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ABSTRACT 
 
Background: Aging has often been linked to age-related vascular disorders. The elucidation of the putative 
genes and pathways underlying vascular aging likely provides useful insights into vascular diseases at advanced 
ages. Transcriptional regulatory network analysis is the key to describing genetic interactions between 
molecular regulators and their target gene transcriptionally changed during vascular aging.  
Results: A total of 469 differentially expressed genes were parsed into 6 modules. Among the incorporated 
sample traits, the most significant module related to vascular aging was associated with triglyceride and 
enriched with biological terms like proteolysis, blood circulation, and circulatory system process. The module 
associated with triglyceride was preserved in an independent microarray dataset, indicating the robustness of 
the identified vascular aging-related subnetwork. Additionally, Enpp5, Fez1, Kif1a, F3, H2-Q7, and their 
interacting miRNAs mmu-miR-449a, mmu-miR-449c, mmu-miR-34c, mmu-miR-34b-5p, mmu-miR-15a, and 
mmu-let-7, exhibited the most connectivity with external lipid-related traits. Transcriptional alterations of the 
hub genes Enpp5, Fez1, Kif1a, and F3, and the interacting microRNAs mmu-miR-34c, mmu-miR-34b-5p, mmu-
let-7, mmu-miR-449a, and mmu-miR-449c were confirmed. 
Conclusion: Our findings demonstrate that triglyceride and free fatty acid-related genes are key regulators of 
age-related vascular dysfunction in mice and show that the hub genes for Enpp5, Fez1, Kif1a, and F3 as well as  
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INTRODUCTION 
 
Vascular aging is characterized by structural and 
functional alterations of the vascular wall, deteriorating 
vascular integrity and vessel homeostasis, including 
increased luminal diameter with wall remodeling and 
augmented intimal and medial thickening, reorganization 
of the extracellular matrix with altered collagen, and 
elastin content and calcifications [1]. These changes may 
increase cardiovascular morbidity and mortality by 
leading unequivocally to a number of detrimental changes 
in the cardiovascular system that are discriminated with 
atherosclerotic pathology [2]. These age-related vascular 
diseases remain a leading cause of mortality and account 
for 40% of overall deaths worldwide [3]. Aging-induced 
aorta stiffening was demonstrated to be a natural 
consequence of increasing age that might be due to the 
several impairments including alteration in aortic wall [4]. 
The development of physiological vascular aging is 
subjected to the alterations in the function of the 
endothelium that line the lumen of blood vessels, which 
are mediated through both genetic and environmental 
factors [5–7]. At the cellular level, decreased protein 
synthesis, increased angiotensin II levels, mitochondrial 
dysfunction, autophagy, altered pattern of calcium 
regulation and increased DNA, protein, and lipid 
oxidation are mainly observed [8–10]. Additionally, it is 
evident that processes involving immune responses and 
oxidative stress occur in vascular aging [11]. 
 
The elucidation of the putative genes and pathways 
underlying vascular aging is critical for understanding  
the molecular mechanisms of age-related vascular 
diseases. Previous research has discussed the roles  
of Fat1 in controlling mitochondrial function and  
cell growth [12], transcriptional regulator HHEX [13],  
and FOXOs/sirtuins angiogenesis [14, 15] in vascular  
aging and conducted extensive research to understand  
heart diseases including vascular dysfunction. With the 

development of high-throughput microarray technology, 
gene expression profiles have been used to identify genes 
and pathways associated with the pathogenesis of 
vascular aging, which has helped to partially illustrate the 
underlying mechanisms. For example, two transcriptomic 
studies identified some differentially expressed genes 
related to age-related vascular changes based on gene 
expression profiling in mice [16, 17]. However, these 
studies put emphasis only on screening differentially 
expressed genes (DEGs) rather than determining the 
connection between them, in which genes with similar 
expression patterns may be functionally related. 
Moreover, the regulatory interactions between genes in 
particular pathways or biological processes across 
multiple vascular aging stages have not been 
investigated. Additionally, potential novel regulators of 
transcription and post-transcription of age-related 
vascular gene expression, including micro-RNAs, long 
noncoding RNAs, and transcription factors, have not 
been investigated how they regulate the transcription-
level mRNA interactions. Gene interactions in vascular 
aging lead to endothelial cell metabolism, thereby 
understanding the functional molecular mechanisms 
regulated by these interactions is essential for gaining 
biological insights into cellular functions, predicting 
downstream events, and ideally manipulating the aging 
process based on desired goals. Co-expression network 
analysis enables us to cluster genes by assigning them to 
known biological functions in which they are involved 
[18]. Among the co-expression network inference 
algorithms, weighted gene co-expression network 
analysis (WGCNA) is a relatively new statistical method 
not only to infer correlation pattern between two  
genes but also covers neighborhood across expression  
data [19] while constructed networks generally could be 
divided to modules. Plenty of evidence suggested the 
modules as stable units underlying transcriptional 
regulation networks whose function can remain the  
same while individual gene expression can be changed  

