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INTRODUCTION 
 
Phosphatase of regenerating liver-3 (PRL-3), a dual-
specificity phosphatase, belongs to class I cysteine-
based protein tyrosine phosphatases (PTPs). PRL-3 is 
encoded by the PTP4A3 gene, which is located on 
chromosome 8q24.3 [1, 2]. In normal tissue, PRL-3 
mRNA expression has been found in skeletal muscle, 
the pancreas and the heart, and at lower levels in 
hematopoietic cells [3, 4]. However, PRL-3 protein has 
not been detected in mature human tissues [3]. PRL-3 
was first discovered to be specifically up-regulated in 
metastatic colorectal cancer (CRC) cells in 2001 [5]. 
Since then, overexpression of PRL-3 has been 
implicated in a wide range of solid tumors, including 
gastric, ovarian and lung [6, 7]. Other than in the solid 
tumors, PRL-3 is overexpressed in 50% of acute 
myeloid leukemia (AML)and 90% of multiple myeloma  

 

(MM)patients [8, 9]. Previous study indicates that PRL-
3 is transcriptionally regulated by STAT3, and the 
STAT3/PRL-3 regulatory loop contributes to the 
pathogenesis of AML [10]. Diverse roles of PRL-3 in 
tumor progression, including cell proliferation, 
migration, invasion, angiogenesis and metastasis, have 
been highlighted in recent reports that emphasize the 
importance of PRL-3 in tumorigenesis [11, 12]. 
 
Zheng et al. find that stathmin is a downstream target of 
PRL-3 in CRC. Interaction between PRL-3 and 
stathmin leads to aberrant microtubule destabilization, 
which promotes the progression and metastasis of CRC 
[13]. Stathmin is known as a highly conserved cytosolic 
phosphoprotein, and it can increase the rate of mitosis 
through up-regulation of microtubule dynamics [14]. 
Regulation of microtubule dynamics via 
phosphorylation and dephosphorylation at stathmin 
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ABSTRACT 
 
PRL-3, an oncogenic dual-specificity phosphatase, is overexpressed in 50% of acute myeloid leukemia patients. 
Stathmin has been identified as a downstream target of PRL-3 in colorectal cancer. However, the correlation 
between PRL-3 and stathmin in myeloid leukemia is unclear. In this study, we revealed the positive correlation 
between PRL-3 and stathmin in myeloid leukemia. Knockdown of the PRL-3 gene by shRNA reduced the expression 
of downstream stathmin, suppressed cell proliferation, induced G2/M arrest and cell apoptosis, and inhibited 
migration and invasion in myeloid leukemia cells. Moreover, our study was the first to provide evidence that 
silencing PRL-3 increased the phosphorylation level in Ser16, Ser25, Ser38, and Ser63 of stathmin, and in turn 
inhibited the STAT3 and STAT5 signaling in myeloid leukemia cells. This evidence points to a promoted role for  
PRL-3 in the progression of myeloid leukemia, and PRL-3 could be a possible new treatment target. 
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serine sites is essential for orderly progression through 
cell cycle. There are four serine phosphorylation sites 
(Ser16, Ser25, Ser38, and Ser63) at stathmin. Ser16 is 
phosphorylated by protein kinase C(PKC), or 
Ca2+/calmodulin-dependent kinase II/IV. Ser 63 is 
phosphorylated by cAMP-dependent protein kinase A 
[15, 16]. Ser25 and Ser38 are targeted by mitogen-
activated protein kinases (MAPKs) and cyclin-
dependent kinases (CDKs), respectively [17, 18]. The 
abnormal phosphorylation of the four different serine 
sites can directly result in the abnormal function activity 
of stathmin, which is the malignant proliferation of 
cells. Furthermore, our previous study showed that 
stathmin is highly expressed in primary and relapsed 
AML patients, whereas its expression is decrease or 
undetectable in remission patients. Patients with low 
expression after complete remission have a risk of 
relapse [19]. However, knowledge about the correlation 
between PRL-3 and stathmin in myeloid leukemia is 
unclear.  
 
