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INTRODUCTION 
 
Schizophrenia is a common mental disorder causing high 
disability and heavy economic burden worldwide, 
characterized by cardinal features including psychotic 
symptoms and cognitive impairments [1]. Schizophrenia 
was called “dementia praecox” historically for the existed 
cognitive impairments in memory, attention, visuospatial,  

 

language and learning [2, 3]. Previous lines of evidence 
also demonstrated that either first-onset or chronic 
patients with schizophrenia displayed impairments of 
cognitive domains involving in attention, memory, 
learning, and executive functioning [4, 5]. Cognitive 
impairment was usually present in the prodromal phase 
of schizophrenia and persisted throughout the duration of 
the disease [6, 7]. Furthermore, cognitive impairment in 
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ABSTRACT 
 
The forkhead-box P2 (FOXP2), involving in language and memory function, has been identified as susceptibility to 
schizophrenia. However, no study examined the role of FOXP2 on cognitive impairment in schizophrenia. Total 
1106 inpatients with schizophrenia and 404 controls were recruited and genotyped. Among them, 867 patients 
and 402 controls were assessed through the Repeatable Battery for the Assessment of Neuropsychological Status 
(RBANS). SHEsis software was used to investigate the association of FOXP2 rs10447760 with schizophrenia, 
followed by logistic regression. The model of covariance (ANCOVA) and multivariate analysis were conducted to 
investigate the effect of FOXP2 rs10447760 on cognitive impairment in schizophrenia. No differences in the 
genotypic and allelic frequencies of the FOXP2 rs10447760 were found between patients and controls (both p> 
0.05). Except for the visuospatial/constructional score (p > 0.05), other five RBANS scores were lower in patients 
compared to controls (all p < 0.0001). Interestingly, we found immediate memory score was lower in patients 
carrying genotype CT compared to genotype CC (F=5.19, p=0.02), adjusting for confounding data. Our study 
suggested that FOXP2 rs10447760 has no effect on the susceptibility to schizophrenia, while it may be associated 
with its cognitive impairment, especially immediate memory in chronic schizophrenia. 
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schizophrenia can predict the functional outcomes in 
patients, affect quality of life, employment status and 
social function, and even impeded treatment and 
rehabilitation [8, 9]. Therefore, cognitive recovery is 
considered to be the main target of clinical treatment for 
schizophrenia [10]. However, until now, the underlying 
pathophysiological mechanisms of cognitive impairment 
in schizophrenia remain obscure. 
 
Previous family and twins studies demonstrated that 
genetic aspects explained the variability in cognition 
including 50% in memory, 70% in verbal reasoning, and 
79% in abstract reasoning [11–13]. Furthermore, cognitive 
impairment was also present in unaffected relatives of 
schizophrenia [14, 15]. These evidences indicated genetic 
factors may contribute to cognitive impairment of 
schizophrenia. Recently, neurodevelopmental hypothesis 
of schizophrenia has generally been accepted, at least 
partly, based on cognitive impairment presenting in 
schizophrenia [16, 17]. Thus, neurodevelopmental 
dysfunction may also be reasonable to be involved in 
mechanisms of cognitive impairment in schizophrenia. 
 
The forkhead-box P2 (FOXP2) is involved in the 
development and function of the brain. FOXP2 is located 
on chromosome 7q31 which has been identified as the 
susceptible locus for schizophrenia through genome-wide 
association studies [18]. FOXP2 was previously reported 
as a causative gene for language and speech disorders, 
especially in a large three-generation family [19]. 
Furthermore, there was evidence that FOXP2 contributed 
to the development of the neuron which influenced 
language and speech function [20, 21]. A previous study 
determined that FOXP2 mRNA was most expressed in 
brain deep cortical neurons, striatum medium spiny 
neurons, and cerebellar Purkinje cells in mouse and 
human development, and these neuronal cells were 
essential for language function [22]. 
 