their interacting miRNAs mmu-miR-34c, mmu-miR-34b-5p, mmu-let-7, mmu-miR-449a, and mmu-miR-449c, 
could serve as potential biomarkers in vascular aging.  
Methods: The microarray gene expression profiles of aorta samples from 6-month old mice (n=6) and 20-month 
old mice (n=6) were processed to identify nominal differentially expressed genes. These nominal differentially 
expressed genes were subjected to a weighted gene co-expression network analysis. A network-driven 
integrative analysis with microRNAs and transcription factors was performed to define significant modules and 
underlying regulatory pathways associated with vascular aging, and module preservation test was conducted to 
validate the age-related modules based on an independent microarray gene expression dataset in mice aorta 
samples including three 32-week old wild-type mice (around 6-month old) and three 78-week old wild-type 
mice (around 20-month old). Gene ontology and protein-protein interaction analyses were conducted to 
determine the hub genes as potential biomarkers in the progress of vascular aging. The hub genes were further 
validated with quantitative real-time polymerase chain reaction in aorta samples from 20 young (6-month old) 
mice and 20 old (20-month old) mice. 
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or replaced by other genes with similar redundant 
functions [20]. 
 
In this study, we conducted a co-expression network 
analysis for identifying putative genes and pathways 
involved in a triangle of aging, vascular dysfunction, and 
lipid levels. A network-driven integrative analysis was 
performed to find significant modules and module 
preservation test was conducted to test the robustness of 
the significant modules. Further gene ontology and 
protein-protein interaction analyses were conducted to 
determine potential biomarkers in the progress of 
vascular aging with wet-lab verifications. Through co-
expression network analysis adopted by WGCNA, we 
identified triglyceride-related traits correlated with  
gene expression changes in mouse aorta controlled by 
aging. Functional analysis of the top modules implies  
a relationship between aging-related transcriptional 
changes and fat components in aorta. 
 
RESULTS 
 
Network construction and module detection 
 
After microarray data preprocessing, a total of 2,256 
differentially expressed Agilent transcripts were left. We 
further removed ambiguous probes and duplicated genes. 
The ambiguous probes included positive and negative 
controls in the microarray, and the duplicated genes were 
removed according to their gene symbols. Finally, the 
expression values of the 469 differential genes were 
selected for subsequent analysis. In graph theory, the 
nodes with higher connections are more likely to be 
pivotal connectors. Likewise, critical points controlling 
important dynamic components in biological networks 
[21], removal of them may cause biological systems 
failure in saving their coherence. In order to identify  
such interconnected genes from aging-associated co-
expression network abstractly, adjacency matrix was 
obtained from the Pearson correlation matrix with a 
power β=12 based on the scale-free topology criterion 
[21]. Subsequently, the represented matrix was 
transformed to similarity matrix in clustering process 
during which genes grouped in a cluster were likely to be 
biologically relevant to the same pathway. The value of 
power β=12 could emphasize robust correlations and 
remove unreliable correlations between genes on an 
exponential level. Figure 1A shows the determination of 
β parameter based on the description in the WGCNA 
manual. Briefly, given Agilent series GSE50833, we 
used the WGCNA to establish a number of modules in 
co-expression network, and 6 modules were obtained 
(Figure 1B). As illustrated in Figure 1B, modules in gene 
dendrogram are shown in different colors and based on 
dynamic branch cutting algorithm underneath row color 
assigns the modules membership. 

Modules associated with vascular aging and lipid levels 
 
We aimed to gain new insights into the roles of specific 
modules that might be involved in vascular aging, 
module eigengenes associated with phenotypic traits 
were assessed in this study. An eigengene is referred to as 
gene expression profiles inside each of the modules 
summarized by the first principle component. The 
turquoise and blue modules that are positively correlated 
with triglyceride, leptin, and free fatty acid (FFA) 
respectively, were established to be significantly 
associated to vascular aging stage with an absolute 
correlation coefficient of > 0.6 and p-value of < 0.05. 
Figure 2A shows a highly significant correlation between 
gene significant (GS) versus module membership (MM) 
in the turquoise module with Triglyceride, and Figure 2B 
illustrates the correlation between turquoise module size 
and triglyceride. Next, we examined whether significant 
modules (turquoise and blue) were enriched for GO 
terms relevant to age-related vascular disorders. Gene 
ontology enrichment analysis for the turquoise module is 
presented in Table 1 and the GO analysis of other 
modules are presented in Supplementary Table 5. From 
Table 1, we noticed that 44 genes are involved in the 
proteolysis biological process, and the products of 46 
genes are located under membrane-bounded vesicle. 
 
Inference of miRNA–mRNA-transcription factor 
interaction 
 
The top 30 interconnected genes within each of the 
turquoise, blue and red modules were graphically 
depicted by utilizing Cytoscape (Supplementary Tables 
17, 19, 21). Interestingly, miRNA-target analysis showed 
that in the turquoise module, gene F3 is putatively 
targeted by 23 and 38 predicted miRNAs from 
TargetScan and MicroCosm respectively (Figure 3A). 
Additionally, in the blue module, gene H2-Q7 illustrated 
to be targeted by 78 miRNAs in MicroCosm (Figure 3B). 
No genes were found to be targeted with miRNAs in the 
red module. Among the miRNAs, mmu-miR-449a, mmu-
miR-449c, mmu-miR-34c, mmu-miR-34b-5p, mmu-
miR-15a, and mmu-let-7 were listed as common between 
networks built by turquoise and blue modules. Due to the 
inconvenience of considering a highly dimensional set of 
transcription factors, we only investigated transcription 
factors in a network of the top 90 connected hub nodes 
depicted for mRNA-miRNA interaction analysis 
(Supplementary Table 9), when transcription factors 
Pax8 and Hsf1 were ranked as the most significant based 
on the normalized enrichment score test (NES) (Table 2). 
 
