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INTRODUCTION 
 
Parkinson’s disease (PD) is a common and progressive 
neurodegenerative disease that predominately affects 
dopaminergic neurons in the striatum and substantia 
nigra (SNr) [1, 2]. There is also evidence that loss of 
dopamine at extrastriatal sites in the basal ganglia, 
thalamus, or cortex contributes to PD pathology [3]. 
Although the precise mechanisms underlying PD 
pathology remain largely unknown, evidence suggests 
that the brain–gut axis plays a crucial role [4–13]. For 
example, alterations in bowel function, mainly in the 
form of constipation, can precede the onset of the 
prototypical motor symptoms of PD [14]. 
 
Over the past two decades, it has become apparent that 
gut microbiota is a fundamental factor in host 
physiology and pathology. The brain–gut axis is a 
complex, multi–organ, bidirectional signaling system 
involving the gut microbiota and the brain [6, 15–23]. 
Moreover, although antibiotics are crucial, their overuse 
plays a role in the pathogenesis of several diseases  

 

associated with microbiota impairment [24, 25]. 
Antibiotic cocktail-induced microbiome depletion has 
been used to investigate the role of gut microbiota in 
some pathological conditions [26–35]. In addition, 
Sampson et al. [36] reported that gut microbiota are 
necessary for motor deficits induced by α-synuclein 
overexpression in mice. Interestingly, antibiotic 
treatment ameliorated these deficits, while microbial  
re-colonization promoted PD pathology in mice. 
Remarkably, colonization of α-synuclein overexpressing 
mice with microbiota from PD patients enhanced 
physical impairments compared to microbiota 
transplants from healthy control subjects. Collectively, 
these findings suggest that the effects of the brain–gut 
axis in the pathology of PD are mediated at least  
in part by the gut microbiota. However, the effects 
 of antibiotic-induced microbiome depletion on 
dopaminergic neurotoxicity in the brains of PD model 
mice are unknown. 
 
In this study, we investigated whether antibiotic- 
induced microbiome depletion affects MPTP (1-methyl-4- 
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mouse brain after administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP significantly 
decreased dopamine transporter (DAT) immunoreactivity in the striatum and tyrosine hydroxylase (TH) 
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immunoreactivity in the brains of mice treated with an antibiotic cocktail. Furthermore, antibiotic treatment 
significantly decreased the diversity and altered the composition of the host gut microbiota at the genus and 
species levels. Interestingly, MPTP also altered microbiome composition in antibiotic-treated mice. These 
findings suggest that antibiotic-induced microbiome depletion might protect against MPTP-induced 
dopaminergic neurotoxicity in the brain via the brain–gut axis. 
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phenyl-1,2,3,6-tetrahydropyridine)-induced dopaminergic 
neurotoxicity, which is widely used as an animal model  
of PD [37], in the mouse brain. 
 
RESULTS 
 
Effects of the antibiotic cocktail on body weight 
 
A repeated measures two-way ANOVA revealed that 
treatment with an antibiotic cocktail for 14 days reduced 
mouse body weights (antibiotic: F1,36 = 20.549, P < 
0.001; MPTP: F1,36 = 0.005, P = 0.994; interaction 
(antibiotic × MPTP): F1,36 = 0.045, P = 0.833; Figure 1B). 
On day 22, antibiotic + saline group body weights, but 
not antibiotic + MPTP group weights, remained lower 
than those of mice that did not receive antibiotics (Figure 
1B). Thus, antibiotic + MPTP group body weights 
recovered gradually after treatment, while antibiotic + 
saline group weights did not. 
 
Antibiotic treatment protected against MPTP-
induced neurotoxicity in the mouse brain 
 
DAT immunohistochemistry revealed that MPTP reduced 
DAT levels in the striatum of the water-treated group, but 
not the antibiotic-treated group (Figure 1C). A two-way 
ANOVA revealed significant differences in DAT 
immunoreactivity among the four groups (antibiotic:  
F1,36 = 11.30, P = 0.002; MPTP: F1,36 = 20.46, P < 0.001; 
interaction (antibiotic × MPTP): F1,36 = 15.32, P < 0.001; 
Figure 1D). TH immunohistochemistry revealed that 
MPTP reduced TH immunoreactivity in the SNr of the 
water-treated group, but not the antibiotic-treated group 
(Figure 1E). A two-way ANOVA revealed significant 
differences in TH immunoreactivity among the four 
groups (antibiotic: F1,36 = 11.48, P = 0.002; MPTP:  
F1,36 = 10.19, P = 0.003; interaction (antibiotic × MPTP): 
F1,36 = 11.75, P = 0.002; Figure 1F). Collectively, these 
results indicate that treatment with an antibiotic cocktail 
for 14 days protected against MPTP-induced 
dopaminergic neurotoxicity in the striatum and SNr. 
 
