic and epigenomic aberrations plays key driving role in tumorigenesis, including colorectal 
cancer (CRC). However, effects of CNVs associated with lncRNAs in CRC is largely unknown. Here, we perform 
integrative analysis considering messenger RNA expression levels, DNA methylation and DNA copy numbers from 
289 cases of CRC specimens. There are five prognostic subtypes of CRC determined by multi-omics integration, 
and differentially expressed lncRNAs (DE-lncRNAs) are acquired among five subtypes and normal cases. Finally, 
CNVs pattern matched with DE-lncRNAs reveals a signature including 10 lncRNAs (LOC101927604, LOC105377267, 
CASC15, LINC-PINT, CLDN10-AS1, C14orf132, LMF1, LINC00675, CCDC144NL-AS1, LOC284454), conspicuously 
contributing to poor prognosis in CRC, which can be validated in another independent dataset. Together, our 
research is interested in copy number changes relevant with lncRNAs, not only expending the spectrum of CNVs, 
but also perfecting the regulation network of lncRNAs in CRC. The main purpose is to provide novel biomarkers for 
prognostic managements of CRC patients. 
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phenotypic changes and tumor progression caused by 
CNVs, concentrating on messenger RNA (mRNA), but 
few studies explicate the regulatory relationship between 
CNVs and non-coding RNAs, especially lncRNAs. With 
this concern in mind, here, we are particularly interested 
in taking a research on the relationship between structural 
variations in whole genomes and lncRNAs in CRC. 
 
Long non-coding RNAs (lncRNAs) are known as size 
larger than 200nt without protein coding ability [10]. 
Since their discovery, increasing numbers of lncRNAs 
serve as significant modulators in tumorigenesis and 
progression in human CRC [11–14]. Furthermore, 
lncRNAs have also come forward as potential prognostic 
biomarkers in CRC, and survival analysis indicates that 
aberrant lncRNAs expression hold increasing risk  
of relapse [15–17]. However, there are few attentions 
calling for potential prognostic biomarkers by means of 
detecting DNA copy number amplifications or deletions 
of lncRNAs. 
 
In this research, we could identify five molecular 
subtypes associated with prognostic outcomes of CRC 
patients based on messenger RNA expression levels, 
DNA methylation and DNA copy numbers. R package-
DEseq2 was employed to distinguish differentially 
expressed mRNAs and lncRNAs across five molecular 
subtypes and normal tissues. Despite the well-known 
effect of CNVs on transcriptomic regulation, it is still 
unclear whether CNVs is systematically related to the 
expression levels of lncRNAs in CRC. By analyzing 
copy number profiles of the whole genome lncRNAs, 
we investigated these deregulated lncRNAs induced by 
copy number amplifications or deletions. Furthermore, 
prognostic-related lncRNAs were exploited for Kaplan-
Meier (KM) survival analysis. Overall, we are aimed at 
identifying CNVs-related lncRNAs guiding prognosis 
in CRC.  
 
RESULTS 
 
Multi-omics integration analysis 
 
The expression profiles of PCGs, CNVs and 450k 
methylation were combined with prognosis status based 
on univariate cox proportional hazards model. Eventually, 
2118 genes, 5015 CNV regions and 7083 CpG sites  
were obtained with the significant threshold p<0.05. 
Subsequently, 289 CRC patients sharing in three omics 
were classified into 5 molecular subtypes using iCluster. 
Five kinds of subtypes C1, C2, C3, C4, C5 consisted of 
23, 44, 23, 60, 139 CRC patients respectively (Table 1). 
C3 group was harboring the worst survival probabilities 
(overall survival), and C2 subtype owned the optimal 
prognosis status (p=0.0056) (Figure 1A). Progression free 
survival (PFS) among five subtypes was almost consistent  

Table 1. Identification of five subtypes and the 
distribution of CRC samples across subtypes. 

Cluster SampleCount 
C1 23 
C2 44 
C3 23 
C4 60 
C5 139 

 

with overall survival, similarly, C3 group got hold of the 
worst survival probabilities (PFS) (Supplementary Figure 
1). The distribution of TNM stage among five subtypes 
clearly showed that the proportion of advanced patients 
(stageIII+stageIV) in C3 group was much larger than 
other four subtypes accounting for about 60% 
(Supplementary Figure 2). Simultaneously, we described 
the spectrum of gene mutation status among five 
subtypes, and selected the top 10 genes with the highest 
mutation rate in each subtype. There are total 20 mutation 
related genes acquired and this phenomenon highlighted 
that the most common mutation related genes in five 
subtypes had higher coincidence. We made further 
observations revealing that these 20 genes were 
differently distributed in five subtypes and the mutation 
frequency of the same gene in different subtypes is also 
distinguished (Figure 1B). Obviously, the frequency of 
gene mutations in C5 subtype was significantly higher 
than other subtypes, and even in some C5 subtypes 
samples, these 20 gene mutations almost existed. In 
addition, TTN, APC, TP53 and KRAS mutations were 
especially more common than other genes, which was 
highly shining upon that these four genes mutations may 
imply pivotal role in carcinogenesis. These findings 
suggested that our strategy for subtypes classification 
based on the expression profiles of PCGs, 450k 
methylation and CNVs data could predict distinct 
prognostic situation of CRC and feature certain  
regulatory relationship among genomic, epigenomic and 
transcription level. 
 