Module preservation test 
 
To test if the age-dependent modules are preserved 
between the constructed network and a reference 
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network, we built a reference network based on 1036 
significantly differentially expressed transcripts with 
P < 0.05 from 6-month old wild-type mice (n=3) and  
20-month old wild-type mice (n=3) in the GSE10000 
dataset (Supplementary Table 3). Among the 2,256 
transcripts from GSE50833 datasets, 125 genes 
(according to the gene symbols) were matched with 
modules defined by Ghazalpour et al. [22] 
(Supplementary Table 4), by which we had already built 
a reference network. Median rank and Z-summary values 
were calculated to conduct module preservation test, and 
both measures revealed high preservation of green and 
blue modules between the two networks (Supplementary 
Figure 5A and 5B). Largely overlapped interactions 
between the two networks were found in this study, 

indicating the robustness of the built modules is strong. 
The strong module preservation could be due to the 
overlapped interactions between the two networks, which 
indicate that the gene interactions within a module are 
conserved. 
 
qPCR validation of the key genes 
 
To verify the main conclusion drawn from the microarray 
results, the relative expression levels of the five key 
genes (Enpp5, Fez1, Kif1a, F3, and H2-Q7) and their 
interacting microRNAs (mmu-miR-449a, mmu-miR-
449c, mmu-miR-34c, mmu-miR-34b-5p, mmu-miR-15a, 
and mmu-let-7) were determined using qPCR. No 
significant difference in body weight was detected

 

 
 

Figure 1. Parameter analysis of inferred co-expression network and modules. (A) A scaling factor beta determination based on the 
scale-free topology criterion. (B) Hierarchical clustering of genes in significant modules. The colors are assigned to each module by the 
Dynamic Tree Cut algorithm. 
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between the two groups of male mice. The RT-qPCR 
analysis results indicated that Enpp5, Fez1, Kif1a, F3, 
mmu-miR-34c, mmu-miR-34b-5p, and mmu-let-7 were 
significantly up-regulated in samples from 20-month old 
mice group compared with the 6-month old mice group, 
whereas mmu-miR-449a and mmu-miR-449c were 
significantly down-regulated. Meanwhile, there were no 
significant differences observed in the H2-Q7 and mmu-
miR-15a genes between the two groups, but the 
expression level of H2-Q7 is a little higher in the group 
of old mice compared to the young mice. 

DISCUSSION 
 
The purpose of this investigation was to identify 
fundamental mechanisms leading to transcriptional 
changes in mouse aorta toward aging with a network 
biology approach. Given the most variable transcripts in 
aorta between 6-month old mice (n=6) and 20-month old 
mice (n=6) as a discovery dataset, we built a weighted 
co-expression network. This network-based approach 
summarizes genes with similar expression profiles into 
the same modules, and therefore, co-grouped genes 

 

 
 

Figure 2. Module-traits and module_membership-gene_significance correlation analyses. (A) Scatterplot shows a highly 
significant correlation between gene significant (GS) versus module membership (MM) in the turquoise module with Triglyceride. (B) 
Heatmap shows correlation between assayed traits and module eigengene values. Green and red colors represent the negative and positive 
correlation respectively. Decimals outside of round brackets are correlation, and decimals inside of round brackets stand for gene significance 
level. 
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Table 1. GO enrichment analysis of genes assigned to the turquoise module. 

Category Term Counts of genes P-value 
CC extracellular matrix 16 0.000855 
CC mitochondrial envelope 10 0.0017607 
CC mitochondrial membrane 10 0.0017607 
CC neuron projection 23 0.0048588 
BP Proteolysis 24 0.0061265 
CC neuron part 26 0.0064492 
BP Circulatory system process 14 0.0065327 
BP Blood circulation 14 0.0065327 
CC Membrane-bounded vesicle 45 0.0072194 
CC Organelle inner membrane 6 0.0074282 

BP: biological process; CC: cellular component  
 

 
 

Figure 3. The network of top 30 interconnected genes in the turquoise (A) and blue (B) modules and predicted miRNAs from TargetScan and 
Microcosm. The hub genes are shown in red and miRNAs in light yellow. mRNA-miRNA interactions from TargetScan and Microcosm are 
shown in green and blue lines respectively. Yellow circles show the genes that are putatively regulated by miRNAs. 
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Table 2. Promoter analysis of the top 90 hub genes 
obtained from three modules significant associated 
with vascular aging status. 