In the current study, we investigated (1) the correlation 
between PRL-3 and stathmin in myeloid leukemia; (2) 
the biological behavior in myeloid leukemia cells after 
PRL-3-silencing; and (3) the roles of stathmin in PRL-3 
mediated myeloid leukemia pathogenesis. Our findings 
demonstrate that targeting PRL-3/stathmin may be of 
clinical benefit in treatment of myeloid leukemia with 
high PRL-3 expression. 
 
RESULTS 
 
Correlation analysis 
 
To study the relevance between PRL-3 and stathmin, 
western blot was used to detect the expression of PRL-3 
and stathmin in clinical samples and cell lines. The 
median expression of PRL-3 and stathmin in de novo 
myeloid leukemia patients was 1.175 (Figure 1A) and 
1.121(Figure 1B), respectively. They were significantly 
higher than those of normal controls (P<0.01). The data 
demonstrated that both PRL-3 and stathmin were 
overexpressed in de novo myeloid leukemia patients 
(Figure 1C). Spearman correlation analysis revealed a 
positive correlation between them in clinical samples 
(r=0.623, P<0.01). Meanwhile we detected the 
expression of PRL-3 and stathmin in independent 
myeloid leukemia cell lines including HL-60, Kasumi-
1, NB4, U937, K562, and imatinib resistant K562/G01 
(Figure 1E). There was a significant positive correlation 
in these cell lines (r=0.709, P<0.01), which was 
consistent with the result of clinical samples. The 
mRNA expression of PRL-3 and stathmin in these cell 
lines had a similar trend with protein (data not shown). 
Owing to its higher expression of PRL-3 (Figure 1D), 
we used K562 and K562/G01 cells for our further study. 

PRL-3-silencing reduces the expression of stathmin 
in K562 cells  
 
Data from qPCR and western blot showed that PRL-3 
expression in the KD groups was markedly decreased in 
both mRNA and protein (Figure 2A, 2C, 2E). We 
further examined the change of downstream stathmin in 
PRL-3-silencing K562 and K562/G01 cells. Down-
regulation of PRL-3 dramatically reduced the mRNA 
and protein expression of stathmin in the K562-KD 
group, compared with the NC group (P<0.01). In 
contrast, stathmin remained unchanged in the 
K562/G01-KD group (Figure 2B, 2D, 2E).  
 
PRL-3-silencing inhibits proliferation and colony 
formation in K562 cells 
 
To determine whether down-regulation of PRL-3 
inhibited cell proliferation, our study examined cell 
growth and colony-forming abilities in K562 and 
K562/G01 cells. As shown in Figure 3A, knockdown of 
PRL-3 by shRNA induced a time-dependent, 
progressive decrease in K562 cell viability. The OD 
value dropped from 1.006±0.031 to 0.554±0.062 
(P<0.01), compared with the NC group at 72h following 
transfection. Concomitantly, shPRL-3 not only 
significantly increased the loss of clonogenic survival of 
the K562 (Figure 3C), but also decreased the size of the 
colonies (Figure 3B). While in K562/G01 cells, the OD 
value of the KD group and the NC group were 
statistically similar (P>0.05) (Figure 3A) at the same 
time point. And the ratio of colony formation of the KD 
group and the NC group was 46.250±1.750% and 
49.250±2.750%, respectively (P>0.05) (Figure 3B, 3C). 
 
PRL-3-silencing induces G2/M phase arrest and 
apoptosis in K562 cells 
 
To evaluate the effect of PRL-3 gene silencing on the cell 
cycle distribution, cell cycle analysis was performed. As 
shown in Figure 3D, the percentage of G2/M phase in the 
K562-KD group was 17.86±1.673%, which was higher 
than that of the NC group (5.047±1.670%) (P<0.01). 
Additionally, the percentage in the S phase was 
significantly decreased in the K562-KD group 
(55.03±1.557%) compared with the NC group 
(69.17±2.715%) (P<0.01). The data suggested that down-
regulation of PRL-3 in K562 cells resulted in cell cycle 
arrest in G2/M phase. We further conducted the apoptosis 
assay. As anticipated, the total apoptosis ratio of K562-
KD group reached to 14.133±0.513% in comparison to 
the NC group (P<0.01) (Figure 3E). Moreover, the 
percentage of early apoptotic cells (Annexin-V PE+ 
7AAD−) was 10.667±1.890% in the K562-KD group. 
However, PRL-3-silencing led to a modest change of 
G2/M phase in the K562/G01-KD group (P > 0.05) 
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(Figure 3D). And the apoptosis assay showed that there 
was no significant difference in the K562/G01-KD group 
and NC group (P > 0.05) (Figure 3E). 
 