Gut microbiota composition 
 
Next, we investigated the composition of the gut 
microbiota, which can be altered by antibiotic cocktail 
treatment [33–35], in the four experimental groups.  
α-diversity is defined as the richness of gut microbiota 
and can be measured using different indices. Two-way 
ANOVAs revealed a significant difference in the Chao1 
(antibiotic: F1,36 = 15.928, P < 0.001; MPTP: F1,36 = 
37.541, P < 0.001; interaction (antibiotic × MPTP): F1,36 
= 20.587, P < 0.001; Figure 2A) and Ace (antibiotic: F1,36 
= 12.968, P < 0.001; MPTP: F1,36 = 43.032, P < 0.001; 
interaction (antibiotic × MPTP): F1,36 = 22.827, P < 
0.001; Figure 2B) indices among the four groups. 

Specifically, Chao 1 and Ace indices were higher in the 
water + MPTP group than in both the water + saline and 
antibiotic + MPTP groups (P < 0.001). Interestingly, 
antibiotic cocktail treatment attenuated the MPTP-
induced increase in the Chao 1 and Ace indices. A two-
way ANOVA also revealed significant differences in the 
Shannon index among the four groups (antibiotic: F1,36 = 
8.942, P = 0.005; MPTP: F1,36 = 0.593, P = 0.446; 
interaction (antibiotic × MPTP): F1,36 = 3.427, P = 0.072; 
Figure 2C). The Shannon index in the antibiotic + MPTP 
group was lower than that of the water + MPTP group. In 
an unweighted UniFrac PCoA dot map, dots representing 
the antibiotic-treated groups were far away from dots 
representing the water-treated groups (Figure 2D). 
Interestingly, dots representing the antibiotic + MPTP 
group were isolated from dots representing the other 
three groups (Figure 2D). 
 
At the phylum level, Firmicutes were the most abundant 
phylum in the water + saline group microbiota (Figure 
3A and 3B). The abundance of Firmicutes was lower in 
the antibiotic + MPTP group than in the water + MPTP 
and antibiotic + saline groups (P < 0.001, Figure 3B). In 
contrast, the most dominant phylum in the antibiotic + 
MPTP group, Bacteroidetes, was less abundant in the 
water + MPTP and antibiotic + saline groups (P < 
0.001, Figure 3C). Proteobacteria levels were higher 
after treatment with the antibiotic cocktail compared to 
the two water-treated groups (Figure 3D), while 
Deferribacteres and TM7 levels decreased after 
treatment with the antibiotic cocktail or with MPTP 
(Figure 3E, 3F).  
 
Antibiotic and MPTP treatment also altered the 
composition of fecal microbiota at the genus level 
(Figure 4A). Lactobacillus, Mucispirillum, and 
Candidatus Arthromitus levels decreased after treatment 
with the antibiotic cocktail (Figure 4B–4D). In contrast, 
Parasutterella, Blautia, Robinsoniella, Escherichia, 
Dorea, and Eubacterium levels increased after treatment 
with antibiotic cocktail (Figure 4E–4J). Interestingly, 
Asaccharobacter levels increased in the antibiotic + 
MPTP group compared to the other three groups (Figure 
4K). Clostridium, which was the most dominant genus in 
control mice, decreased after MPTP injections and 
antibiotic cocktail treatment (Figure 4L). Furthermore, 
the antibiotic + MPTP group had a higher abundance of 
Parabacteroides than the other three groups (Figure 4M). 
Finally, MPTP treatment attenuated the antibiotic-
induced increase in the abundance of Bacteroides and 
Enterococcus (Figure 4N, 4O). 
 
Gut microbiota composition at the species level in the four 
experimental groups is shown in Figure 5A. Lactobacillus 
murinus, Lactobacillus johnsonii, Mucispirillum 
schaedleri, and Candidatus Arthromitus sp. SFB-mouse 
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decreased after antibiotic cocktail treatment (Figure 5B–
5E). In contrast, Escherichia coli, Blautia sp. Ser8, and 
Robinsoniella peoriensis increased after antibiotic 
treatment (Figure 5F–5H). Clostridium sp. Clone-27, the 
most abundant species in control water + saline group 

mice, decreased in all other groups (Figure 5I). On  
the other hand, Blautia sp. canine oral taxon 143, 
Parabacteroides distasonis, Blautia coccoides, 
Clostridium sp. HGF2, and Clostridium bolteae increased 
in the antibiotic + MPTP group (Figure 5J–5N). 