Transcription 
factor NES No. of 

targets 
No. o 

Motifs/Tracks 
Pax8 4.484 25 7 
Hsf1 4.04 11 1 
Pou5f1 3.916 27 2 
Ovol1 3.78 14 3 
Lef1 3.589 12 4 
Zic2 3.485 17 2 
Rfx2 3.464 6 3 
Egr1 3.433 14 3 
Gata2 3.422 12 1 
Gltpd1 3.287 11 2 
Hic1 3.224 11 3 
Zfat 3.212 22 3 
Sod1 3.14 4 1 
Irf4 3.047 10 1 
Mtf1 3.034 11 2 

NES: normalized enrichment score 
 

are thought to be involved in the same regulatory pathways 
[23]. When employing the Dynamic Tree Cut method, we 
detected 6 modules ranging from 160 genes in the 
turquoise module to 50 genes in the red and green 
modules. After merging modules with highly correlated 
eigengenes, the turquoise, blue and red modules were 
chosen for subsequently functional analysis (Sup-
plementary Figures 1–4). To reveal vascular trans-
criptome’s relationship to age, we further detected trait-
related gene modules and hub genes by incorporating 
lipid-related traits, such as triglycerides and free fatty acid, 
into the network analysis. Modules that are closely 
associated with clinical traits, might be biologically 
important in bridging aging and the incidence of vascular 
disorders. Therefore, it could draw an interaction between 
these traits and variable aging-associated gene expression 
changes in mouse aorta. The red module showed no 
correlation with assayed traits while the most significant 
and correlated module with the incorporated traits was 
turquoise (Figure 2, Supplementary Figure 7 and 
Supplementary Table 11). 
 
Functional enrichment analysis of this module with 
DAVID software identified several terms apparently 
associated with aging-related vascular dysfunction, 
including extracellular matrix, blood circulation, 
circulatory system process, and proteolysis. Ponticos M 
et al. reported the cross-talk between extracellular matrix 
and vascular disorders in detail [24]. Blood vessels are 
distended by blood pressure and, therefore, require ECM 

components with elasticity yet with enough tensile 
strength to resist rupture and stiffness.  
 
Our clinical implication of significant modules indicated 
that triglyceride and leptin levels are correlated with the 
turquoise module, and triglyceride and free fatty acid 
(FFA) levels are correlated with blue module, respectively. 
Whereas the correlation between triglyceride level with 
turquoise module was higher than that with blue module 
(Supplementary Figure 6 and Supplementary Table 11). 
Noblet et al. suggested that leptin is a key modulator in 
pathways involved in vascular proliferation [25]. 
Additionally, leptin sensitivity pointed to be declined 
during aging in rodents [26]. People found that 
hypertriglyceridemia may act as a prevalent risk factor for 
cardiovascular disease [27] and free fatty acid level may 
increase with aging [28].  
 
Through module preservation analysis, our findings 
were strongly validated in the blue and green modules 
in an independent reference network, and the blue 
module was more preserved between the two networks 
and enriched with genes involved in immune response, 
leukocyte differentiation and hemopoiesis. In con-
cordance, the study from Stervbo U et al. [29]. 
demonstrated that age-dependent detrimental alterations 
in leukocytes may dysfunction the innate immune 
system. Additionally, Babio N et al. [30] disclosed an 
association between leukocyte counts with hyper-
triglyceridemia. The free fatty acid may activate 
leukocytes following endothelial dysfunction through 
enhanced angiotensin II production [31]. 
 
The WGCNA package also computed two values as 
gene significance (GS) and module membership (MM) 
when the smaller corresponding p-value denotes higher 
Pearson’s correlation coefficient between gene 
expression profiles, incorporated clinical traits and 
modules, respectively (2) and candidate mRNAs with 
the highest GS and MM could be considered as the one 
significantly associated with phenotypic trait and module 
eigengene of a given module (Supplementary Tables 10–
12). Hereby we focused on the turquoise module, the 
most correlated with triglyceride level. The top 13 genes 
with higher MM and GS were selected as the most 
biologically correlated with triglyceride level and 
turquoise module respectively (Table 3). Consequently, 
Fez1, Kifla, and Enpp5 were interesting genes as they 
were common among the top 30 connected genes 
visualized by Cytoscape (Figure 2B) and highly ranked 
genes based on GS and MM scores. Fez1 encodes an 
elongation protein that abnormally aggregated in aged 
mice [32]. Kif1a was exhibited as a crucial regulator of 
synaptic aging [33]. These highly connected inter-
modular genes can be considered hubs and likely to 
play pivotal roles in maintaining the network functions.  
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Table 3. List of genes most correlated with triglyceride 
and turquoise module eigengene. 

