
www.aging-us.com 6109 AGING 

 

INTRODUCTION 
 
As the global population ages, prevalence of Alzheimer’s 
disease (AD) and associated mortality increases, which 
places tremendous pressure on the families of patients and 
burdens the healthcare system. The symptoms include 
inattention, defects in working memory, and impairment of 
executive function and information processing. The most 
common neuropsychiatric symptom in patients is apathy 
[1]. Peripheral symptoms include depression, cognitive 
impairment, urinary incontinence, and inflammation. This 
disease is characterized by the presence of amyloid-beta 
plaques and neurofibrillary tangles [2]. 
 
Several genes have been associated with higher risk of 
AD, including CR1, CD33 and TREM2 [3, 4]. Some 
non-coding RNAs (ncRNAs) and transcription factors 
(TFs) also play important regulatory roles in the disease,  

 

including microRNA-200a [5], microRNA-200a-3p [6], 
MALAT1 [7], and microRNA-186 [8]. AD is a complex 
disease involving multiple genes and signaling cascades. 
Given the complexity of the disease, understanding its 
pathogenesis will require studies of multiple gene 
modules on a global level. 
 
As a step in this direction, the present study constructed a 
protein-protein interaction (PPI) network based on genes 
differentially expressed between AD and healthy 
individuals. This network was then used to mine 
functional modules of target genes as well as the ncRNAs 
and TFs that regulate them. 
 
RESULTS 
 
The steps of this study are shown in Figure 1, and 
clinical information for the dataset GSE110226 for 
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identification of genes differentially expressed in AD is 
shown in Supplementary Table 1. 
 
Gene set enrichment analysis 
 
This analysis suggested that AD samples were 
significantly enriched in protein regulation-related bio- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

logical processes, such as “negative regulation of 
protein maturation” and “protein autophosphorylation.” 
KEGG pathway analysis indicated that AD samples 
were significantly enriched in neurotrophic pathways, 
such as phosphatidylinositol and neurotrophin signaling 
(Figure 2A–2B). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1. Flowchart in this study. GSEA, gene set enrichment analysis; ncRNA, non-coding RNA; PPI, protein-protein 
interaction; TF, transcription factor. 
 

Figure 2. GSEA, difference analysis and cluster analysis. (A) Five of the most significantly enriched BP gene ontology (GO) terms.  
(B) Five KEGG pathways with the most significant enrichment. The mini vertical line indicates genes. (C) Volcanic maps of differentially 
expressed genes. Red indicates genes upregulated in AD; blue, genes downregulated in AD. (D) Cluster analysis heatmap showing how 
these expression patterns of these DEGs can distinguish AD from normal control tissues. 
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Differentially expressed genes and cluster analysis 
 
A total of 4239 differentially expressed genes (DEGs) 
were identified in the GSE110226 dataset, of which 2542 
were up-regulated and 1697 were down-regulated in AD 
(Figure 2C). Cluster analysis was performed with the 
most 100 upregulated DEGs and 100 most downregulated 
DEGs. Cluster analysis showed that the expression pattern 
of these 200 DEGs could accurately distinguish AD from 
control samples (Figure 2D). 
 
PPI network and its modular analysis  
 
A PPI network of DEGs was constructed with 3861 
gene nodes and 268363 edges using the STRING v10 
database. The weight (W) value of nodes in the network 
was defined as | logFC |* - log10 (P value) * Degree. 
The larger the W value, the more critical the node is in 
the PPI network. The gene nodes with the highest W 
values in the network were SLC11A1, SERPINE1, 
EFCAB3, PIM1, IL6, BCL6, RND3, ZBTB16, LRG1,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and RASL10B (Supplementary Table 2). These were 
considered as hub genes. Using the ClusterONE plug-in 
cohesion-guided algorithm, we excavated 20 functional 
modules containing 1730 related genes (Figure 3A, 3B).  
 