As we all know, speech and language functions are 
essential components of cognition. Previous studies 
indicated that specific language-related circuits were also 
impaired in both patients with schizophrenia and in those 
relatives with high genetic risk for developing 
schizophrenia [23, 24]. Tolosa et al. [25] found significant 
association of FOXP2 polymorphism rs2253478 with 
poverty of speech in schizophrenia. These findings 
suggest that FOXP2 may play a crucial role in patho-
physiology of cognitive impairment in schizophrenia. 
Recently, the FOXP2 polymorphism rs10447760, located 
in the 5′regulatory region was found to correlated with 
schizophrenia. For example, Sanjuán et al. [26] 
demonstrated that the haplotype of FOXP2, containing 
polymorphism rs10447760, contributed to the 
vulnerability to schizophrenia with auditory hallu-
cinations. Recently, Li et al. [27] also showed that FOXP2 

polymorphism rs10447760 correlated with the 
suspectability of schizophrenia in Han population. 
However, some studies did not replicate these results. For 
example, the recent studies showed no correlation of 
FOXP2 polymorphism rs10447760 with schizophrenia in 
Han population [28, 29]. Interestingly, the most recent 
meta-analysis demonstrated FOXP2 rs10447760 
conferred the vulnerability to schizophrenia in 
Caucasians, however, such association was not found in 
Chinese Han population [30]. Furthermore, our recent 
study demonstrated significant correlation between 
FOXP2 rs10447760 and the symptoms of chronic patients 
with schizophrenia in a Chinese Han population [28]. 
 
From the results mentioned above, we hypothesized that 
FOXP2 polymorphism rs10447760 might contribute to 
the cognitive impairment, especially the language 
function in patients with schizophrenia. To our best 
knowledge, there has been no study to investigate the 
association of cognitive performance with FOXP2 
polymorphisms in schizophrenia. Therefore, the main 
aim of present study was to determine the effect of this 
polymorphism on cognitive impairment in schizophrenia.  
 
RESULTS 
 
Association analysis between FOXP2 rs10447760 
and schizophrenia 
 
A total of 1106 patients and 404 healthy controls who 
completed FOXP2 rs10447760 genotyping were enrolled 
(Table 1). Except for age, there were significant 
differences in sex, years of education, and BMI between 
them (all p<0.01), and they were controlled as covarites 
in the following statistical analyses. 
 
SHEsis analysis demonstrated that the distributions of 
FOXP2 rs10447760 genotype both in patient group and 
control group were consistent with Hardy-Weinberg 
equilibrium (case: χ2 =0.25, p=0.61; control: χ2 =0.02, p 
is 0.90). No significant differences were found in the 
genotype and allele distributions of FOXP2 rs10447760 
between patients and controls (χ2= 3.67, P = 0.06; χ2 = 
3.63, P = 0.06; respectively). Concerning that the sex, 
years of education and BMI differed between patients 
and controls, logistic regression analysis (Backward 
conditional) was conducted to control for these 
confounding factors. There were still no differences in 
the FOXP2 rs10447760 genotype and allele distributions 
between patient and control groups (both p>0.05). 
 
Cognitive score between patients with schizophrenia 
and healthy controls 
 
867 patients and 402 controls had completed both 
genotyping and cognitive assessment (Table 1). The 
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Table 1. Demographic characteristics in patients with schizophrenia and healthy controls (Mean ± SD). 

Variable 

Association between rs10447760  
and schizophrenia 

Association between rs10447760 and  
cognition score  

Patients 
(N=1106) 

Controls 
(N=404) 

Statistic p 
Patients 
(N=867) 

Controls 
(N=402) 

Statistic p 

Age (Years) 45.93±10.79 44.70±13.50 1.64 0.10 45.48±10.71 44.70±13.50 1.01 0.31 
Gender (Male) 831 (75.1%) 162 (40.1%) 161.33 <0.0001 684 (78.9%) 158 (39.3%) 191.50 <0.0001 
Education (Years) 8.73±4.76 9.71±5.59 3.21 0.001 8.88±5.02 9.71±5.59 2.61 0.009 