 

 
 

Figure 1. Effects of antibiotic treatment on gut microbiota diversity. (A) Treatment schedule. Adult mice received drinking water 
with or without antibiotic cocktail from day 1 to day 14. On day 15, MPTP or saline injections were administered. On day 22, fresh feces 
were collected. Mice were then perfused for immunohistochemistry. (B) Body weights in the different groups (repeated two-way ANOVA, 
antibiotic: F1,36 = 20.549, P < 0.001; MPTP: F1,36 = 0.005, P = 0.994; interaction (antibiotic × MPTP): F1,36 = 0.045, P = 0.833). (C) 
Representative images of DAT immunohistochemistry in the water + saline, water + MPTP, antibiotic + saline, and antibiotic + MPTP groups. 
(D) Striatal DAT immunoreactivity data. (E) Representative images of TH immunohistochemistry in the water + saline, water + MPTP, 
antibiotic + saline, and antibiotic + MPTP groups. (F) SNr TH immunoreactivity data. Data are shown as mean ± S.E.M. (n = 10). ***P < 0.001. 
Bar = 50 μm. 
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In addition, Lactobacillus intestinalis and Lactobacillus 
reuteri, which increased in the water + MPTP group 
compared to the water + saline group, were markedly 
reduced after antibiotic treatment (Figure 5O and 5P). 
Interestingly, DAT immunoreactivity was negatively 
correlated with levels of Lactobacillus intestinalis (r = -
0.38, P = 0.01) and Lactobacillus reuteri (r = -0.39, P = 
0.01; Figure 5U and 5V). The antibiotic-induced increase 
in the abundance of Bacteroides acidifaciens, 
[Clostridium] cocleatum, and Enterococcus casseliflavus 
was largely reversed after MPTP administration (Figure 
5Q–5S). In addition, MPTP restored Bacteroides sp. TP-
5 to control levels after it had been reduced by antibiotic 
treatment (Figure 5T). 
 
DISCUSSION 
 
In this study, we examined the effects of treatment with 
an antibiotic cocktail on gut microbiota in a mouse 
model of PD. We found that MPTP markedly reduced 
DAT immunoreactivity in the striatum and TH 
immunoreactivity in the SNr of the water-treated group, 

but not the antibiotic-treated group. Second, antibiotic 
cocktail treatment caused substantial alterations in host 
gut microbiota composition compared to the water-
treated group. In an unweighted UniFrac PCoA, dots 
representing the two antibiotic-treated groups were 
located far away from dots representing the two water-
treated groups. Interestingly, dots representing the 
antibiotic + MPTP group were also far from the dots of 
the other three groups. At the phylum level, 
Proteobacteria was markedly increased, while 
Deferribacteres, and TM7 were markedly decreased, in 
the gut of antibiotic-treated mice. Antibiotic treatment 
was also associated with substantial microbiome 
alterations at the genus and species levels. Overall, 14 
days of treatment with an antibiotic cocktail caused 
significant changes in the diversity and composition of 
the host gut microbiota, which is consistent with 
previous reports [33–35]. Taken together, these results 
suggest that antibiotic–induced microbiome depletion 
might protect against MPTP-induced dopaminergic 
neurotoxicity in the mouse brain via the brain–gut 
microbiota axis. 

 

 
 

Figure 2. α-diversity and β-diversity in gut microbiota. Diversity index values for the four groups. (A) Chao 1 index (two-way ANOVA, 
antibiotic: F1,36 = 15.928, P < 0.001; MPTP: F1,36 = 37.541, P < 0.001; interaction (antibiotic × MPTP): F1,36 = 20.587, P < 0.001). (B) ACE index 
(two-way ANOVA, antibiotic: F1,36 = 12.968, P < 0.001; MPTP: F1,36 = 43.032, P < 0.001; interaction (antibiotic × MPTP): F1,36 = 22.827, P < 
0.001). (C) Shannon index (two-way ANOVA, antibiotic: F1,36 = 8.942, P = 0.005; MPTP: F1,36 = 0.593, P = 0.446; interaction (antibiotic × MPTP): 
F1,36 = 3.427, P = 0.072). (D) PCoA analysis of gut bacteria data (Bray–Curtis dissimilarity). 
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In another recent study, we reported that 14 days of 
antibiotic treatment increases levels of bacteria from the 
phylum Proteobacteria and decreases levels of the major 
bacterial phyla Bacteroidetes and Firmicutes in the mouse 
gut microbiota (Wang et al., submitted); similar results 
have also been observed in other studies [26, 31, 32]. 
Here, we found that the relative abundance of 
Proteobacteria increased in the antibiotic-treated groups 
compared to the water-treated groups. In contrast, the 
relative abundance of Firmicutes and Bacteroidetes was 