In order to explore the role of functional modules in the 
pathogenesis of AD, we performed GO function and 
KEGG pathway enrichment analysis for each module. 
Results of GO function enrichment (Supplementary 
Table 3) indicated GO terms for 2114 biological 
processes, 296 cell components, and 393 molecular 
functions, while pathway enrichment analysis identified 
1203 KEGG pathways (Supplementary Table 4). We 
found that six modules were significantly enriched in the 
GO terms of mitochondrial inner membranes and 
mitochondrial matrix. Figure 3C shows the GO terms in 
which more than four modules were significantly 
enriched, and Figure 3D shows the KEGG pathways 
involving more than eight modules. Any or several of 
these 20 functional modules may work together to form a 
functional pathway contributing to AD. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Gene modules and functional enrichment. (A) Gene modules and related genes. The green node indicates the module; red, 
genes upregulated in AD; blue, genes downregulated in AD. (B) Differentially expressed genes in each module. (C) GO Enrichment Analysis. 
Enrichment increases significantly going from blue to red. The larger the circle, the more significant the proportion of module genes 
present among GO functional entry genes. (D) Enrichment analysis of KEGG pathway of the module gene. From blue to red, the enrichment 
increases significantly. The larger the circle, the more significant the proportion of module genes present among KEGG pathway entry genes. 
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Module-related ncRNAs and TFs 
 
The hypergeometric test predicted 706 ncRNAs 
participating in 1198 pairs of ncRNAs and target 
functional modules. MicroRNA-32-5p may regulate eight 
functional modules, MALAT1 may regulate seven, while 
let-7d-5p, TUG1, microRNA-136-5p, and microRNA-
181c-5p may regulate six (Figure 4A).  
 
The hypergeometric test predicted 70 TFs involved in 77 
pairs of TFs and target functional modules. These TFs  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

were differentially expressed in AD to varying degrees 
(Figure 4B). PPARA was predicted to regulate three 
functional modules, while ABL1, SP1, STAT6, and TBP 
were predicted to regulate two modules.  
 
These results suggest that six ncRNAs and five TFs 
may be strongly associated with AD pathogenesis. We 
performed correlation analysis of the five TFs with their 
target genes in order to reduce noise and false positives 
(Figure 4C), and the resulting significant correlations 
were used to build a network. Combining this network  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4. Modular network regulation map of gene-related ncRNA/TFs. (A) Map of gene module regulation by ncRNAs. Brown 
indicates modules; red, long non-coding RNA; and blue, microRNA. The size of the node reflects the node's degree. (B) Map of modular 
genes and the TFs regulating them. Yellow dots indicate modules; diamonds, transcription factors; red, genes upregulated in AD; and blue, 
genes downregulated in AD. Yellow diamond nodes indicate expression that is not significantly different between AD and control samples. 
(C) Correlation of TFs with their targets. Abbreviations: abs, absolute value; R, Pearson correlation coefficient. (D) Integrated regulatory 
network of ncRNA/TF-target genes-pathways. Orange indicates non-coding RNA; blue, TF; green, module gene; and brown, pathway. 
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with KEGG enrichment analysis allowed us to construct 
an AD-related ncRNA/TF-target genes-pathways integ-
rated regulatory network (Figure 4D). 
 
Validation of differential expression and ROC 
analysis 
 
The expression of genes with the Top 10 W values and 
the five TFs mentioned above were validated using the 
GSE33000 data set. Eight of the 10 genes (BCL6,  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EFCAB3, IL6, LRG1, PIM1, SERPINE1, SLC11A1, 
ZBTB16) and two TFs (PPARA and STAT6) were 
significantly up-regulated in AD (p < 0.05), consistent 
with the analysis of GSE110226 (Figure 5A). Analysis 
of receiver operating characteristic (ROC) curves 
suggested that these molecules may be potential 
biomarkers for AD diagnosis (Figure 5B). This may be 
especially true for BCL6 in the GSE110226 dataset (area 
under the ROC curve, 0.976) and GSE33000 dataset 
(area under the ROC curve, 0.905). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Differential expression validation and ROC analysis of 8 differentially expressed genes and two transcription 
factors. (A) Expression in GSE110226. (B) Expression in GSE33000. (C) ROC analysis in GSE110226. 
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DISCUSSION 
 