BMI 23.94±4.09 25.14±4.26 4.71 <0.0001 23.99±4.16 25.02±4.61 3.73 <0.0001 

Age of onset 25.42±8.65 - - - 24.72±7.20 - - - 

Duration of 
illness(Years) 24.17±9.34 

- - - 
23.82±9.70 

- - - 

Atypical 
antipsychotic (N) 779 

- - - 
604 

- - - 

Typical 
antipsychotic(N) 327 

- - - 
263 

- - - 

Daily antipsychotic 
dose(chlorpromazin
e equivalents), mg/d 396.90±390.96 

- - - 

394.06±322.09 

- - - 

Duration of current 
antipsychotic 
treatment (Months) 31.93±37.63 

- - - 

31.28±44.08 

- - - 

PANSS score  

Positive symptoms 12.44±5.94 - - - 11.29±5.04 - - - 

Negative symptoms 20.86±8.98 - - - 19.89±8.29 - - - 
General 
psychopathology 25.98±7.25 

- - - 
23.72±3.82 

- - - 

Total score 59.29±16.56 - - - 54.90±11.78 - - - 

aTotal 1106 patients and 404 healthy controls; bTotal 867 patients and 402 healthy controls who had completed both 
genotyping and cognitive assessment. 
 

patients included 684 males and 183 females, with mean 
age of 45.48±10.71 years, the duration of illness of 
23.82±9.7 years, and the average educational levels of 
8.88±5.2 years. 
 
Except for age, there were significant differences in sex, 
education, and BMI between the patient group and the 
control group (all p<0.01), which were controlled for in 
the following covariance (ANCOVA) models. Except the 
visuospatial/constructional score (p > 0.05), ANCOVA 
showed that other RBANS scores were significantly 
lower in patient group than those in control group (all p < 
0.0001) after adjusting for confounding factors including 
sex, education and BMI. 
 
Association of the FOXP2 rs10447760 with cognitive 
score 
 
Further ANCOVA showed that immediate memory score 
was significantly lower only in patients with genotype 

CT than those in patients with genotype CC (F=5.19, 
p=0.02), after controlling for age, sex, years of education, 
illness duration, age of onset, antipsychotic types, 
antipsychotic daily dose and current antipsychotic 
medication duration (Table 2). However, no effects of 
genotype and genotype X diagnosis were found on any 
RBANS scores (all p > 0.05) (Table 2). 
 
Multivariate regression (stepwise) further demonstrated 
the following variables independently correlated with the 
immediate memory score in patient group: the FOXP2 
rs10447760 genotype (β=-7.01, t=2.39, p=0.02), age (β=-
0.28, t=4.64, p < 0.001), years of education (β=0.51, 
t=3.06, p = 0.002), and illness duration (β=0.03, t=3.35, p 
=0.001). 
 
This sample had 0.83~0.92 statistical power to examine 
the association of this polymorphism with schizophrenia 
with log additive, and the assumption of a moderate size 
effect of 1.5 (α< 0.05, two-tailed test). 
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Table 2. Comparisons among the RBANS total and five subscale scores by diagnostic and genotypic groupings  
(Mean ± SD). 

RBANS 
scores 

Patients with  
schizophrenia Controls Diagnosis Genotype 

Diagnosis × 
Genotype 

CC(N=836) CT(N=31) CC(N=397) CT(N=5) F p F p F p 

Immediate 
memory 57.77±16.31a 51.29±13.43a 75.64±17.28 78.60±23.52 28.73 <0.0001 0.47 0.49 0.85 0.36 

Attention 64.31±18.57 61.03±13.98 87.51±20.31 80.20±20.63 20.97 <0.0001 1.31 0.25 0.19 0.66 
Language 74.77±18.11 71.94±18.10 94.02±13.03 86.00±17.94 16.90 <0.0001 1.79 0.18 0.41 0.52 
Visuospatial/ 
construction  76.67±18.19 75.16±17.49 79.75±15.52 71.80±18.74 0.001 0.97 1.26 0.26 0.58 0.45 

Delayed 
memory 64.23±19.54 62.19±19.08 86.21±15.25 87.80±17.68 28.69 <0.0001 0.003 0.96 0.17 0.68 

Total score 61.14±14.55 57.94±10.72 79.88±15.57 76.00±19.85 26.13 <0.0001 0.97 0.33 0.01 0.93 

a A significant genotypic effect on the immediate memory in patients with schizophrenia: immediate memory score was 
significantly lower in patients with CT genotype than those with CC genotype, p= 0.02. 