PRL-3-silencing suppresses migration and invasion 
in K562 cells 
 
To investigate whether down-regulation of PRL-3 
reduced the capacity of cell migration and invasion in 
vitro, a transwell chamber assay was performed. The 
OD value of migrated cells in the K562-KD group and 
the NC group was 0.091±0.005 and 0.176±0.016, 
respectively (P<0.01) (Figure 4A). And the migration 

inhibition ratio of the K562-KD group reached 
48.295%. In parallel the invasion capacity dropped to 
68.167% in the K562-KD group (P<0.01) (Figure 4B, 
4C). Following, we measured the expression of 
migration and invasion related protein, including MMP-
2 and MMP-9. Consistently, the expression of MMP2 
(P<0.01) and MMP9 (P<0.05) in the K562-KD group 
were significantly decreased (Figure 4D–4F). No 
similar alternations in migration and invasion were 
observed in K562/G01 cells (P>0.05). Collectively, 
these data showed that down-regulation of PRL-3 could 
suppress the migration and invasion of K562 cells  
in vitro.  

 

 
 

Figure 1. Expression of PRL-3 and stathmin in clinical samples and cell lines detected by western blot. (A–C) Expression of PRL-3 
and stathmin in de novo myeloid leukemia patients. (D, E) Expression of PRL-3 and stathmin in myeloid leukemia cell lines. (*P<0.05, 
**P<0.01, vs. healthy normal control). Note: N, healthy normal control. P, de novo patient. 
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PRL-3-silencing reduces dephosphorylation of 
stathmin and inhibits the activation of STAT3 and 
STAT5 signaling in K562 cells 
 
As mentioned above, phosphorylation and 
dephosphorylation of stathmin at four different serine 
sites could affect the cell cycle and cellular 
proliferation. Next we examined the phosphorylation of 
stathmin. Compared with the NC group, PRL-3-
silencing dramatically increased the phosphorylation at 
Ser16, Ser25, Ser38, and Ser63 of stathmin in the K562-
KD group (P<0.01) (Figure 5A–5E). Constitutive 

activation of JAK/STAT signaling pathway is 
frequently observed in leukemia cells [20]. Thus, we 
investigated whether PRL-3 influenced the activation of 
STATs signaling. shPRL-3 remarkably decreased the 
phosphorylation of STAT3 (P<0.01) (Figure 5H) and 
STAT5 (P<0.05) (Figure 5J) in the K562-KD group. 
Total STAT3 and STAT5 were unaffected by shPRL-3 
(P>0.05) (Figure 5F, 5G, 5I). The results indicated  
that down-regulation of PRL-3 enhanced the 
phosphorylation of stathmin, which might inhibit the 
constitutive activation of STAT3 and STAT5 signaling 
in K562 cells. 

 

 
 