Differentially expressed lncRNAs and mRNAs 
across subtypes 
 
DE-lncRNAs in five subtypes and carcinoma and normal 
tissues were 2668, 2890, 2838, 2634, 2265, 2718, 
respectively (Table 2). DE-PCGs in five subtypes and 
carcinoma and normal tissues were 3702, 3989, 3934, 
3647, 3013, 3642, respectively (Table 2 and Figure 2G). 
It was evidently exhibiting that C5 subtype was holding 
less differential mRNAs and lncRNAs, on the contrary, 
C2 and C3 subtypes were holding more differential 
mRNAs and lncRNAs than other subtypes. A total of 
4253 DE-lncRNAs and 5808 differential expression of 
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PCGs were obtained. The upregulated lncRNAs were 
remarkably more than down-regulated lncRNAs (Figure 
2A–2F). Whereafter, we downloaded lncRNAs closely 
related to disease from the LncRNA Disease and 
Lnc2Cancer database and 611 lncRNAs were obtained, 
which were compared to 4253 subtypes specific 
lncRNAs (Figure 2H). There were 120 lncRNAs 
contained in previous DE-lncRNAs and the significance 
of these lncRNAs was tested by hypergeometric test 
(p=0.003929) (Supplementary Table 1). In order to 
understand the clustering situation of these DE-
lncRNAs, gene set enrichment analysis (GSEA) was 
employed based on fold change of each lncRNA in five 
molecular subtypes and carcinoma and normal tissues 
(Figure 3A–3F). The results indicated that these DE-
lncRNAs were always clustered in the gene set with 
larger difference multiples. There was almost no 
intersection of lncRNAs between all five molecular 
subtypes and carcinoma and normal tissues. Most 
lncRNAs were merely enriched in one subtype, such as, 
subtype 1 having 237 lncRNAs; subtype 2 having 202 
lncRNAs; subtype 3 having 226 lncRNAs; subtype 4 
having 102 lncRNAs; subtype 5 having 53 lncRNAs and 
carcinoma and normal tissues having 61 lncRNAs, 
respectively. The remaining lncRNAs were focused on 
two kinds of subtypes or three kinds of subtypes. It was 
obviously seen carcinoma and normal tissues shared  
a great deal of lncRNAs with other subtypes (Figure 
3G). This phenomenon highly suggested that these 
identified lncRNAs are distinctively enriched in specific 
molecular subtypes. 

Co-expressing modules between lncRNAs and PCGs 
based on WGCNA 
 
Co-expression between lncRNAs and PCGs was 
analyzed by hierarchical clustering. We defined the 
samples with distance more than 150000 as outlier 
samples for screening, and finally got 492 CRC cases for 
co-expressing analysis (Figure 4A). We accepted 3 as the 
final soft threshold in order to ensure the network 
belonging to non-scale property (Figure 4B, 4C), which 
can effectively strengthen strong correlation and weaken 
weak correlation or negative correlation. Next, the 
expression matrix was transformed into adjacency 
matrix, and then the adjacency matrix was transformed 
into topological overlap matrix (TOM) for reduced noise 
and false correlation. According to the dynamic tree cut 
criterion linked with TOM structure, the threshold  
for module partitions was constructed at 30. After 
determining the initial modules, the next was to establish 
new modules presenting as different colors, including 
calculating specific eigengenes of each module; 
clustering analysis of each module; grouping close 
modules into one new module with height = 0.25, 
deepsplit = 2, minModuleSize = 30. A total of 27 
modules (Figure 4D) were eventually obtained and the 
module of grey was signatured with genes which were 
unable to be classified into other modules. P value 
represents the significant aggregation degree and fold 
change represents the aggregation multiple. There was no 
significant difference between lncRNAs and PCGs 
among 27 modules (Table 3). 

 

 
 

Figure 1. Prognosis description and profiling of mutation genes across five subtypes. (A) Kaplan–Meier plot analysis for five 
subtypes identified by iCluster (C1, C2, C3, C4, C5) is shown for overall survival (OS). (P=0.0056) (B) Exhibition of top 20 mutated genes among 
five molecular subtypes. 



www.aging-us.com 6092 AGING 

Table 2. Differentially expressed protein-coding genes 
(DE-PCGs) and lncRNAs (DE-lncRNAs) between tumors 
and adjacent tissues (subtype All) and five subtypes 
(C1, C2, C3, C4, C5). 