AD is a neurodegenerative disease characterized by 
progressive dementia, neuroinflammation, intracellular 
neurofibrillary tangles and accumulation of extracellular 
plaques. There appear to be four main causes: the 
hypothesis of abnormal folding and aggregation of 
amyloid-beta/tau protein, activation of the innate immune 
system, mitochondrial dysfunction and oxidative 
stress[9]. In this study, we collected the gene expression 
profiles and normal control brain tissues of AD in 
GSE110226 from GEO. We identified genes dif-
ferentially expressed between AD [10] and healthy 
controls based on the GSE110226 dataset, and we 
constructed a PPI network. The PPI networks revealed 20 
functional modules related to AD.  
 
Enrichment analysis suggests that the functional modules 
are involved in multiple GO terms and pathways, which 
likely reflects the complexity of the disorder. We 
observed that there were six functional modules enriched 
in the mitochondrial inner membrane and mitochondrial 
matrix. Mitochondria are inhibited by Ca2+ signaling. 
Excessive production of Ca2+ and reactive oxygen 
species induce the opening of the mitochondrial 
transition pore mPTP, causing the loss of mitochondrial 
function and cell death, ultimately leading to AD. 
Abnormalities of mitochondria have been associated with 
aging and age-related neurodegenerative diseases such as 
cancer, diabetes, AD, Parkinson's disease, amyotrophic 
lateral sclerosis and Friedrich ataxia [11].  
 
Potential ncRNA and TF regulators involved in AD-
related functional modules were predicted using the 
hypergeometric test. The predicted AD-related TFs were 
confirmed to be abnormally expressed in AD.  
MicroRNA-32-5p was predicted to regulate eight 
functional modules; MALT1, seven modules; and let-7d-
5p, microRNA-136-5p, microRNA-181c-5p and TUG1, 
six modules. MicroRNA-32-5p inhibits TR4 expression 
by binding to the 3' untranslated region of its transcript. 
The resulting deficiency of TR4 alters transcription of 
genes involved in HGF/Met signaling [12]. The long 
ncRNA MALAT1 participates in basic cellular processes, 
including epigenetics, transcription and post-trans-
criptional regulation of gene expression. Altering levels 
of MALAT1 affects brain development as well as 
neuronal function and maintenance in neurodegenerative 
diseases [13]. MALAT1 inhibits expression of BAX, 
caspase-3 and Bcl-2 as well as the p-PI3K/p-mTOR/p-
GSK3beta signaling pathway, thereby promoting 
apoptosis of Abeta-induced human neuroblasts [14]. 
MicroRNA-181c may bind to the 3' untranslated region 
in the transcript encoding collapsing response mediator 
protein 2 (crmp2), which allows it to regulate axon 
orientation, MAPK signaling, dorsoventral axis 

formation, and long-term depression in neuronal 
signaling. Dysregulation of crmp2 abundance can lead to 
AD-related dysfunction[15]. MicroRNA-181 regulates c-
Fos and SIRT-1 proteins and affects synaptic plasticity 
and memory processing in AD mice[16]. Let-7d-5p, for 
its part, binds to the RNA polymerase II promoter, 
increases p53 signal transduction and positively regulates 
microRNA transcription[17], thereby causing AD 
dysfunction. All these results identify several candidates 
that may regulate multiple functional modules to 
contribute to AD and therefore may be interesting 
therapeutic targets. We describe the first integrated 
regulatory networks involving ncRNA/TFs and target 
genes in functional modules that may contribute to AD.  
 