Gene P-value (GS) Gene P-value (MM) 
Enpp5 7.51E-05 Igfbp4 5.11E-06 
Fez1 0.0013665 Kif1a 8.62E-06 
Il3ra 0.0013893 Rasa4 1.32E-05 
Slc6a15 0.0024338 Skiv2l 1.44E-05 
Igfbp2 0.0029863 Myoc 1.51E-05 
Ache 0.0032684 Nfasc 2.42E-05 
Spry1 0.003308 Kctd12 3.55E-05 
Crlf1 0.0033796 Slc22a18 5.59E-05 
Kif1a 0.0042745 Ibsp 5.98E-05 
Ier3 0.0049655 Hic1 6.21E-05 
Etv4 0.0054145 Prkar1b 8.48E-05 
F3 0.005536 Fez1 9.26E-05 
Mbd2 0.005852 Enpp5 9.31E-05 

GS: gene significance, MM: module membership 
 

Centrality analysis of genes within turquoise and blue 
modules (Supplementary Tables 13–14) by use of 
CytoNCA [34] revealed that Enpp5 had the highest 
between-centrality among the first 30 genes 
(Supplementary Table 15). Enpp5 is known to have 
catalytic activity, and its expression is changed in 
adipocytes transfected with Agt-shRNA, indicating that 
this gene is involved in blood pressure and lipid 
accumulation [35]. String protein-protein interaction 
networks of Enpp5 was presented in Supplementary 
Figure 8. It was also shown that Enpp5 acts as an 
extracellular signaling molecule in a broad variety of 
tissues [36]. In a word, lipid components, including 
triglyceride and free fatty acid, may inhibit the activities 
of blood cells to cause plying in immune system 
fallowing by vascular endothelial disruption. According 
to the GO analysis, genes F3, H2-Q7 and Enpp5 are 
therefore considered to be key genetic elements in age-
related vascular changes. F3 is related to angiogenesis 
and coagulation cascades and was suggested to be 
involved in pathways that are relevant to apoptosis in 
aging mice [37]. H2-Q7 is a murine nonclassical MHC 
class I gene involved in the modulation of immune 
responses, whose expression showed gradual increase 
with aging [38]. The differential expression of H2-Q7 
may contribute to the distinct patterns of mouse 
susceptibility/resistance to infectious and noninfectious 
disorders. In a recent study [39], miRNA families mir-34, 
mir-15 and mir-449 exhibited significant distinct 
expression patterns along with aging in mice. The levels 
of miR-34c are elevated in the hippocampus of AD 
patients and corresponding mouse models [40]. Guo et al. 
demonstrated kallistatin may reduce vascular aging by 

regulating microRNA-34a-SIRT1 pathway [41]. miRNA 
let-7 plays a role in tissue homeostasis, repair, and stem 
cell aging [42]. 
 
The key genes identified through our co-expression 
network are concordant with other aging-related findings. 
The availability of massive transcriptomic data has 
facilitated the reconstruction of biological networks, 
through which we are able to decipher how genes are 
interacted within intricate networks underlying age-related 
vascular disorders. We noted that, in agreement with 
previous significant experimental confirmation, network 
mining is robust to identify hub genes and depict the 
structural and functional features of biological networks. 
Compared to methods solely based on single genes 
derived by differential expression analysis, biological 
modules may represent more credible information. In 
frame of accurate approaches of network reconstruction 
and modularity analysis, we identified the hub genes 
Enpp5, Fez1, Kif1a, F3, H2-Q7, two transcription factors 
Pax8 and Hfs1, and their interacting miRNAs mmu-miR-
449a, mmu-miR-449c, mmu-miR-34c, mmu-miR-34b-5p, 
mmu-miR-15a, and mmu-let-7, whose interactions could 
lead to age-related vascular dysfunctions.  
 
Transcriptional alterations of the hub genes Enpp5, Fez1, 
Kif1a, and F3, and the interacting microRNAs mmu-
miR-34c, mmu-miR-34b-5p, mmu-let-7, mmu-miR-
449a, and mmu-miR-449c between 20 pairs of 6-month 
and 20-month old mice were confirmed by RT-PCR in 
our separate investigation. Whereas, no significant 
differences were observed in the H2-Q7 and mmu-miR-
15a genes between the two groups, even though the 
expression level of H2-Q7 is a little higher in the group 
of old mice compared to the young mice, which may be 
due to the limited sample size. 
 
We still need to be cautious to understand the biological 
network related to vascular aging in mice. First, the small 
sample size limited the findings and the results would be 
more reliable when utilizing a more adequate number of 
samples. Second, network analysis at transcriptome level 
could be more intensified through merging studies with 
entire protein-protein network to draw more precise 
conclusions regarding predicted hub genes and master 
regulators. Finally, we inferred an undirected network in 
which connectivity between nodes does not indicate the 
causal regulatory relationships. 
 
In conclusion, triglyceride, free fatty acid, and leptin 
were significantly and positively correlated with age-
related transcriptional changes in mice aorta. Meanwhile, 
five hub genes Enpp5, Fez1, Kif1a, F3, H2-Q7, two 
transcription factors Pax8 and Hfs1, and their interacting 
miRNAs mmu-miR-449a, mmu-miR-449c, mmu-miR-
34c, mmu-miR-34b-5p, mmu-miR-15a, and mmu-let-7 
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exhibited the most connectivity with external lipid-
related traits, and their interactions could lead to age-
related vascular dysfunctions. Transcriptional alterations 
were confirmed with RT-PCR for the hub genes Enpp5, 
Fez1, Kif1a, and F3, and the interacting microRNAs 
mmu-miR-34c, mmu-miR-34b-5p, mmu-let-7, mmu-
miR-449a, and mmu-miR-449c, which could serve as 
potential biomarkers in vascular aging. 
 