Figure 2. Expression of PRL-3 and stathmin was assessed after PRL-3-silencing in K562 and K562/G01 cells. (A) The mRNA 
expression of PRL-3 after transfection. (B) The mRNA expression of stathmin after PRL-3-silencing. (C, D) Quantification of PRL-3 and stathmin 
were normalized to β-actin. (E) Western blot of PRL-3 and stathmin expression were detected after shPRL-3. (*P<0.05, **P<0.01, vs. NC 
group). 
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Figure 3. Effects of PRL-3-silencing on cell proliferation and apoptosis were evaluated in K562 and K562/G01 cells. (A) A cell 
growth curve was plotted based on the OD value (proportional to cell numbers) obtained at different time points following transfection. (B, 
C) Colonies containing ≥40 cells were counted on day 7 using a microscope (×200). (D) Cells were labeled by PI and analyzed using FCM. (E) 
Apoptotic cells were measured by FCM. Dot plots show 7-AAD (y-axis) vs. Annexin-V (x-axis). (*P<0.05, **P<0.01, vs. NC group). 
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Figure 4. Effects of PRL-3-silencing on cell migration and invasion were evaluated in K562 and K562/G01 cells. (A) The OD 
values (proportional to cell numbers) of migrated cells were measured by MTS assay. (B) The invasion cell numbers were counted under 
microscope in five HP fields. (C) Wright-Giemsa stained invasion cells were observed under microscope (×200). (D, E) Quantification of MMP2 
and MMP9 were normalized to β-actin. (F) MMP2, MMP9, PRL-3 and β-actin expression by western blot. (*P<0.05, **P<0.01, vs. NC group). 
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Different results were observed in the K562/G01-KD 
group. The ratio of Ser25 phosphorylated protein in 
stathmin was significantly higher than that in the NC 
group (P<0.01), while other phosphorylated sites 
showed no significant difference (P>0.05) (Figure 
5A–5E). To our surprise, we observed that p-STAT5 
in the K562/G01-KD group was significantly higher 
than that in the NC group (P<0.01). At the same time, 
there was no alteration in p-STAT3 (Figure 5F–5J). 

DISCUSSION 
 
In the present study, we revealed that there is a 
positive correlation between PRL-3 and stathmin in 
myeloid leukemia. Of note, we are the first to 
demonstrate that through the aberrant phosphorylation 
of the four serine sites, stathmin mediates the role of 
PRL-3 in myeloid leukemia progression via targeting 
STAT3 signaling. 

 

 
 

Figure 5. The protein phosphorylation of stathmin and STATs signaling expressed in K562 and K562/G01 cells after PRL-3-
silencing. (A) Stathmin, the four stathmin-serine sites, and β-actin expression were detected by western blot. (B–E) Quantification of 
stathmin-phospho (Ser16, Ser25, Ser38, and Ser63) were normalized to stathmin. (F) STAT3, p-STAT3, STAT5, p-STAT5 and β-actin expression 
were detected by western blot. (G–J) Quantification of p-STAT3 and p-STAT5 were normalized to STAT3 and STAT5, respectively. (*P<0.05, 
**P<0.01, vs. NC group). 



www.aging-us.com 7824 AGING 

Evidence suggests that PRL-3 has pro-oncogenic 
properties in AML. Elevated PRL-3 expression occurs in 
about 50% of AML patients while it is absent in normal 
myeloid cells from bone marrow [8]. In addition, a large-
scale study of primary AML patients demonstrates that 
high level of PRL-3 is an independent negative 
prognostic factor in AML, both for overall survival and 
event-free survival [21]. Zheng et al. further find that 
stathmin, as a new downstream target of PRL-3 in 
SW480 cells, is decreased when PRL-3 is down-
regulated. Zheng et al. therefore conclude that direct 
interaction between PRL-3 and stathmin cause abnormal 
microtubule depolymerization in colon cancer cells, and 
promote the cell cycle, which plays a critical role in the 
progression of CRC [13]. However, there are few reports 
on the correlation between PRL-3 and stathmin in 
myeloid leukemia. Therefore, in this study we analyzed 
the expression of PRL-3 and stathmin in myeloid 
leukemia patients and myeloid leukemia cell lines. Our 
data suggested that there is a positive correlation between 
PRL-3 and stathmin in myeloid leukemia. Thus we chose 
K562 and K562/G01 cells for our further study owing to 
the higher expression of PRL-3. Interestingly, a 
corresponding decrease in stathmin was observed with 
the down-regulation of PRL-3 in K562 cells. This result 
was similar with published work that shows the 
knockdown of PRL-3 reducing the levels of stathmin in 
AML cells, Molm-14 and HEL cells [22]. 
 