 
DISCUSSION 
 
To our knowledge, the present study firstly examines  
the association of FOXP2 rs10447760 with cognitive 
impairment in schizophrenia. The main results were  
as follow (1) FOXP2 rs10447760 may not be associated 
with suspectability of schizophrenia; (2) FOXP2 
rs10447760 correlated with immediate memory only in 
patients with schizophrenia, showing that immediate 
memory score was lower in patients with genotype CT 
than those in patients with genotype CC. 
 
A recent study identified FOXP2 as susceptible loci for 
schizophrenia using genome-wide association method 
[18]. The same research group demonstrated that FOXP2 
polymorphism rs10447760 was strongly correlated with 
susceptibility of schizophrenia in Chinese Han population 
[27]. However, this finding was not confirmed in some 
other recent studies including our current study in 
Chinese Han population [28, 29]. The inconsistent results 
also occurred in the studies among the Caucasians. For 
example, Sanjuán et al. found that the haplotype 
including rs10447760 was associated with schizophrenia 
[26], while Tolosa et al. did not confirm this association 
[25]. The most recent meta-analysis indicated that 
FOXP2 rs10447760 significantly correlated with 
susceptibility schizophrenia in Caucasians, but not in 
Chinese Han population [30]. The main reason for the 
different results in Chinese Han population may result 
from the rare variant of rs10447760 in the Chinese Han 
population. We could not detect TT genotype in the 
subjects in our current study, and only 1.2% of healthy 
controls had CT genotype, which is consistent with three 
recent association studies [27–29]. It is worthy of noting 
that rare variants can easily lead to statistical variation. 

Even one more or less low-frequency genotype could 
change the significance of the p value. 
 
Interestingly, our results showed significant association 
between FOXP2 rs10447760 and cognitive performance 
in schizophrenia. We found that FOXP2 rs10447760 was 
correlated with immediate memory, showing poor 
immediate memory score in patients carrying CT 
genotype than that in patients carrying CC genotype. 
However, we did not find that FOXP2 rs10447760 was 
correlated with language function in schizophrenia. Some 
studies have demonstrated FOXP2 was associated with 
some cognitive performance, such as memory. For 
example, FOXP2-expressing spinal neurons could adjust 
song motor output to tutor song memory during learning 
[31]. Recent study showed that affected KE members 
(aKE) (patients with FOXP2 gene mutation) selectively 
impaired the phonological working memory [32]. 
Schreiweis et al. [33] demonstrated that humanized 
FOXP2 promoted learning performance by heightening 
transitions from declarative to procedural function, 
suggesting that FOXP2 had a striking specific effect on 
learning dynamics, striatal dopamine levels, and synaptic 
plasticity. These studies provided the evidence that 
FOXP2 gene could regulate memory function through 
being expressed in specific regions of the brain. However, 
we found no effects of FOXP2 rs10447760 on language 
function in schizophrenia which was consistent with 
recent study [34].  
 
Although no direct evidence shows that FOXP2 
rs10447760 is a functional SNP, we found that it was 
correlated with immediate memory. Previous study 
demonstrated that this SNP rs10447760 could regulate 
the FOXP2 expression in thalamus and white matter area 
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of the brain by using eQTL analysis extracted from the 
BRAINEAC database [30].  
 
Furthermore, previous studies have shown that FOXP2 
mRNAs were highly preferentially expressed in the 
striatum during neuronal development, and it also 
remained in striosomes in the mature striatum [22, 35]. 
Such preferential expression is unique, since FOXP2 is 
preferentially expressed in the “shell” domain in ventral 
striatum, which was found to connect with limbic 
function [22, 35]. The striatum is well known to 
contribute to the procedure of programmed memory, 
memory function [36, 37] and the formation of a memory 
network connected with the hippocampus [38]. White 
matter has also been proven to be correlated with clinical 
symptoms, cognitive deficiency and social cognition in 
patients with schizophrenia [39–41]. Taken together, we 
speculated that FOXP2 rs10447760 might affect FOXP2 
expression in specific region of the brain to regulate 
memory function. However, the precise molecular 
mechanisms underlying the association between FOXP2 
rs10447760 and immediate memory warrant further 
investigation.  
 