MATERIALS AND METHODS 
 
Data collection 
 
We carefully selected vascular aging-associated dataset 
from the National Center for Biotechnology  
Information (NCBI) Gene Expression Omnibus (GEO, 
http://www.ncbi.nlm.nih.gov/geo/) database, and identified 
two time-series microarray datasets regarding vascular 
aging in mice aorta (GEO access number: GSE50833; 
GSE10000). The Agilent TXT files for GSE50833 and 
Affymetrix TXT files for GSE10000 were downloaded 
from the GEO database respectively. The data GSE50833 
[16] was used as first-stage discovery set for co-
expression network construction, and GSE10000 [17] as 
a second-stage independent verification dataset for 
module preservation test. This dataset GSE50833 
consists of a total of 12 samples with data generation 
platform of GPL10787, and these samples correspond to 
6-month old mice (n=6) and 20-month old mice (n=6). 
The data GSE10000 consists of a total of 18 samples 
with data generation platform of GPL1261 and GPL8321 
respectively, and these samples correspond to three pairs 
of 6-week old wild-type and ApoE-/- mice, three pairs of 
32-week old wild-type and ApoE-/- mice, and three pairs 
of 78-week old wild-type and ApoE-/- mice. 
 
Data preprocessing and identification of DEGs 
 
Statistical software R (version 3.5.1) and its related 
packages were used for data preprocessing and 
identifying nominal DEGs between the two aging stages. 
The affyPLM package could fit the original data of the 
microarray to generate the weights and residuals diagram, 
the relative log expression (RLE), and the relative 
standard deviation (NUSE, Normalized unscaled 
standard errors) box diagram. Before we analyzed the 
data, we conducted quality testing of microarray data. In 
this process, we used some powerful and accurate R 
packages, such as affyPLM, affy, and RColorBrewer. 
After conducting the procedure of removing unqualified 
samples or probes, we got a reasonable and useful sample 
set. Raw files were normalized with quantile method 
(Supplementary Table 1) and the limma package (Linear 
Model for Microarray Data) was applied to extract genes 
with P < 0.05 by comparing the gene expression values 
between the 6- and 20-month old mice. These genes were 

considered as nominal DEGs without multiple test 
correction. Ultimately, the extracted Agilent probe IDs of 
the identified DEGs for the data GSE50833 were 
transformed into Agilent MIT IDs (Supplementary Table 
2) and used for follow-up analysis.  
 
Network construction 
 
After removing the redundant probes that were not able 
to contribute greatly to the construction of modules, the 
nominal DEGs were used to build weighted gene co-
expression network through the WGCNA R package, by 
which the calculated absolute value of the Pearson 
correlation coefficient for all pair-wise comparisons of 
gene expression values was transformed into a similarity 
matrix. Next, the similarity matrix was applied to 
stepBystep, a network construction, and module 
detection function. We carried out this step by building a 
weighted matrix with a scaling factor-beta based on the 
assumption that biological networks are scale-free [43]. 
The modules were computed by assigning a minimum of 
30 genes per module and keeping the default value of 
SplitDepth in two for a medium sensitivity of cluster 
splitting. These parameters would optimize scale-free 
topology and robust node connectivity criteria when any 
two genes were connected, and the edge weight was 
determined by the topological overlap matrix (TOM). 
Furthermore, genes were clustered into modules by 
utilizing average linkage hierarchical clustering using 
topological overlap dissimilarity matrix (1-TOM) as the 
distance measure, and modules were determined by the 
dynamic hybrid tree cut algorithm. Finally, similar 
modules whose eigengenes were highly correlated were 
merged to trim genes whose correlation with module 
eigengene was less than the defined threshold (hereby 
we used 0.25 as a threshold for merging similar 
modules). WGCNA determines highly inter-connected 
nodes as modules designated with different colors. 
Moreover, this algorithm is able to relate the identified 
modules to external clinical outcomes, and to export the 
network information to external software for 
visualization, e.g. VisANT (http://visant.bu.edu/) [44] or 
Cytoscape [45] that visualizes biological interactions 
between subnetworks. 
 
Gene ontology analysis and visualization  
 
Gene Ontology (GO) analysis was conducted to reveal 
biological functions of gene products within significant 
modules from three scenarios: biological process (BP), 
cellular component (CC), and molecular function (MF) 
by using the software named Database for Annotation, 
Visualization, and Integrated Discovery (DAVID) [46]. 
DAVID facilitates high throughput gene functional 
analysis by accepting the input of a list of genes or an 
individual gene. Potential enriched functions of the 

http://www.ncbi.nlm.nih.gov/geo/
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DEGs in the determined modules were analyzed by the 
DAVID tool. 
 
The top 30 high-rank intramedullary hub genes were 
prepared for visualization with VisANT (Supplementary 
Tables 16–21).  
 