Type C1 C2 C3 C4 C5 All 
PCG_Down 1843 1696 1996 1401 1296 1308 
PCG_Up 1859 2293 1938 2246 1717 2334 
PCG_All 3702 3989 3934 3647 3013 3642 
Lnc_Down 1329 1217 1439 993 952 954 
Lnc_Up 1339 1673 1399 1641 1313 1764 
Lnc_All 2668 2890 2838 2634 2265 2718 

For the interest of finding biologically associated 
modules, we need to correlate modules with external 
information, for instance clinical data of array information 
and functional enrichment analysis of gene information. 
Therefore, we executed correlation analysis by combining 
patients’ gender, age, height, weight, BMI, T, N, M, stage 
with each module (Figure 5A). What could be clearly 
indicated in the correlation analysis that all modules 
except white, pink, black, darked were related to at least 
one phenotype. Besides, four modules: tan, blue, yellow, 

magenta were finally selected with more than three kinds 
of phenotypic correlations for functional enrichment 
analysis and the significant enrichment pathways p<0.05 
were picked up. These four kinds of modules were 
clustered in distinguished pathways and the cross-talk 
between these four modules was missing (Figure 5B), 
suggesting each module may drive in different biological 
function. Tan module was associated with 18 pathways 
(Figure 6A, Supplementary Table 2) and neuroactive 
ligand-receptor interaction and calcium signaling pathway 
were in the highest flight in this module. MAPK signaling 
pathway also occupied superior gene ratio in this module 
and had been proved holding significant position in CRC-
promoting process. Only two pathways were enriched in 
yellow module, of which microRNAs in cancer may 
possess outstanding role (Figure 6B, Supplementary Table 
3). Besides, blue module enriched in 47 pathways (Figure 
6C, Supplementary Table 4), and the remarkable 
pathways included neuroactive ligand-receptor 
interaction, PI3K-AKT signaling pathway and MAPK 
signaling pathway. Genes in magenta module mainly 
enriched in Wnt signaling pathway, TGF-beta signaling 
pathway and DNA replication which were implicated 
with classical undertakings in carcinogenesis, especially 
in CRC (Figure 6D, Supplementary Table 5). Aberrant

Figure 2. Identification of key differentially expressed protein-coding genes and lncRNAs among five subtypes. (A) Volcano 
plot shows the differential expression pattern of lncRNAs between tumors and adjacent normal tissues (named “subtype all”). The 
upregulated genes are shown as red and the downregulated genes are shown as green. (B–F) The up-(red) and down-(green) regulated 
lncRNAs across five molecular subtypes (subtype 1, 2, 3, 4, 5) are also shown as volcano plots, respectively. (G) Distribution of DE-lncRNAs 
and DE-PCGs among five subtypes (C1, C2, C3, C4, C5) and tumors and adjacent normal tissues (named “subtype all”) are shown. LncRNAs 
are presented as blue and PCGs are shown as red. (H) Venn diagram displays the intersection of DE-lncRNAs and Disease lncRNAs. Total 
120 overlapped lncRNAs are indicated. Remaining 69 disease lncRNAs are excluded in our research. 
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Figure 4. Weighted gene co-expression network analysis (WGCNA) to identify clinical modules. (A) Hierarchical clustering is 
applied to exclude some outliers samples. Objects with height greater than 150000 (upper the red line) are excluded. (B–C) Analysis of 
network topology for soft thresholding powers. The red line represents the square of correlation coefficient reaches to 0.9. The mean 
connectivity under different values of ‘power’ are shown. (D) Modules dendrogram of samples and modules are indicated by different colors. 

Figure 3. Distribution condition of DE-lncRNAs in subtypes. (A–F) GSEA analysis shows different enrichment states among these five 
subtypes (subtype 1, 2, 3, 4, 5) and tumors and adjacent normal tissues (named “subtype all”) based on difference multiple. The enriched 
lncRNAs are mainly focused on the left (presented as black bulks), which referring to larger difference multiple. (G) The overlapped lncRNAs 
exist in subtypes. The dot represents subtype and the line represents the overlapped lncRNAs across subtypes. LncRNA size points to the 
amount of DE-lncRNAs. 
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Table 3. Coordination expression of PCGs and lncRNAs in 27 modules. 

Module All Lnc PCG p.value fc 
green 697 299 398 0.378808 1.025934 
cyan 139 58 81 0.584449 0.977854 
tan 205 84 121 0.672971 0.948037 
magenta 350 149 201 0.474915 1.012328 
blue 1083 436 647 0.92705 0.920266 
greenyellow 222 104 118 0.09268 1.203601 
brown 908 378 530 0.671729 0.973974 
purple 248 103 145 0.618262 0.970064 
yellow 726 303 423 0.633562 0.978213 
pink 390 163 227 0.596578 0.980602 
royalblue 70 30 40 0.506279 1.024218 
darkgrey 48 20 28 0.588628 0.975446 
turquoise 1253 523 730 0.669036 0.978386 
black 464 201 263 0.336854 1.04369 
lightcyan 99 44 55 0.366243 1.092499 
darkturquoise 51 19 32 0.807053 0.810839 
grey60 77 34 43 0.410796 1.079796 
salmon 142 64 78 0.275304 1.120512 
white 36 16 20 0.458678 1.092499 
darkorange 41 22 19 0.093987 1.581249 
orange 41 16 25 0.716994 0.874 
lightyellow 72 32 40 0.397353 1.092499 
darkgreen 63 31 32 0.16111 1.322949 
red 521 211 310 0.812304 0.929506 
darkred 66 24 42 0.864677 0.780357 
lightgreen 73 32 41 0.437124 1.065853 
midnightblue 109 44 65 0.690877 0.924423 

 

 
 

 
 

 
 

Figure 5. The correlation analysis between modules and clinical factors. (A) Correlation heat map shows the association between 
27 modules and CRC clinical factors (gender, height, BMI, age, T, N, M, stage). The vertical axis represents these identified 27 modules and 
the horizontal axis corresponds to involved clinical factors, respectively. The corresponding correlation and p value are shown in the first 
line and the second line respectively. (B) The network topology shows enrichment pathways among four phenotypical related modules. 
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activation of WNT signaling pathway markedly increases 
the expression of β-catenin, thus promoting normal colon 
epithelial cells to infinitely proliferate and cancerate  
[25–27]. Moreover, TGF-beta/smad signaling pathway 
can advance invasion and metastasis of CRC by  
means of immune suppression, angiogenesis, augmenting 
interaction between tumor cells and extracellular matrix 
[28–30]. Overall, DE-lncRNAs and PCGs co-expression 
modules constructed by WGCNA were enriched in 
various pathways implicating important functions in 
regulating CRC progression. 
 