Some limitations should be concerned in our present 
study. Firstly, as noted above, FOXP2 rs10447760 has 
the rare variant allele T and we even did not detect TT 
genotype. Thus, a small number of patients with CT 
genotype could have changed the significance of p value 
dramatically, and we could not rule out the false positive 
results. Secondly, patients enrolled in present study were 
treated with different antipsychotics for a long-term 
period, which could affect cognitive function in chronic 
patients with schizophrenia. Thirdly, we just examined a 
single genetic polymorphism effect on cognitive 
impairments of patients with schizophrenia, and other 
polymorphisms and genes interaction should be 
concerned [42]. Last but not the least, the RBANS has 
five domains including immediate memory, attention, 
language, visuospatial/ constructional, and delayed 
memory. However, in fact, there are more cognitive 
domains such as executive function, working memory 
[43], emotional management, and facial emotion 
perception [44–45]. In the future study, more cognitive 
domains should be examined and the different ethnic 
population should be recruited to confirm our findings.  
 
In summary, we found that FOXP2 polymorphism 
rs10447760 may not be involved in the susceptibility to 
schizophrenia, but may contribute to cognitive 
performance, especially immediate memory in 
schizophrenia. Patients carrying CT genotype had the 
greater cognitive impairment in immediate memory than 
those with CC genotype. Thus, FOXP2 rs10447760 may 
be involved in pathophysiological mechanisms for 
cognitive impairments in schizophrenia. Moreover, the 

chronic patients with schizophrenia displayed extensive 
severe cognitive impairments shown on all of RBANS 
scores compared to healthy controls. However, our 
findings still warrant to be confirmed in larger samples 
from different ethnics before the firm conclusion could 
be made.  
 
MATERIALS AND METHODS 
 
Subjects 
 
The protocol was reviewed and approved by Institutional 
Review Board of Beijing Hui-Long-Guan hospital. 
Written informed consents were obtained from all 
participants. All subjects gave written informed consent 
in accordance with the Declaration of Helsinki. The 
patients were enrolled from the inpatients, meeting the 
inclusion criteria as following: (1) Han Chinese patients 
with age from 18 to 75 years; (2) satisfying the diagnosis 
of schizophrenia by the Diagnostic and Statistical Manual 
of Mental Disorders, Fourth Edition (DSM-IV) according 
to the screening of Structure Clinical Interview for DSM-
IV (SCID- I/P) by two psychiatrists; (3) with at least 5-
year illness duration; (4) with stable doses of oral 
antipsychotics for at least 12 months.  
 
A total of 1106 patients were enrolled, and among them, 
867 patients completed cognition assessment (mean age 
of 45.48±10.71 years, 684 males and 183 females), with 
the duration of illness of 23.82±9.70 years, and the 
average education levels of 8.88±5.2 years (demographic 
data and clinical characteristics were shown in Table 1). 
They had received current antipsychotic treatment for 
31.28±44.08 months, and had mainly been treated with 
one antipsychotic drug including clozapine (n = 370), 
risperidone (n = 164), quetiapine (n = 70), chlorpromazine 
(n = 55), sulpiride (n = 38), aripiprazole (n = 35), 
perphenazine (n = 27), olanzapine (n = 23), haloperidol (n 
= 16), and other antipsychotics (n = 69). The doses of 
antipsychotics equivalent to chlorpromazine were 
394.06±322.09 mg/day [46–48]. 
 
A total 404 healthy controls were enrolled through 
advertisement. Individuals with family history of mental 
disorders or any major Axis I disorders were excluded.  
 