The hypergeometric test identified 70 differentially 
expressed TFs that may regulate AD functional modules. 
PPARA may regulate three modules, while ABL1, SP1, 
STAT6, and TBP may regulate two modules each. 
Consistent with our findings, the Epistasis project 
identified four significant interactions between single 
nucleotide polymorphisms in PPARA and SNP in IL-1A, 
IL-1B, and IL-10 that were associated with higher AD 
risk [18]. SP1 can regulate gene FE65, which act as a 
ligand of Alzheimer's disease amyloid precursor protein, 
and SP1 can promote the expression of SNAP-25, which 
is involved in the pathogenesis of neuropsychiatric 
disorders, including schizophrenia, attention deficit 
hyperactivity disorder and AD [19-21].  STAT6 activates 
amyloid-beta 42 production in the brain of adult zebra-
fish, increasing the proliferation and neurogenesis of 
nerve stem/progenitor cells (NSPCs) involved in AD. In 
addition, TATA-binding protein can accumulate in the 
brain of AD patients, leading to formation of neuro-
fibrillary tangles, which can cause onset of AD [22].  
 
We validated the top W values of 10 genes in the PPI 
network and five TFs based on another data set. Eight 
genes and two transcription factors were significantly 
upregulated in the GSE33000 dataset. Analysis of the 
area under ROC curves suggests that these molecules 
may be biomarkers for AD diagnosis, especially BCL6. 
BCL6 appears to be absent from neurofibrillary tangles 
associated with AD plaques [23], so future studies should 
examine its role in AD.  
 
Our results should be interpreted with caution in light of 
some limitations. Firstly, though the hub genes and TFs 
were validated in the large dataset GSE33000, the 
validation dataset GSE110226 was relatively small. 
Secondly, our studies were limited to in silico pre-
dictions, so our findings should be verified and extended 
in laboratory experiments. Indeed, our predictions were 
based on analyses of post-mortem samples, so they 
should be validated in vivo, especially the differential 
expression of hub genes. Follow-up studies should also 
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clarify whether the predicted AD-associated ncRNAs and 
TFs activate or inhibit their corresponding functional 
modules, which our in silico studies could not determine. 
 
CONCLUSION 
 
We identified AD-related functional gene modules and 
ncRNAs and TFs that regulate them, providing 
candidate molecules for further study of AD. 
 
MATERIALS AND METHODS 
 
Data resources 
 
We collected the set of gene expression profiles from 
AD from the Gene Expression Omnibus database 
(GSE110226) [24, 25]. This dataset includes post-
mortem brain samples from 7 patients with AD and 6 
healthy individuals. This dataset was obtained using a 
Rosetta/Merck Human RSTA Custom Affymetrix 2.0 
microarray [HuRSTA-2a520709]. We constructed PPIs 
of DEGs based on human PPI data in the STRING  
V10 database [26]. Then, we screened pairs of 
interacting ncRNA-mRNAs in the RAID v2.0 database 
[27] and identified 43,1937 interaction pairs involving 
5,431 ncRNAs that scored at least 0.5. Data on 2492 
human transcription factors (TFs) and 9396 TF-gene 
interaction pairs were downloaded from the TRRUST 
V2 database [28]. 
 
GSEA analysis 
 
The GSE110266 gene expression profile was 
downloaded and normalized using the “quantile” method 
by normalizing between array functions in the limma 
package [29–31]. We screened biological process GO 
terms and KEGG pathways that may be related to AD 
using GSEA (GSEA2-2.2.4, Java version) [32, 33]. The 
datasets c5.bp.v6.2.symbols.gmt and c2.cp.kegg.v6.2. 
symbols.gmt in the MsigDB V6.2 database [34]  were 
used as reference gene sets, and GSEA was performed 
according to default parameters. We set NOM P < 0.05 
as the threshold for significant enrichment. 
 
Identification of DEGs and cluster analysis 
 
DEGs between AD and control samples were identified 
from pre-GSEA normalized expression profiles using the 
lmFit and eBayes functions in the limma package [29–31]. 
Differences associated with an unadjusted P < 0.05 were 
considered significant. We also screened the data using a 
threshold of a false discovery rate-adjusted p < 0.05, but 
we found that numerous genes with biological functions 
potentially relevant to AD were missed (data not shown). 
Two-way hierarchical clustering was performed on DEG 

expression profiles based on Euclidean distance, and the 
results were shown as a heatmap. 
 