Identification of CNVs associated lncRNAs in CRC 
 
CNV is a frequent form of genomic structural changes, 
which is closely related to occurrence and deterioration 
of tumors. We profiled the spectrum of CNV-related 
lncRNAs on the whole genome in CRC patients The 
frequency of copy number deletions were largely more 
than amplifications, suggesting copy number deletions 
may predominantly implicate in CRC, and majority 

deletions were found on chromosome 8, in contrast, the 
amplifications were mainly concentrated on chromosome  
20 (Figure 7A). The correlation between the expression 
profiles of lncRNAs and CNVs was demonstrating  
a positive relationship and the distribution was 
significantly higher than the random, p<1e-16 (Figure 
7B). Moreover, the frequently changed regions in CRC 
genome were identified on the basis of GISTIC 
algorithm. A genome-wide view of the CNVs was shown 
in Figure 7C and the overall frequent change regions 
were complex. The focal amplification events (indicated 
by dashes), surpassing the significance threshold (green 
line), mainly distributes among chromosomes 8, 11, 
12p13, 16q12, 20p11, and the focal deletions events were 
concentrated on 1p33, 3q26, 4p16, 5q11, 5q22, 20p12. 
Similarly to previous condition, frequent copy number 
deletions of lncRNAs were largely more than the copy 
number amplifications in the whole genome. This finding 
emphasized the impact of copy number deletions of 
lncRNAs in CRC, and it may be significantly related 
with prognosis of CRC patients. 

 

 
 

Figure 6. KEGG pathway enrichment analyses for genes existing in these four modules (tan, yellow, blue, magenta). (A–D) 
KEGG pathway enrichment analyses for significant pathways in modules, including tan, yellow, blue, magenta. KEGG: kyoto encyclopedia of 
genes and genomes 
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Figure 7. The pattern of CNVs profiles in the whole genomes. (A) The proportional frequencies of copy number deletions or 
amplifications of lncRNAs existing in the whole genome. CNV deletions of lncRNAs are mainly concentrated on 8 chromosome, and 
amplifications are focused on 8, 13, 20 chromosomes. The frequency of deletions are largely general than amplifications. (B) Distribution of 
correlation coefficient between copy number alternations of lncRNAs and the expression level of lncRNAs is shown. The correlation 
coefficient of CNV-lncRNA greater than 0 represents the regulation relationship is positive. (C) LncRNAs located in the focal peaks are CRC-
related. False-discovery rates (q values) and scores from GISTIC 2.0 for alterations are plotted in x-axis, and the genome positions are shown 
as y-axis; dotted lines indicate the centromeres (distinguishing chromosome long arm from short arm). Amplifications (left, red) and deletions 
(right, blue) of lncRNAs are also shown. The green line represents 0.25 q value cut-off point that determines significance. 
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In order to deeply explore the effect of CNV on 
transcription of lncRNAs, we screened out 17 lncRNAs 
with more than 7% of the frequency of CNV in 452 CRC 
samples (Supplementary Table 6). In the light of these 17 
lncRNAs, we analyzed the expression difference of each 
lncRNA between the samples with copy deletion or copy 
amplification and normal group. A total of 12 lncRNAs 
were obtained according to the criterion in which the 
expression in each group was greater than 0. There are 
four lncRNAs: CASC11, HM13-AS1, ABALON, 
NKILA highly expressed in amplification group than 
diploid group (p<0.05), and FAM87A, LOC101927752, 
KBTBD11-OT1, LOC100287015, LOC101929066, these 
five lncRNAs were low-expressed in copy number 
deletion group than normal copy number group (p<0.05) 
(Figure 8). All these findings indicated that deletions  
or amplifications of lncRNAs may closely conduct  
the expression level of lncRNAs. However, these 
differentially expressed lncRNAs are deserved to explore 
for the potential clinical significance based on large-scale 
samples supporting. 
 