Any subjects with cardiovascular disease, cerebrovascular 
disease, infections, cancer, unstable diabetes, uncontrolled 
hypertension, and pregnancy were excluded. Any subjects 
with drug or alcohol abuse/dependence determined by the 
laboratory urine tests were excluded. 
 
Clinical and cognitive assessments  
 
The self-designed questionnaire including socio-
demographic profile, physical and psychological situation 
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was collected from all the subjects by the interview of 
researchers. The Repeatable Battery for the Assessment 
of Neuropsychological Status (RBANS, Form A) [49] 
was used to assess the patient’s cognitive function. The 
RBANS has been translated into Chinese version and the 
clinical validity and test - retest reliability of the Chinese 
version of RBANS was established [28]. The RBANS 
contains 12 subtests, and five age-adjusted index scores 
were calculated with a total score. The five indexes 
scores include immediate memory, attention, language, 
visuospatial/ constructional, and delayed memory. All the 
patients were measured with the RBANS in their stable 
state when they did not present acute psychotic 
symptoms or deterioration of function. 
 
DNA isolation and SNP genotyping   
 
A total of 5 ml peripheral whole blood samples were 
abstracted in tube with anticoagulant ethylene diamine 
tetraacetic acid (EDTA), and genomic DNA was  
extracted from whole blood samples using a salting- 
out method [28]. The FOXP2 polymorphism rs10447760 
was genotyped by using Matrix-Assisted Laser 
Desorption/Ionization Time of Flight Mass Spectrometry  
(MALDI-TOF MS) (Sequenom Inc., San Diego, CA, 
USA) according to the protocol [28]. The primers  
and extent sequence were determined according to the 
NCBI GenBank database (Sense: 5′- ACGTTGGATGA 
ACACTGC-AGGCTTTGTTCG-3′, Antisense: 5′- ACGT 
TGGATGTTTGGAGTCAGCTAGCAC-AG-3′) (extent 
sequence: CAGAGCGCTAAACCC). Genotyping 
process was conducted by researchers who were blind to 
the clinical information. Regarding quality control and 
verification, 5% samples were randomly duplicate with an 
error rate of <0.1%.  
 
Statistical analyses 
 
T-test for continuous variables and chi-square (χ2) test 
for categorical variables were used as appropriate. Hardy 
- Weinberg equilibrium, genotypic and allelic frequencies 
of FOXP2 rs10447760 were evaluated through SHEsis 
(http://analysis.bio-x.cn) [50]. Further, to determine the 
effect of FOXP2 rs10447760 on suspectibility of 
schizophrenia, logistic regression was used to control the 
confounding factors. 
 
The models of covariance (ANCOVA) were based on 
five subscale and total scores of RBANS as the 
dependent variables respectively, with the diagnosis and 
the FOXP2 rs10447760 genotype as the independent 
variables, with sex, BMI, and years of education as the 
covariates. Also, the main effects of diagnosis, genotype, 
and genotype × diagnosis in each model were examined. 
Further, ANCOVA was used to determine the differences 
in RBANS scores in accordance with the genotypic 

groups in patient group or control group respectively, 
with sex, education and BMI as covariates in control 
group, together with duration of illness, age of onset, 
antipsychotic types, antipsychotic daily dose, and current 
antipsychotics medication duration as covariates in 
patient group. Bonferroni correction was performed to 
adjust for each multiple test. Further, we used 
multivariate analysis (stepwise) with the positive results 
as the dependent variables to examine the effects of 
variables including the FOXP2 rs10447760 genotype, 
age, sex, education, duration of illness, age of onset, 
antipsychotic types, antipsychotic daily dose and current 
antipsychotic medication duration in patients. 
 
Power analysis was conducted using software Quanto 
(Version 1.2.3). All statistical analysis were conducted by 
the PASW Statistics 18.0 software (SPSS Inc., Chicago, 
IL, USA). All p values were two-tailed at the significant 
level of below 0.05. 
 
Ethical statement 
 
The protocol was reviewed and approved by 
Institutional Review Board of Beijing Hui-Long-Guan 
hospital. Written informed consents were obtained from 
all participants. All subjects gave written informed 
consent in accordance with the Declaration of Helsinki. 
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