similar in the antibiotic + saline and water + saline groups, 
indicating that spontaneous recovery of these bacteria 
occurred. The mechanisms underlying the increased 
relative abundance of Proteobacteria after antibiotic 
cocktail treatment are currently unknown. Interestingly, 
MPTP significantly altered the relative abundance of 
Firmicutes and Bacteroidetes in the antibiotic-treated 
group, but not in the water-treated group. Thus, MPTP 
might further alter gut microbiome composition after 
antibiotic-induced microbiome depletion. 

 

 
 

Figure 3. Altered gut bacteria composition at the phylum level. (A) Relative abundance at the phylum level. (B) Bacteroidetes.  
(C) Firmicutes. (D) Proteobacteria. (E) Deferribacteres. (F) TM7. Data are shown as mean ± S.E.M. (n = 10). **P < 0.01, ***P < 0.001. See the 
Supplementary Table 1 for detailed statistical analysis. 
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Figure 4. Altered gut bacteria composition at the genus level. (A) Relative abundance at the genus level. (B) Lactobacillus.  
(C) Mucispirillum. (D) Candidatus Arthromitus. (E) Parasutterella. (F) Blautia. (G) Robinsoniella. (H) Escherichia. (I) Dorea. (J) Eubacterium.  
(K) Asaccharobacter. (L) Clostridium. (M) Parabacteroides. (N) Bacteroides. (O) Enterococcus. Data are shown as mean ± S.E.M. (n = 10). **P < 
0.01, ***P < 0.001. See the Supplementary Table 2 for detailed statistical analysis.  
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Figure 5. Altered gut bacteria composition at the species level. (A) Relative abundance at the species level. (B) Lactobacillus murinus. 
(C) Lactobacillus johnsonii. (D) Mucispirillum schaedleri. (E) Candidatus Arthromitus sp. SFB-mouse. (F) Escherichia coli. (G) Blautia sp. Ser8.  
(H) Robinsoniella peoriensis. (I) Clostridium sp. Clone-27. (J) Blautia sp. canine oral taxon 143. (K) Parabacteroides distasonis. (L) Blautia 
coccoides. (M) Clostridium sp. HGF2. (N) Clostridium bolteae. (O) Lactobacillus intestinalis. (P) Lactobacillus reuteri. (Q) Bacteroides 
acidifaciens. (R) [Clostridium] cocleatum. (S) Enterococcus casseliflavus. (T) Bacteroides sp. TP-5. (U) Negative correlation (r = -0.38, P = 0.01) 
between Lactobacillus intestinalis and DAT immunoreactivity. (V) Negative correlation (r = - 0.39, P = 0.01) between Lactobacillus reuteri and 
DAT immunoreactivity. Data are shown as mean ± S.E.M. (n = 10). *P < 0.05, **P < 0.01, ***P < 0.001. See the Supplementary Table 3 for 
detailed statistical analysis. 
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MPTP specifically increased levels of the following 
bacterial species in the guts of antibiotic-treated mice: 
Blautia sp. Canine oral taxon 143, Parabacteroides 
distasonis, Blautia coccoides, Clostridium sp. HGF2, 
Clostridium bolteae, and Bacteroides sp. TP-5. A recent 
study demonstrated that Parabacteroides distasonis 
alleviated obesity and metabolic dysfunction via 
production of succinate and secondary bile acids [38]. In 
addition, Parabacteroides distasonis reduced the severity 
of intestinal inflammation in murine models of acute and 
chronic colitis induced by dextran sulphate sodium, 
suggesting that Parabacteroides distasonis may be useful 
for treating inflammatory bowel diseases [39]. Blautia 
coccoides produce hydrogen [13], which might have 
beneficial effects in the MPTP mouse model [40]. 
Interestingly, Clostridium sp. HGF2 plays an important 
role in the metabolism of mannitol [41], which could 
attenuate behavioral abnormalities and aggregations of α-
synuclein in the rodent brain [42, 43]. Among the bacteria 
increased by MPTP, Bacteroides sp. TP-5 is particularly 
noteworthy due to its ability to modulate immune system 
function [44]. Furthermore, a recent study demonstrated 
that fecal microbiota transplantation protected  
against MPTP-induced neurotoxicity by suppressing 
neuroinflammation [45]. The effects of supplementation 
with Bacteroides sp. TP-5 on dopaminergic neurotoxicity 
in mouse MPTP model should be investigated further. 
 