LncRNAs-based prognostic biomarkers in CRC 
patients 
 
As we all know, lncRNAs are holding diving or inhibiting 
role in tumors and increasing numbers of lncRNAs have 
been conducted as prognosis associated biomarkers in 
CRC. In our research, we wondered whether the expres-
sion profiles of lncRNAs regulated by copy number 
deletions or amplifications can impact survival status of 
CRC patients. Based on the previous five molecular 
subtypes, we systematically analyzed the copy number 
alternations of these DE-lncRNAs among five subtypes, 
and then, 104 lncRNAs conforming to the following 
criterions were obtained (Supplementary Table 7): CNV 
change frequency among each sample is more than 0.1%; 
holding difference at least five subtypes; positively related 
with CNVs. We then wiped off the samples of whom the 
expression of each lncRNA was under zero, and 
subsequently correlated lncRNAs with disease-free 
survival. We finally acquired 10 lncRNAs with significant 
prognosis (p<0.05) based on the quartiles method (Figure 
9, Supplementary Table 8). LOC101927604, CASC15, 
CLDN10-AS1, C14orf132, LMF1 and LINC00675 were 
differentially expressed among all six subtypes (including 
normal group), and the expression levels of 
LOC105377267, LINC-PINT, CCDC144NL-AS1 and 
LOC284454 were differential in five subtypes (Table 4). 
 
In addition, we verified the prognostic value of identified 
10 lncRNAs in GEO (Gene Expression Omnibus) 
dataset (GSE39582) based on GPL570 platform 
(https://www.ncbi.nlm.nih.gov/geo/). There were about 
8 lncRNAs successfully annotated to probes existing in 
GEO platform and only 5 lncRNAs, CASC15, LINC-

PINT, C14orf132, LMF1 and CCDC144NL-AS1 holding 
significant prognosis difference (p<0.05) (Figure 10). 
 
DISCUSSION 
 
With next-generation sequencing and mass spectrometry 
technology sprouting quickly, biological complexity of 
tumors has been illuminated progressively. Previous 
knowledge have proved integrative clustering 
managements are capable to distinguish heterogeneity of 
tumors and to disclose practical prognostic signatures. 
The general integrative clustering methodologies include 
iCluster [19], intNMF (non-negative matrix factorization) 
[31], similarity network fusion (SNF) [32]. In this study, 
we firstly performed multi-dimensional data process 
according to iCluster which is based on a joint latent 
variable model in CRC. The most attractive signature of 
iCluster is that incorporates unobserved variables 
estimated from copy number data, mRNA expression 
data, methylation and others, simultaneously reducing the 
dimensionality of the datasets without changing sample 
size. A final cohort of 289 CRC patients were available 
for our algorithm matrix, and three omics data were 
covered by genomic and epigenomic, including mRNA 
sequencing, CNV and methylation downloading from 
TCGA, respectively. The integrative analysis unveiled 
five subtypes with distinctive molecular signatures and 
prognostic relevance. C3 subtype is exhibiting terrible 
prognosis and C2 subtype holds the most satisfactory 
outcome, which is extremely corresponding to distribution 
of TNM stage. A recent investigation has shown that copy 
number correlated genes (CNVcor) and methylation 
correlated genes (METcor) are co-regulated significantly 
and integration of CNVcor and METcor genes revealed 
three molecular subtypes of liver cancer [33]. 
Glioblastoma multiforme was subdivided into three 
molecular subtypes, namely subtype 1, subtype 2 and 
subtype 3 based on aggregation of DNA copy number, 
methylation and gene expression levels. Subtype 1 is 
characterized by hypermethylation involved in brain 
development and neuronal differentiation, and subtype 2 
is presenting highly promoter methylation of homeobox 
and G-protein signaling genes, then, subtype 3 is featured 
with NF1 and PTEN alterations [34]. In our research, we 
also compared the mutation profiles of five molecular 
subtypes, and four mutation-related genes attracted our 
attention, TTN, APC, TP53 and KRAS, which are 
holding the highest mutation rate almost existing across 
five subtypes. Exome sequencing was performed to 
identify recurrent somatic mutations with prognostic 
significance and eventually APC, TP53 and KRAS were 
successfully diagnosed as mutation signatures in CRC 
[35].  
 
The onset and progression of carcinogenesis is usually 
involved with thousands of genomic variants, including

https://www.ncbi.nlm.nih.gov/geo/).
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Figure 8. Deregulation of lncRNAs induced by copy number deletions or amplifications (P<0.05). Green (diploid) represents 
normal copy. Red (deletion or amplification) represents the variant copy. 
 

 
 

       Figure 9. Kaplan–Meier plot analysis shows disease-free survival (DFS) based on quartile method in TCGA (p<0.05). 
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Table 4. 10 LncRNAs with significant prognosis among five subtypes (including “normal group”). 

lncRNA CNV frequency PCC Numberof 
DESubtype p.value GPL570.Probe 

LOC101927604 0.004425 0.121608 6 0.0457 1557702_at 
LOC105377267 0.004425 0.065193 5 0.028027 NA 
CASC15 0.006637 0.101133 6 0.031734 229280_s_at 
LINC-PINT 0.002212 0.033925 5 0.013595 228702_at 
CLDN10-AS1 0.037611 0.18445 6 0.017802 1570291_at 
C14orf132 0.004425 0.044214 6 0.003379 231859_at 
LMF1 0.00885 0.027102 6 0.031878 46142_at 
LINC00675 0.019912 0.340102 6 0.039658 215658_at 
CCDC144NL-AS1 0.011062 0.082301 5 0.009727 229669_at 
LOC284454 0.011062 0.156642 5 0.006193 NA 