To assess the roles of PRL-3 in pathogenesis of myeloid 
leukemia, further studies on the biological behavior 
were performed. With PRL-3-silencing, we found a 
clear reduction in cell viability and increased apoptosis 
in K562 cells. These results were in accordance with the 
study that shows significant effect of PRL-3 knockdown 
by siRNA on proliferation or apoptosis in classical 
Hodgkin lymphoma (HL) [23]. Cell cycle analysis 
indicated that PRL-3-silencing led to accumulation of 
K562 cells in the G2/M phase. These data implied that 
shPRL-3 inhibited proliferation through cell cycle 
blockage. To verify the speculation, we assessed the 
phosphorylation of stathmin at the four serine sites. 
Western blot results showed that the expression of 
stathmin was decreased by shPRL-3, meanwhile 
phosphorylation level of the four serine sites were 
markedly increased in K562 cells. As is known, 
stathmin is a downstream target of PRL-3 and plays a 
critical role in cell cycle progression [13]. The activity 
of stathmin is switched off at the onset of mitosis by 
phosphorylation to allow microtubule polymerization. 
Phosphorylated stathmin has to be reactivated by 
dephosphorylation upon entry into a new interphase 
[24]. That is, abnormal phosphorylation of stathmin led 
to the cell cycle blockage and induced  
cell apoptosis. It has been reported that inhibiting 
stathmin through different means result in cancer cell 

cycle arrest in G2/M phase and induce apoptosis [25, 
26]. Together, this might be an explanation for inhibited 
proliferation and induced apoptosis in K562 shPRL-3. 
 
It has been reported that migration and motility are linked 
to PRL-3 overexpression in several cancers [27–29]. 
PRL-3 can up-regulate the expression of MMP-2 and 
MMP-9, which promote peritoneal metastasis of gastric 
cancer cells [30]. Knockdown of PRL-3 in HL cell lines 
L1236 and HDLM2 reduces migration towards a CCL19 
gradient [23]. In this study, shPRL-3 significantly 
reduced migration and invasion in K562 cells. It was 
consistent with the conclusion previously reported in HL. 
Furthermore, a recent study has shown that the blocking 
activation of STAT3 can reduce the expression of MMP2 
and inhibit the invasion ability of cancer cells [31]. 
Meanwhile STAT3 can activate MMP9 in human dermal 
fibroblasts [32]. STAT3 can be constitutive activation by 
overexpression of PRL-3 in MM cells [33]. The 
activation of STAT3 and STAT5 directly promote 
transcription of PRL-3 in AML cells [10, 34]. Whether 
PRL-3-silencing affected the activation of STATs 
signaling was also addressed in this study. Our data 
suggested that the activation of STAT3 and STAT5 were 
remarkably suppressed by shPRL-3 in K562 cells. Based 
on the available data, down-regulation of PRL-3 could 
decrease the expression of stathmin and enhance the 
phosphorylation of stathmin. Since stathmin is a signal 
relay station, we speculated that abnormal 
phosphorylation of stathmin in turn inhibited the STAT3 
and STAT5 signaling, which might partly reverse the 
malignant characteristics of K562 cells. 
 