MPTP treatment also decreased levels of the Bacteroides 
acidifaciens, [Clostridium] cocleatum, and Enterococcus 
casseliflavus bacterial species. Bacteroides acidifaciens 
are important for promoting IgA production in the large 
intestine [46]. Interestingly, Bacteroides acidifaciens 
levels were increased in the feces of Atg7ΔCD11c mice with 
a lean phenotype compared to those of control Atg7f/f 
mice, and wild-type C57BL/6 mice fed with a diet 
including Bacteroides acidifaciens gained less weight  
and fat mass than mice fed control food [47]. Those 
results suggest that Bacteroides acidifaciens might be a 
potential treatment for metabolic diseases such as obesity 
[47]. The functional roles of [Clostridium] cocleatum  
and Enterococcus casseliflavus are unclear, and the 
mechanisms underlying the recovery of the three bacterial 
species that increased in the gut microbiome of antibiotic-
treated mice after MPTP administration in this study  
are currently unknown. Regardless, it is likely that 
interactions between the brain–gut axis and these 
microbiomes play a role in MPTP-induced neurotoxicity, 
and the relationship between neuroprotection, the immune 
system, and the brain–gut axis warrants further 
investigation. 
 
In this study, we found that DAT immunoreactivity was 
negatively correlated with Lactobacillus intestinalis and 
Lactobacillus reuteri levels despite the marked decrease 
observed in these species after antibiotic treatment. Both 

of these bacteria produce lactic acid, which was more 
abundant in the striatum of MPTP-treated mice [48]. 
Furthermore, treatment with Lactobacillus reuteri 
selectively rescues social deficits in genetic, 
environmental, and idiopathic autism spectrum disorder 
(ASD) models, suggesting that this species may be a 
promising non-invasive microbial-based therapy for ASD-
related social dysfunctions [49]. Additionally, short-chain 
fatty acids promote proliferation of Lactobacillus reuteri 
[50]; this effect should be investigated further. It is 
possible that Lactobacillus intestinalis, Lactobacillus 
reuteri, and lactic acid might affect the dopaminergic 
neurotoxicity of MPTP in the brain. Furthermore, 
antibiotic-induced microbiome depletion might enhance 
or counteract MPTP-induced dopaminergic neurotoxicity 
in mouse brain, although the specific microbes that might 
be involved in these effects were not identified in this 
study. Additional studies are needed to confirm the 
relationship between MPTP-induced dopaminergic 
neurotoxicity and the gut microbiome. 
 
Accumulating evidence suggests that abnormal gut 
microbiota composition might affect neuroprotection [8, 
51, 52]. Choi et al. [53] identified dramatic and 
widespread increases in levels of Enterobacteriaceae, 
and particularly of Proteus mirabilis, in the mouse MPTP 
model. Administration of Proteus mirabilis isolated  
from MPTP-treated mice produced motor deficits, 
dopaminergic neuronal damage, and inflammation in the 
striatum and SNr, suggesting that Proteus mirabilis 
promotes PD pathology in the brain. Furthermore, 
Srivastav et al. [54] reported neuroprotective effects of a 
probiotic cocktail containing Lactobacillus rhamnosus 
GG, Bifidobacterium animalis lactis, and Lactobacillus 
acidophilus in MPTP-treated mice. Together, these 
results indicate that altered gut microbiota composition 
likely plays a role in dopaminergic neurotoxicity related 
to PD.  
 
In conclusion, the present study suggests that antibiotic-
induced microbiome depletion might protect against 
MPTP-induced dopaminergic neurotoxicity in the mouse 
brain, and that MPTP might improve the diversity and 
composition of gut microbiota in antibiotic-treated mice. 
These results indicate that the brain–gut axis plays a key 
role in the pathology of PD. 
 