 

small-size mutations (SNPs) and large-scale genomic 
changes (CNVs), such as copy number deletions, 
duplications or amplifications. CNVs, hallmarks of 
cancer, often lead to aberrance in copy numbers, including 
amplification, gain, loss and deletion. CNVs are taking 
serious responsibility in regulating expression of PCGs 
and non-coding RNAs and the activations of multiple 
signaling pathways. It has been well-known that CNVs 
may conduct significant effects on various tumorigenesis, 
such as ovarian cancer [36], bladder cancer [37], 
hepatocellular carcinoma [38] and so on. Early stages 

(stages I and II) CRC were obviously exhibiting the most 
frequent deletions involved in chromosomes 6, 8p, 14q 
and 1p and the most frequent amplifications were mainly 
located in chromosome 19, 5, 2, 9p and 20p according to 
detection of CNVs in plasma [39]. The expression level 
and copy number of UQCRB protein (ubiquinol 
cytochrome c reductase binding protein), implicated in 
mitochondrial complex III stability, were unanimously 
upregulated in CRC, supporting CNVs induced 
deregulation effect [40]. Our study established novel 
regulatory factors in CRC, and lncRNAs (CASC11, 

 

 
 

             Figure 10. Kaplan–Meier plot analysis shows relapse-free survival (RFS) validated in GEO datasets (p<0.05). 
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HM13-AS1, ABALON, NKILA, FAM87A, 
LOC101927752, KBTBD11-OT1, LOC100287015, 
LOC101929066) were acting as new candidates for CRC 
diagnosis. CASC11 is an oncogenic lncRNA, which 
involved with influencing tumor cell stemness, cancer cell 
proliferation and epithelial-mesenchymal transition 
(EMT) in CRC, small cell lung cancer, bladder cancer, 
prostate cancer, hepatocellular carcinoma (HCC) [41–45]. 
NKILA, an NF-κB-interacting lncRNA, is  determined for 
tumor-mediated T cell AICD (Activation-induced cell 
death) by inhibiting NF-κB activity, and NKILA 
overexpression in tumor-specific cytotoxic T lymphocytes 
(CTLs) is correlated with increased apoptosis and shorter 
survival in lung cancer and breast cancer [46]. Thus, we 
proposed a hypothesis that copy number of NKILA will 
be significantly amplified when CTLs are activated in 
CRC, following the increased expression of NKILA. We 
introduced a new mechanism underlying deregulated 
lncRNAs in tumorigenesis and the inspection of CNVs 
are convenient and precise. 
 
Here, we described a picture for prognosis prediction of 
CRC with respect to CNVs relevant lncRNAs. In our 
research, we identified 10 lncRNAs associated with 
crucial clinical outcome in CRC, of which 5 lncRNAs 
(CASC15, LINC-PINT, C14orf132, LMF1 and 
CCDC144NL-AS1) were validated in GEO datasets. 
Cancer susceptibility candidate 15 (CASC15) is familiarly 
observed to participate in regulation of tumor 
proliferation, metastasis, and worsen survival probability 
of human cancer including CRC, cervical cancer, breast 
cancer and so on [47–49]. Jing et all demonstrated that 
CASC15 advances proliferation and metastasis on the 
basis of activating Wnt/βcatenin signaling pathway [50], 
and some other examinations displayed CASC15 may act 
as an oncogene, performing a pushing role in the 
progression of HCC, and upregulated expression of 
CASC15 is tied with imperfect prognosis [51]. 
Notwithstanding, copy number changes associated with 
CASC15 in tumors are far from being understood. p53-
regulated human lncRNA (LINC-PINT) has been noticed 
functioning as a tumor suppressor by impeding 
proliferation of cancer cells in gastric cancer and 
glioblastoma [52, 53], and down-regulated LINC-PINT in 
pancreatic tumor may deliver unsatisfactory outcome 
[54]. C14orf132 (chromosome 14 open reading frame 
132) gene is a novel long non-coding RNA (lincRNA) 
with unknown functions implicated in tumors, and the 
only investigation elucidated in C14orf132 is concerned 
with extremely low birth weight [55]. Lipase maturation 
factor 1 (LMF1) is a profound regulator of plasma  
lipid metabolism and majority studies mainly focused  
on mutations of LMF1 determining severe hyper-
triglyceridemia [56]. Up to now, there is still lacking of 
evidence about the latent position of LMF1 in 
tumorigenesis. Our inspection is the forerunner for 

exploring the prognostic value of LMF1 in CRC patients. 
CCDC144NL-AS1 is upregulated in ectopic endometrial 
(EC) tissues than eutopic endometrial (EU) tissues, and 
simultaneously exhibits elevated expression in advanced 
EC tissues (III+IV) [57]. Nevertheless, the distinct 
significance of CCDC144NL-AS1 in CRC is still 
inexperienced. Despite the fact that, these mentioned 
lncRNAs are prone to govern prognosis prediction among 
multiple tumors, prognostic signatures of lncRNAs guided 
by copy number changes remains elusive. The five 
prognostic lncRNAs are deserved to be furtherly verified 
on the foundation of large-scale clinical CRC samples. 
 
In summary, systemic administration of RNA-seq, 
methylation and CNVs data presents original subtype 
classification methodology of CRC. Identification of 
deregulated lncRNAs induced by CNVs introduces an 
unprecedented regulatory pattern involved with lncRNAs, 
and prognosis prediction for CNV-related lncRNAs may 
take insight into precision diagnostics and therapeutics for 
CRC patients.  
 