However, down-regulation of PRL-3 could not 
significantly reduce the expression of stathmin in 
K562/G01 cells. Furthermore, shPRL-3 had little effect 
on cell proliferation, cell cycle, cell apoptosis, and 
migration and invasion in K562/G01 cells. These results 
were beyond our anticipation. We merely observed that 
phosphorylation of the stathmin Ser 25 was markedly 
increased after PRL-3-silencing. PRL-3 as a dual-
specificity phosphatase (DUSP), is also identified as a 
MAPK phosphatase (MKP-DUSP), and participates in 
the dephosphorylation of the MAPK signaling pathway 
[2]. Stathmin Ser25 targeted by MAPK was abnormally 
phosphorylated after PRL-3-silencing in K562 and 
K562/G01 cells. Our data indicated that stathmin Ser25 
was an important regulation site by PRL-3 in myeloid 
leukemia cells. Remarkably, phosphorylation at either 
Ser 16 or Ser 63 strongly reduces the ability of stathmin 
to bind to and sequester soluble tubulin [35]. 
In comparison, phosphorylation at Ser 25 and/or Ser38 is 
not sufficient to inhibit the association between α/β-
tubulin and stathmin. Hence, high expression of stathmin 
still maintained functional activity after PRL-3-silencing 
in K562/G01 cells. 
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There is still a problem. Why the K562 and K562/G01 
cells react differently to shPRL-3 remains. As is known, 
erythroleukemia cell line K562 was derived from a 
patient with chronic myeloid leukemia (CML) in blast 
crisis phase [36]. Imatinib, as a first-generation tyrosine 
kinase inhibitor (TKI), is used for the first-line 
treatment of bcr/abl+ CML patients [37]. An imatinib-
resistant human myeloid leukemia cell line K562/G01 
was established in 2004. Qi et al. find that K562/G01 
cells have increased levels of bcr/abl and the increased 
tyrosine kinase activity in comparison to K562 cells 
[38]. Bcr/abl can induce cellular transformation by 
activating the STAT5, and STAT5 is a critical factor for 
the sensitivity of CML progenitor cells to TKIs [39]. It 
has been reported that PRL-3 is a downstream target of 
bcr/abl signaling, and imatinib dose dependently 
decreased p-STAT3, p-STAT5 and PRL-3 in K562 and 
KCL-22 cells [40]. Interestingly, in our study the 
constitutive activation of STAT5 was observed in 
K562/G01 cells after shPRL-3, not in K562 cells. 
Owing to imatinib resistance in K562/G01 cells, we 
speculated that activation of STAT5 signaling might 
weaken the effect of PRL-3 to stathmin after PRL-3-
scilencing. It might well explain the different reaction in 
K562 and K562/G01 cells after silencing PRL-3 gene. 
 
However, all of the data obtained were only based on 
the investigation in one myeloid leukemia cell line 
K562, so the data might not be convincing enough. 

Therefore, myeloid leukemia cell line Kasumi-1 with 
moderately expression of PRL-3 was also chosen to 
knock down the PRL-3 gene by shRNA (data not 
shown). As expected, a corresponding decrease in 
stathmin was observed with the down-regulation of 
PRL-3. The following detection about the 
phosphorylation of stathmin and STATs signaling were 
performed in Kasumi-1 cells (data not shown). Western 
blot results were similar with the changes in K562 cells. 
The data of Kasumi-1 cell line are helpful to verify our 
opinion from molecular mechanism. Through the 
phosphorylation of the four serine sites, stathmin 
mediated the role of PRL-3 in myeloid leukemia 
progression via targeting STAT3 signaling. It is 
worthwhile to further investigate whether the small 
molecule inhibitors of PRL-3 exert similar effects as the 
shPRL-3, which will open up possibility for in vivo 
experiments. 
 
In summary our current work suggests that PRL-3 and 
stathmin have a positive correlation in myeloid 
leukemia. shPRL-3 reduces the expression of 
downstream stathmin, suppresses proliferation and 
migration, and induces apoptosis. This process occurs 
probably by enhancing the phosphorylation of four 
stathmin serine sites, thus targeting suppression of 
STAT3 signaling (Figure 6). Of note, these findings 
indicate that PRL-3 may represent a novel target for 
treatment of myeloid leukemia. 

 

 
 

Figure 6. Suggested mechanisms for a possible interplay between PRL-3, stathmin, and STATs. With blocking of PRL-3, expression 
and activity of stathmin is reduced, and STAT3 and STAT5 activity are suppressed in K562 cells. The proliferation, migration, and invasion are 
reduced. In contrast, expression and activity of stathmin is not altered with shPRL-3 in K562/G01 cells, which results in K562/G01 cells 
maintaining malignant phenotypes. 
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MATERIALS AND METHODS 
 
Cell lines and cell culture 
 
Myeloid leukemia cell lines (HL-60, NB4, U937, and 
K562), imatinib resistant K562/G01 cell line were from 
CCTCC (China Center for Type Culture Collection, 
Wuhan, China). Myeloid leukemia cell line Kasumi-
1(gift from Prof. Ligen Liu, The Fifth People's Hospital 
of Shanghai, Fudan University, Shanghai, China). Cells 
were cultured in RPMI-1640 supplemented with 10% 
FBS. Imatinib (4 µM) was added to K562/G01 cell 
culture to maintain drug resistance. K562/G01 cells 
were grown in imatinib-free culture medium at least two 
weeks for each experiment. 
 