MATERIALS AND METHODS 
 
Animals 
 
Male adult C57BL/6 mice (8 weeks old) weighting 20-
25 g were purchased from SLC (Inc., Hamamatsu, Japan). 
Animals were housed under controlled temperatures and 
12-hour light/dark cycles (lights on between 07:00–19:00) 
with ad libitum food (CE-2; CLEA Japan, Inc., Tokyo, 
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Japan) and water. All experiments were carried out 
according to the Guide for Animal Experimentation of 
Chiba University. The experimental protocol was 
approved by the Chiba University Institutional Animal 
Care and Use Committee. 
 
Preparation of antibiotics and MPTP 
 
As described in previous reports [33–35], broad-spectrum 
antibiotics (ampicillin 1 g/L, neomycin sulfate 1 g/L, 
metronidazole 1 g/L, Sigma-Aldrich Co., Ltd, St Louis, 
MO, USA) were dissolved in drinking water. This 
antibiotic cocktail, which was prepared fresh every  
other day, was administered to adult C57BL/6 mice  
for 14 continuous days. 1-Methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP: Tokyo Chemical Industry 
CO., Ltd., Tokyo, Japan) was dissolved in saline. Other 
compounds were purchased commercially. 
 
Schedule of treatment and collection of fecal and 
brain samples 
 
The procedure for establishing MPTP-induced 
neurotoxicity was performed as previously reported [55, 
56]. Forty mice (8 weeks old) were divided among the 
following four groups: water + saline; water + MPTP; 
antibiotic cocktail + saline; antibiotic cocktail + MPTP. 
Mice were given drinking water with or without the 
antibiotic cocktail from day 1 to day 14 (Figure 1A). All 
mice were given water without antibiotics from day 15 to 
day 22. On day 15, mice received intraperitoneal 
injections of MPTP (10 mg/kg x 3, 2-hr interval) or 
saline (5 mL/kg x 3, 2-hr interval; Figure 1A). One week 
after MPTP or saline injection, fresh fecal samples were 
collected and stored at -80°C until use. Subsequently, the 
mice were anesthetized with 5% isoflurane and sodium 
pentobarbital (50 mg/kg) for brain collection. Mice were 
perfused transcardially with 10 mL of isotonic saline 
followed by 30 mL of ice-cold 4% paraformaldehyde in 
0.1 M phosphate buffer (pH 7.4). Brains were removed, 
post-fixed overnight at 4°C, and then used for 
immunohistochemical stating of dopamine transporter 
(DAT) and tyrosine hydroxylase (TH). 
 
DAT and TH Immunohistochemistry 
 
Immunohistochemical staining of DAT and TH was 
performed as reported previously [55, 56]. Consecutive 
50 μm-thick coronal brain sections (bregma 0.86−1.54 
mm and -2.92–3.88 mm) were cut in ice-cold 10 mM 
phosphate buffered saline (pH 7.5) using a vibrating 
blade microtome (VT1000s, Leica Microsystems AG, 
Wetzlar, Germany). Free-floating sections were treated 
with 0.3% H2O2 in 50 mM Tris-HCL saline (TBS) for 30 
min and blocked in 0.2% Triton X-100 TBS (TBST) with 
1.5% normal serum for 1 hour at room temperature. 

Samples were then incubated for 36 hours at 4°C with rat 
anti-DAT antibody (1:10,000, Merck Millipore, 
Burlington, MA, USA) or rabbit anti-TH antibody 
(1:500, Sigma-Aldrich, St Louis, MO, USA). The 
sections were then washed three times in TBS and 
processed according to the avidin-biotin-peroxidase 
method (Vectastain Elite ABC, Vector Laboratories, Inc., 
Burlingame, CA, USA). Sections were then incubated 
with 0.15 mg/mL diaminobenzidine and 0.01% H2O2 for 
5 minutes; the staining solution for DAT only also 
contained 0.06% NiCl2. The sections were then mounted 
on gelatinized slides, dehydrated, cleared, and 
coverslipped with Permount® (Fisher Scientific, Fair 
Lawn, NJ, USA). Images were taken and DAT and TH 
immunoreactivity staining intensity in the anterior region 
(0.25 mm2) of the striatum as well as the number of TH-
positive cells in SNr region (0.36 mm2) were analyzed 
using a Keyence BZ-9000 Generation microscope 
(Keyence Co., Ltd, Osaka, Japan). Eight data points (four 
brain slides) from each mouse were used for the 
quantitative analyses of DAT and TH immunoreactivity. 
 