METHODS 
 
Data preparation and processing 
 
Involved original data were downloaded from official 
TCGA data portal (https://tcga-data.nci.nih.gov), 
including RNA sequencing data, 450k methylation data, 
CNV data, DNA mutation data and clinical information. 
Subsequently, series of managements were performed, 
for instance, RNA sequence data: primary data were 
downloaded in “counts” form, and the processed FPKM 
(Fragments Per Kilobase of exon model per Million 
mapped fragments) data were transformed to TPM 
(TranscriptsPerKilobase of exonmodel per Million 
mapped reads). The gene expression profiles of 458 CRC 
patients and 41 normal cases were acquired. Then, we 
defined lincRNA, sense-intronic, sense-overlapping, 
antisense, processed-transcript, 3primer-overlapping as 
lncRNAs based on the genecode file. Meanwhile, gene 
type belonging to protein-coding was assigned to PCGs; 
Next, administrations of 337 CRC patients holding 450k 
methylation data were involved with removing of NA 
probes, cross-reactive CpG sites [18] and unstable CpG 
sites existing in the sex chromosomes and single 
nucleotide sites; Then, CNV data and single nucleotide 
mutation data were pictured, with the removed germline 
difference and processed by “mutect software”, 
respectively. Eventually, we also obtained corresponding 
clinical information of 458 CRC patients. The patients 
with following time less than 30 days were removed. 
Underlying these prepared data, we employed R 
package-iCluster to integrate PCGs, methylation and 
CNVs for subtypes clustering. Number of clusters was 
set to 5 and 50 iterations were set to identify stable 

https://tcga-data.nci.nih.gov/
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samples clusters with default parameters [19]. The R 
code can be downloaded at http://www.mskcc.org/ 
mskcc/html/85130.cfm. 
 
Differentially expressed lncRNAs and mRNAs 
across five subtypes 
 
The R package-DEseq2 was claimed for determining 
these differentially expressed lncRNAs and mRNAs 
between five subtypes and normal tissues specimens, 
with the criteria of fold change>2, FDR<0.05. Genes 
with count<1 were rejected among the whole genome 
profiles. The basic data structure consisted of two tables, 
including countData and colData. Gene set enrichment 
analysis (GSEA) was furtherly applied to distinguish the 
distribution of DE-lncRNAs and the difference multiple 
was used for ranking. 
 
Weighted gene co-expression network analysis 
(WGCNA) to identify phenotypes-related modules 
 
WGCNA is often regarded as efficient methodology 
applying in picking up co-expressed gene modules and 
identifying potential therapeutic targets associated with 
clinical phenotypes [20]. In present research, based on the 
differential expression profiles of lncRNAs and PCGs, co-
expression network was constructed using WGCNA. In 
order to make network conform to non-scale signature, 
the soft threshold was defined as 3. The non-scale 
signature means that log(k) is negatively correlated with 
log(P(k)), and the correlation coefficient is greater than 
0.8. The possible modules were identified with the 
average-linkage clustering and dynamic tree cut on the 
ground of height=0.25, deepSplit = 2, minModuleSize = 
30. Considering the clinical information downloading 
from TCGA, the correlation between each module and 
corresponding clinical information was calculated. 
Immediately, annotations of potential pathways were 
targeted in order to screen out biologically interested 
modules based on the userListEnrichment function 
included in package WGCNA [21]. 
 
Copy number expression profiles of whole genomic 
lncRNAs 
 
GISTIC (Genomic Identification of Significant Targets in 
Cancer) algorithm is responsible for identifying variant 
regions that are more prone to drive cancer pathogenesis 
[22]. It can visualize regions in the genome manifesting 
amplifications or deletions across thousands of samples. 
G-score is allocated to each alternational region to 
evaluate the amplitude of aberration and the frequency of 
occurrence [23]. Here, GISTIC2.0 software was applied 
to define the prepared CNVs profiles of all genes 
underlying 452 CRC samples, and lncRNAs-related 
CNVs expression profiles were extracted. We defined 

copy number>1 or <-1 as copy number amplifications or 
deletions respectively. False Discovery Rate (FDR) q-
values were assigned to each alternational region. “Peak 
regions”, also known as significantly aberrant regions, 
point to the greatest frequency and amplitude of 
aberrations. The “peak regions” aim at determining 
whether the signal is primarily due to broad events 
(longer than half a chromosome arm), focal events, or 
significant levels of both [23, 24]. 
 
CNV-related lncRNAs acting as prognostic 
biomarkers in CRC patients  
 
CNVs profiles of DE-lncRNAs among five subtypes 
were described. Associated lncRNAs were prepared with 
the criterions as following: 1) the identified lncRNAs 
must be positively correlated with CNVs (correlation 
coefficient>0); 2) the identified lncRNAs should have 
significant difference across at least 5 subtypes (number 
of DEsubtype≧5); 3) the identified lncRNAs hold copy 
number change ratio more than 0.1% in all involved 
cases (CNV frequency>0.001); 4) prognostic-related 
lncRNAs were marked with p<0.05 (samples were 
divided into four groups based on quartile method or two 
groups based on median level). The selected patients 
must manifest expression value of previous marked 
lncRNAs greater than 0. 
 