Modeling miRNA–mRNA-transcription factor 
interaction 
 
To explore transcription factor and miRNA–mRNA 
interaction in particular modules, the database TargetScan 
Mouse (Release 7.1) (http://www.targetscan.org/vert_71/) 
was used for searching the predicted microRNA targets, 
and MicroCosm Mouse (Release 5) (http://www.ebi. 
ac.uk/enright-srv/microcosm/htdocs/targets/v5/) was used 
to build a miRNA–mRNA interaction network and the 
network was visualized with Cytoscape 3.3.8 software 
[46]. Putative miRNAs were generated by the intersection 
of the miRNA-targets from TargetScan and Microcosm. 
Transcription factors may control different gene modules. 
Therefore, we further used iRegulon Cytoscape plugin 
[47] to identify the possible transcription factors and their 
co-factors that are associated with a collection of 
intramedullary hub genes extracted from prognosticate 
modules (Supplementary Tables 6–9). To expand our 
network, we employed CyTargetLinker plugin [48]. 
CyTargetLinker is able to enhance biological networks 
using the provided information in frame of Regulatory 
Interaction Networks or RegIN. RegIN is a network in 
xgmml format containing regulatory interactions. 
 
Module preservation 
 
To determine the reliability of the identified vascular 
aging-related modules and compare the modular 
structure in inferred co-expression network with a 
reference network generated based on an independent 
dataset, we used a previous study with GEO access 
number GSE10000 [17] to identify significantly 
differentially expressed genes (P < 0.05). In the dataset 
GSE10000, the two groups of samples corresponding to 
32-week old wild-type mice (around 6-month old) (n=3) 
and 78-week old wild-type mice (around 20-month old) 
(n=3), were comparable with the first-stage samples 
corresponding to 6-month old mice (n=6) and 20-month 
old mice (n=6). Therefore, we removed the samples 
corresponding to 6-week old mice (n=3) and the ApoE-/- 
mice. Based on the significantly differentially expressed 
probe sets, we reconstructed a test co-expression 
network and contrasted the preservation of co-expression 
network across testing and reference datasets to detect 
the conservation of gene pairs between the two 
networks. Briefly, a Z-summary < 5 and lower median 
rank indicates weak preservation between the testing and 
reference networks.  

Animal breeding, mouse aorta isolation, and real-
time polymerase chain reaction 
 
All animal experiments were approved by the Animal 
Ethics Committee of Shanghai Jiao Tong University. 
Male mice (C57BL/6J) were obtained from the Shanghai 
Laboratory Animal Center, Chinese Academy of Sciences 
(SLAC, CAS), and kept for 7 days in the local animal 
house for acclimatization. The mice were 6 and 20 
months of age old, housed at a constant ambient 
temperature under a 12h/12h light-dark cycle and supplied 
with distilled water, and pelleted AIN-76A (Research 
Diets, New Brunswick, NJ) chow ad libitum. Quantitative 
real-time polymerase chain reaction (qPCR) was used to 
validate the expression of genes changed in aortas from 
mice aged 6-month (n = 20) and 20-month (n = 20). 
 
A mouse aorta was perfused in situ with cautious to keep 
the adventitia intact. The vessel was flushed thoroughly 
with ice-cold phosphate-buffered saline (PBS), through 
the left ventricle of the heart, cleaned periadventitial fat 
and connective tissues, snap-frozen in liquid nitrogen, 
and stored at −80 °C. 
 
Total RNA, including miRNA, was extracted from the 
tissue using Qiagen RNeasy Mini Kit (Qiagen, Hilden, 
Germany). Total RNA from aorta was treated with DNase 
I to remove genomic DNA. RNA integrity was checked 
by Agilent2100 Bioanalyzer (Agilent Technologies, Palo 
Alto, CA) and RNA gel electrophoresis. 
 
For the quantification of mRNAs, 1 μg of the total RNA 
was converted into cDNA using a reverse transcription 
kit (Promega) based on the manufacturer’s instruction. 
The gene expression of hub genes (Enpp5, Fez1, Kif1a, 
F3, and H2-Q7) were then detected by real-time qPCR. 
The qPCR were conducted using SYBR Premix Ex Taq 
(Takara, Japan) in 20 μl reaction solution containing 1μl 
cDNA, 10 μl SYBR Premix Ex Taq (2X), 0.4μl forward 
primer, 0.4 μl reverse primer, 0.4 μl ROX reference dye, 
and 7.8 μl ddH2O. The PCR amplification procedure was 
carried out on an ABI 7500 fast real-time PCR system 
(Applied Biosystems, USA) at 95°C for10 s, followed 
by 40 cycles of 95°C for 5 s and 60°C for 35 s. The 
amplification reaction without the template was used as 
a negative control. β-actin gene was used as the internal 
reference. Primers used for gene amplification are 
available on request. 
 