16S rRNA analysis 
 
DNA was extracted from fecal samples and 16S rRNA 
analyses were performed as previously described [57] by 
MyMetagenome Co., Ltd. (Tokyo, Japan). Briefly, PCR 
was performed using 27Fmod 5′-AGRGTTTGATYM 
TGGCTCAG-3′ and 338R 5′-TGCTGCCTCCCGTAGG 
AGT-3′ primers to amplify the V1–V2 region of the 
bacterial 16S rRNA gene. The amplified DNA (~330bp) 
was purified using AMPure XP (Beckman Coulter) and 
quantified using a Quant-iT Picogreen dsDNA assay kit 
(Invitrogen) and a TBS-380 Mini-Fluorometer (Turner 
Biosystems). The 16S amplicons were then sequenced 
using a MiSeq according to the Illumina protocol. The 
paired-end reads were merged using the fastq-join 
program based on overlapping sequences. Reads with an 
average quality value of <25 and inexact matches to both 
universal primers were filtered out. Filter-passed reads 
were analyzed further after trimming off both primer 
sequences. For each sample, 3,000 high-quality filter-
passed reads were rearranged in descending order 
according to quality value and then clustered into 
operational taxonomic units (OTUs) with a 97% 
pairwise-identity cutoff using the UCLUST program 
version 5.2.32 (https://www.drive5.com). Taxonomic 
assignments of OTUs were performed based on similarity 
searches against the Ribosomal Database Project and the 
National Center for Biotechnology Information genome 
database using the GLSEARCH program [58]. 
 
Statistical analysis 
 
Animal experiment data are presented as the mean ± 
standard error of the mean (S.E.M.). Statistical analyses 



www.aging-us.com 6924 AGING 

were performed using SPSS Statistics 20 (SPSS, Tokyo, 
Japan). Body weight data were analyzed using repeated 
two-way analysis of variance (ANOVA) followed by 
post-hoc Tukey’s multiple comparison tests. DAT and 
TH immunohistochemistry and 16S rDNA data were 
analyzed using two-way ANOVAs followed by post-
hoc Tukey’s multiple comparison tests. P values of less 
than 0.05 were considered statistically significant. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Tables 
 
Supplementary Table 1. Statistical analysis data of gut microbiota data at phylum. 

Graph Factor effect (Antibiotic) Factor effect (MPTP) Interaction effect 
(Antibiotic × MPTP) 

Bacteroidetes F(1,36) = 12.695, P = 0.001 F(1,36) = 21.180, P < 0.001 F(1,36) = 1.806, P = 0.187 
Firmicutes F(1,36) = 14.284, P = 0.001 F(1,36) = 20.353, P < 0.001 F(1,36) = 2.272, P = 0.140 
Proteobacteria F(1,36) = 40.495, P < 0.001 F(1,36) = 1.034, P = 0.316 F(1,36) = 0.190, P = 0.665 
Deferribacteres F(1,36) = 10.911, P = 0.002 F(1,36) = 3.872, P = 0.057 F(1,36) = 3.948, P = 0.055 
TM7 F(1,36) = 10.916, P = 0.002 F(1,36) = 10.916, P = 0.002 F(1,36) = 10.916, P = 0.002 

 

Supplementary Table 2. Statistical analysis data of gut microbiota data at genus. 

Graph Factor effect (Antibiotic) Factor effect (MPTP) Interaction effect 
(Antibiotic × MPTP) 

lactobacillus F(1,36) = 40.826, P < 0.001 F(1,36) = 0.743, P = 0.394 F(1,36) = 0.744, P = 0.394 
Mucispirillum F(1,36) = 10.835, P = 0.002 F(1,36) = 3.818, P = 0.059 F(1,36) = 3.893, P = 0.056 
Candidatus Arthromitus F(1,36) = 10.302, P = 0.003 F(1,36) = 1.204, P = 0.280 F(1,36) = 0.796, P = 0.378 
Parasutterella F(1,36) = 81.500, P < 0.001 F(1,36) = 0.344, P = 0.561 F(1,36) = 0.495, P = 0.486 
Blautia F(1,36) = 11.239, P = 0.002 F(1,36) = 1.430, P = 0.240 F(1,36) = 1.542, P = 0.222 
Robinsoniella F(1,36) = 11.589, P = 0.002 F(1,36) = 0.211, P = 0.649 F(1,36) = 0.211, P = 0.649 
Escherichia F(1,36) = 8.289, P = 0.007 F(1,36) = 2.245, P = 0.143 F(1,36) = 2.399, P = 0.130 
Dorea F(1,36) = 7.766, P = 0.008 F(1,36) = 0.548, P = 0.464 F(1,36) = 1.104, P = 0.300 
Eubacterium F(1,36) = 8.529, P = 0.006 F(1,36) = 3.508, P = 0.069 F(1,36) = 1.747, P = 0.195 
Asaccharobacter F(1,36) = 1.292, P = 0.263 F(1,36) = 7.712, P = 0.009 F(1,36) = 4.353, P = 0.044 
Clostridium F(1,36) = 7.982, P = 0.008 F(1,36) = 6.757, P = 0.013 F(1,36) = 1.664, P = 0.205 
Parabacteroides F(1,36) = 43.663, P < 0.001 F(1,36) = 29.742, P < 0.001 F(1,36) = 29.742, P < 0.001 
Bacteroides F(1,36) = 19.018, P < 0.001 F(1,36) = 12.176, P = 0.001 F(1,36) = 7.447, P = 0.010 
Enterococcus F(1,36) = 8.910, P = 0.005 F(1,36) = 4.904, P = 0.033 F(1,36) = 4.624, P = 0.038 
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Supplementary Table 3. Statistical analysis data of gut microbiota data at species. 