Statistical analysis  
 
All statistical strategies in our research were based  
on R 3.4.3 (https://cran.r-project.org/bin/windows/base/ 
old/3.4.3/). All workings are dependent on default 
parameters except to special notes. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 
 

 
 

                      Supplementary Figure 1. Prognosis description(Progression free survival) among five subtypes. 

 

 
 

                                       Supplementary Figure 2. The distribution of TNM stage among five subtypes. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 
 

Supplementary Table 1. 120 lncRNAs contained in DE-lncRNAs. 

Supplementary Table 2. Tan module was associated with 18 pathways. 

 

Supplementary Table 3. Two pathways were enriched in yellow module. 

ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count 

hsa05206 
MicroRNAs 

in cancer 11841 299/7466 0.001473 0.117837 0.117837 

VEGFA/MIR25/ 
MIR200A/MIR135B/ 
MIR200B/MIR199A1 6 

hsa04931 
Insulin 

resistance 11749 107/7466 0.010498 0.419906 0.419906 MLXIPL/OGT/CPT1B 3 
 

Please browse Full Text version to see the data of Supplementary Table 4. 
 
Supplementary Table 4. Blue module enriched in 47 pathways. 

 

Supplementary Table 5. Magenta module was associated with 19 pathways 

ID Description GeneRatio BgRatio pvalue p.adjust qvalue geneID Count 

hsa04926 

Relaxin 
signaling 
pathway 26420 130/7466 0.008169 0.38588 0.365784 

RLN1/ADCY3/ 
PLCB4/RLN2/ 

GNG4 5 

hsa03022 

Basal 
transcription 

factors 26359 45/7466 0.009133 0.38588 0.365784 
TAF4/GTF2F2/ 

GTF2IRD1 3 

hsa00510 
N-Glycan 

biosynthesis 26359 49/7466 0.011538 0.38588 0.365784 
RPN2/ALG5/ 

MGAT5 3 

hsa05110 

Vibrio 
cholerae 
infection 26359 50/7466 0.012191 0.38588 0.365784 

PLCG1/ADCY3/ 
ATP6V1C2 3 

hsa04713 
Circadian 

entrainment 26390 96/7466 0.013566 0.38588 0.365784 

ADCY3/PLCB4/ 
CACNA1D/ 

GNG4 4 

hsa04310 
Wnt signaling 

pathway 26420 149/7466 0.014186 0.38588 0.365784 

AXIN2/CSNK2A2/ 
TCF7/PLCB4/ 

NKD1 5 

hsa04916 Melanogenesis 26390 101/7466 0.016087 0.38588 0.365784 
ADCY3/TCF7/ 
PLCB4/ASIP 4 

hsa04934 
Cushing 

syndrome 26420 154/7466 0.016163 0.38588 0.365784 

ADCY3/AXIN2/ 
TCF7/PLCB4/ 

CACNA1D 5 

hsa04725 
Cholinergic 

synapse 26390 112/7466 0.02262 0.390425 0.370091 
ADCY3/PLCB4/ 

CACNA1D/GNG4 4 
hsa04927 Cortisol 26359 64/7466 0.023557 0.390425 0.370091 ADCY3/PLCB4/ 3 
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synthesis and 
secretion 

CACNA1D 

hsa04724 
Glutamatergic 

synapse 26390 114/7466 0.023959 0.390425 0.370091 
ADCY3/PLCB4/ 

CACNA1D/GNG4 4 

hsa04137 
Mitophagy - 

animal 26359 65/7466 0.024529 0.390425 0.370091 
BCL2L1/ATG9B/ 

CSNK2A2 3 

hsa00562 

Inositol 
phosphate 

metabolism 26359 74/7466 0.034249 0.487047 0.461681 
PLCG1/PLCB4/ 

INPP5D 3 

hsa05016 
Huntington 

disease 26420 193/7466 0.038044 0.487047 0.461681 

TAF4/SDHA/ 
PLCB4/ATP5A1/ 

DNAH14 5 

hsa04915 

Estrogen 
signaling 
pathway 26390 137/7466 0.042819 0.487047 0.461681 

ADCY3/PLCB4/ 
KRT23/KRT39 4 

hsa04146 Peroxisome 26359 83/7466 0.045682 0.487047 0.461681 
ECH1/PIPOX/ 

MPV17L 3 

hsa03030 
DNA 

replication 26330 36/7466 0.046803 0.487047 0.461681 RNASEH2B/RFC3 2 

hsa04350 

TGF-beta 
signaling 
pathway 26359 85/7466 0.04845 0.487047 0.461681 

TFDP1/TGIF2/ 
NODAL 3 

hsa04911 
Insulin 

secretion 26359 85/7466 0.04845 0.487047 0.461681 
ADCY3/PLCB4/ 

CACNA1D 3 
 

Please browse Full Text version to see the data of Supplementary Tables 6–8: 
 
Supplementary Table 6. 17 lncRNAs were identified with more than 7% of the frequency of CNV in 452 CRC samples. 

Supplementary Table 7. 104 lncRNAs were identified for prognosis prediction. 

Supplementary Table 8. 10 lncRNAs were identified with significant prognosis based on the quartiles method. 