The miRNAs (mmu-miR-449a, mmu-miR-449c, mmu-
miR-34c, mmu-miR-34b-5p, mmu-miR-15a, and mmu-
let-7) were detected by qPCR. Briefly, 2 μg RNA were 
performed using the miRcute miRNA First-Strand 
cDNA Synthesis Kit (Tiangen, Beijing, China). The 
qPCR was then conducted using the miRcute miRNA 
qPCR Detection Kit (SYBR) (Tiangen, Beijing, China) 

http://www.targetscan.org/vert_71/
http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
http://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/
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in 20 μl reaction solution containing 1 μl cDNA, 10 μl 
2× miRcute miRNA premix, 0.4 μl 50× ROX Reference 
Dye, 0.4 μl forward primer, 0.4 μl reverse primer, and 
7.8 μl ddH2O. The PCR amplification procedure was 
carried out on an ABI Prism 7500 Fast Sequence 
Detection System (ABI, Carlsbad, CA, USA) at 94°C for 
2 min, followed by 40 cycles of 95°C for 20 s and 60°C 
for 35 s. Small nucleolar RNA (RNU6B) was used as the 
housekeeping loading reference. Forward primers were 
designed based on mature miRNA sequences while the 
reverse primers were provided by the miRcute miRNA 
qPCR Detection Kit (SYBR) (Tiangen, Beijing, China). 
 
The relative gene expression was calculated using the 2-

ΔΔCt method [49] (Song et al., 2018). The experiments 
were conducted three times independently. Statistical 
comparison of the levels was analyzed using two-tail 
unpaired Student’s t-test, and differences were 
considered significant if P < 0.05. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. Hierarchical clustering of genes in significant modules. The colors are assigned to each module by the 
Dynamic Tree Cut. 
 

 
 

Supplementary Figure 2. Heatmap plot of topological overlap in the gene network. Each row and column corresponds to a gene, 
light color denotes low topological overlap, and progressively darker red denotes higher topological overlap. Darker squares along the 
diagonal correspond to modules. The gene dendrogram and module assignment are shown along the left and top. 
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Supplementary Figure 3. Hierarchical clustering of module eigengenes that summarize the modules found in the clustering 
analysis. Branches of the dendrogram (the meta-modules) group together eigengenes that are positively correlated. 
 

 
 

Supplementary Figure 4. Hierarchical clustering and heatmap of module eigengenes (labeled by their colors) and the 
triglyceride  
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Supplementary Figure 5. Preservation statistics in age-related vascular aging data (GSE50833). The size of the bubble represents 
module size in the data subset used to assess module preservation. The horizontal lines indicate the Z-summary.preservation thresholds for 
strong evidence of conservation (above 10) and for low to moderate evidence of conservation (above 2). (A) Z-summary.preservation related 
to module size (B) relationship between the two preservation statistics (Z-summary.preservation and medianRank). Lower medianRank 
indicates higher preservation. 
 

 
 

Supplementary Figure 6. Scatterplot showes a highly significant correlation between gene significant (GS) versus module 
membership (MM) in the blue module with free fatty acid (FFA). 
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Supplementary Figure 7. Scatterplot showes a highly significant correlation between gene significant (GS) versus module 
membership (MM) in the turquoise module with leptin. 
 

 
 

Supplementary Figure 8. Protein-protein interaction network of Enpp5 gene. 
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Supplementary Tables 
 
Please browse Full Text version to see the data of 
Supplementary Tables 1–21. 
 
Supplementary Table 1. Normalized values for 
agilent TXT files of GSE50833 with quantile method. 

Supplementary Table 2. Differentially expressed 
genes with p-value < 0.05 between 6 and 20 months 
old mice. 

Supplementary Table 3. 1036 significantly 
differentially expressed genes between 3 32-week 
and 3 78-week old wild-type mice (P ≤ 0.05) from a 
study by Gräbner et al., (2009) 

Supplementary Table 4. 125 genes matched to 
modules defined by dataset GSE10000. 

Supplementary Table 5. GO enrichment terms of the 
genes within the significant modules. 

Supplementary Table 6. Promoter analysis of the 30 
hub genes in the turgquoise module by iRegulon. 

Supplementary Table 7. Promoter analysis of the 30 
hub genes in the blue module by iRegulon. 

Supplementary Table 8. Promoter analysis of the 30 
hub genes in the red module by iRegulon. 

Supplementary Table 9. Promoter analysis of the 90 
hub genes in the turquoise, blue and red modules. 

Supplementary Table 10. Module membership (MM) 
of genes within the modules and gene significance (GS) 
in the turquoise module and triglyceride. 

Supplementary Table 11. Module membership (MM) 
of genes within the modules and gene significance (GS) 
in the blue module and free fatty acide (FFA). 

Supplementary Table 12. Module membership (MM) 
of genes within the modules and gene significance (GS) 
in the turquoise module and leptin. 

Supplementary Table 13. Cytoscape-format node list 
for the turquoise-blue modules. 

Supplementary Table 14. Cytoscape-format edge list 
for the turquoise-blue modules. 

Supplementary Table 15. Betweeness centrality 
analysis of genes within the turquoise-blue modules 
with CytoNCA. 

Supplementary Table 16. Edge list of genes within blue 
module that is read in VisANT. 

Supplementary Table 17. Edge list of top 30 genes 
within the blue module that is read in VisANT. 

Supplementary Table 18. Edge list of genes within the 
red module that is read in VisANT. 

Supplementary Table 19. Edge list of top 30 genes 
within red module that is read in VisANT. 

Supplementary Table 20. Edge list of genes within the 
turquoise module that is read in VisANT. 

Supplementary Table 21. Edge list of top 30 genes 
within the turquoise module that is read in VisANT. 