Graph Factor effect (Antibiotic) Factor effect (MPTP) Interaction effect 
(Antibiotic × MPTP) 

Lactobacillus murinus F(1,36) = 19.973, P < 0.001 F(1,36) = 0.007, P = 0.935 F(1,36) = 0.006, P = 0.936 
Lactobacillus johnsonii F(1,36) = 21.666, P < 0.001 F(1,36) = 1.126, P = 0.296 F(1,36) = 1.126, P = 0.296 
Mucispirillum schaedleri F(1,36) = 10.803, P = 0.002 F(1,36) = 3.836, P = 0.058 F(1,36) = 3.912, P = 0.056 
Candidatus Arthromitus sp. SFB-
mouse F(1,36) = 10.302, P = 0.003 F(1,36) = 1.204, P = 0.280 F(1,36) = 0.796, P = 0.378 

Escherichia coli F(1,36) = 8.289, P = 0.007 F(1,36) = 2.245, P = 0.143 F(1,36) = 2.399, P = 0.130 
Blautia sp. Ser8 F(1,36) = 10.059, P = 0.003 F(1,36) = 3.457, P = 0.071 F(1,36) = 3.457, P = 0.071 
Robinsoniella peoriensis F(1,36) = 11.921, P = 0.001 F(1,36) = 0.239, P = 0.628 F(1,36) = 0.239, P = 0.628 
Clostridium sp. Clone-27 F(1,36) = 6.957, P = 0.012 F(1,36) = 9.366, P = 0.004 F(1,36) = 6.036, P = 0.019 
Blautia sp. canine oral taxon 143 F(1,36) = 5.309, P = 0.027 F(1,36) = 5.309, P = 0.027 F(1,36) = 5.309, P = 0.027 
Parabacteroides distasonis F(1,36) = 30.573, P < 0.001 F(1,36) = 40.561, P < 0.001 F(1,36) = 39.576, P < 0.001 
Blautia coccoides F(1,36) = 26.794, P < 0.001 F(1,36) = 6.406, P = 0.016 F(1,36) = 6.406, P = 0.016 
Clostridium sp. HGF2 F(1,36) = 21.898, P < 0.001 F(1,36) = 12.850, P = 0.001 F(1,36) = 12.850, P = 0.001 
Clostridium bolteae F(1,36) = 8.670, P = 0.006 F(1,36) = 5.094, P = 0.030 F(1,36) = 5.094, P = 0.030 
Lactobacillus intestinalis F(1,36) = 23.328, P < 0.001 F(1,36) = 8.172, P = 0.007 F(1,36) = 8.105, P = 0.007 
Lactobacillus reuteri F(1,36) = 23.676, P < 0.001 F(1,36) = 8.288, P = 0.007 F(1,36) = 8.214, P = 0.007 
Bacteroides acidifaciens F(1,36) = 26.102, P < 0.001 F(1,36) = 18.528, P < 0.001 F(1,36) = 11.141, P = 0.002 
[Clostridium] cocleatum F(1,36) = 14.097, P = 0.001 F(1,36) = 9.975, P = 0.003 F(1,36) = 9.975, P = 0.003 
Enterococcus casseliflavus F(1,36) = 6.743, P = 0.014 F(1,36) = 5.058, P = 0.031 F(1,36) = 5.058, P = 0.031 
Bacteroides sp. TP-5 F(1,36) = 7.426, P = 0.010 F(1,36) = 4.685, P = 0.037 F(1,36) = 4.747, P = 0.036 

 