PPI network construction and recognition module 
 
We constructed a PPI network of DEGs based on the 
STRING V10 database and visualized it using Cytoscape 
software [35]. Then we used the Cytoscape plug-in 
ClusterONE [36] to predict protein complexes based on a 
cohesion algorithm and nearest neighbor selection. The 
higher the cohesion score in the ClusterONE algorithm, 
the more likely it is that the interacting proteins form a 
complex. We visualized DEGs in functional modules 
using Cytoscape. 
 
GO function and KEGG pathway enrichment 
analysis 
 
To help identify the potential functions of the genes in 
AD-associated modules, we used the clusterProfiler 
package [37] in R to perform enrichment analysis of  
the 20 modules according to gene ontology (GO) 
functions (p-value cutoff = 0.01, qvalueCutoff = 0.01) 
and KEGG pathway (p-value cutoff = 0.05, qvalue 
Cutoff = 0.2). ClusterProfiler is an R package of 
Bioconductor, which can perform statistical analysis 
and visualization of functional clustering of gene sets 
or gene clusters. 
 
Identification of ncRNAs and TFs in regulatory 
modules 
 
Interactions between ncRNAs and their target genes 
were downloaded from the RAID v2.0 database, and 
interactions between TFs and their target genes were 
downloaded from the TRRUST v2 database. Interactions 
between a regulator and its target functional module 
were examined using the hypergeometric test in the  
R program. Interactions between a regulator and a 
functional module that showed quantity >2 and P<0.01 
were considered significant. We also analyzed correla-
tion between the TF and its targets in order to reduce 
noise and false positives, although most interactions 
between TF and target in the TRRUST database have 
been validated. 
 
Validation of differential expression and modular 
common TFs and ROC analysis 
 
Independent gene expression profiles (GSE33000) 
containing AD and healthy brain tissue were obtained 
from the Gene Expression Omnibus and used to validate 
the 10 DEGs with the highest W values, as well as TFs 
predicted to regulate more than two functional modules. 
The data set GSE33000 contained 310 AD cases and 157 
healthy brain tissues. In these two data sets, ROC 



www.aging-us.com 6116 AGING 

analysis was carried out to evaluate the ability of these 
genes to differentiate AD from healthy controls. The 
pROC package [38] was used for ROC analysis. 
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SUPPLEMENTARY MATERIALS 
 
 
 
Supplementary Table 1. Clinical information for GSE110226. 

Clinical information for GSE110226 
Samples Age Sex Apoe genotype ba_rin ba8s18s disease state Braak staging 
GSM2982966 74 female E4/E4 4.1 0.648 AD  III-IV 
GSM2982967 84 female E3/E4 6.5 0.826 AD  severe V-VI 
GSM2982968 84 male E3/E4 6.6 0.814 AD  severe V-VI 
GSM2982969 84 female E3/E4 6.9 1.007 AD  severe + Lewy body disease 
GSM2982970 89 male E2/E3 6.8 0.947 AD  severe V-VI 
GSM2982971 73 male E3/E3 6.1 0.855 AD  severe V-VI 
GSM2982972 70 male E3/E4 7 0.953 AD  severe V-VI 
GSM2982973 62 male E3/E4 6.9 0.841 Control  
GSM2982974 55 female E3/E3 7.6 1.197 Control  
GSM2982975 37 male E3/E3 6.9 1.036 Control  
GSM2982976 64 male E3/E3 7.2 1.12 Control  
GSM2982977 69 female E3/E3 6.9 0.997 Control  
GSM2982978 70 male E3/E4 5.8 0.636 Control   

 
Please browse Full Text version to see the data of Supplementary Tables 2, 3 and 4. 
 
Supplementary Table 2. Hub genes in the network. 

Supplementary Table 3. Results of GO function enrichment. 

Supplementary Table 4. Results of KEGG pathway enrichment. 
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