Clinical samples collection 
 
The peripheral blood samples before chemotherapy 
were obtained from 8 newly diagnosed myeloid 
leukemia patients in Union Hospital of Fujian Medical 
University. The blast cells in peripheral blood were 
more than 80%. Normal controls from 8 healthy 
volunteers were also recruited. Peripheral blood 
mononuclear cells were isolated using density gradient 
centrifugation. All patients had given informed consent. 
The study was approved by the Ethics Committee in 
Fujian Medical University. 
 
Lentiviral transduction for PRL-3 knockdown 
 
Short hairpin RNA (shRNA) was from Genechem 
Company (Shanghai, China). The shRNA targeting the 
PRL-3 gene had the antisense: 5′-CCTGTTCTCGGCA 
CCTTAA-3′. Three groups were established, which 
included KD group (transfected with PRL-3-shRNA-
LV), NC group (transfected with scramble-shRNA-LV) 
and CON group (blank control). Transfected cells were 
grown in medium containing 1.5 µg/ml puromycin for 
selection. 
 
Quantitative PCR analysis 
 
Total RNA was extracted with TRIzol reagent and reverse 
transcribed into cDNA. qPCR was done using Power 
SYBR Green PCR Master Mix (TIANGEN, Beijing, 
China). Primer sequences of GAPDH, PRL-3 and stathmin 
for qPCR were the following: PRL-3 Forward: 5′-
GCTTCCTCATCACCCACAAC-3′, Reverse: 5′-ACTTC 
ACACACACGCACCAC-3′; stathmin Forward: 5'-TCAG 
CCCTCGGTCAAAAGAAT-3′, Reverse: 5′-TTCTCGTG 
CTCTCGTTTCTCA-3′; GAPDH Forward: 5′-TCTCTGC 
TCCTCCTGTTC-3′, Reverse: 5′-GCCCAATACGACCA 
AATCC-3′. The comparative 2-ΔΔCt-method was used for 
relative quantification, with GAPDH as endogenous 
reference.  

Cell proliferation assay 
 
Cells (0.25×105) were seeded in 96-well plates, and 
cultured for 24h, 48h, 72h, and 96h. Cells were then 
pulsed with 20µl MTS and incubated at 37°C for 3h. 
The absorbance was measured at 492/630 nm using a 
Microplate Reader (MK3, Thermo Fisher Scientific, 
USA).  
 
Colony formation assay 
 
Cells (4×102) were plated in 24-well plates containing 
0.8% methylcellulose (Sigma, CA, USA), and routinely 
cultured for 7-10 days. The number of colonies (containing 
≥40 cells) was counted and the efficiency of colony 
formation was calculated. 
 
Cell cycle analysis 
 
Cells (5.0×105) were incubated with 100µl RNase A at 
37°C for 30 min. Then cells were stained with PI 
(Keygen, Nanjing, China) at 4°C for 30 min and 
analyzed using a flow cytometry (Accuri C6, BD 
Bioscience, USA).  
 
Apoptosis assay 
 
Cells were harvested and resuspended with binding 
buffer, then stained with Annexin V-PE/7-AAD (BD 
Bioscience, USA) according to the manufacturer’s 
instruction. The apoptotic cells were quantified by flow 
cytometry (Accuri C6, BD Bioscience, USA). 
 
Migration and invasion assay 
 
The capacity of migration and invasion was assessed 
using Transwell plate with a membrane of pore size 8 
μm (Coring, MA, USA). Matrigel was coated on the 
upper chamber for invasion assay according to the 
manufacturer’s protocol. Cells (1×105) were seeded 
to the upper chamber. After 24h of incubated at 37°C, 
for migration assay: cells dropped to the lower 
chamber were detected using MTS. For invasion 
assay: cells attached to the lower surface of the 
membrane on upper chamber were fixed by methanol 
and stained with Wright-Giemsa. The upper chamber 
cells were counted using a microscope (IX71, 
Olympus, Japan). 
 
Western blot analysis 
 
Cells were subjected to western blot analysis following 
a standard protocol. Antibodies against PRL-3, STAT3, 
p-STAT3 (Tyr705), STAT5, and p-STAT5 (Tyr694) 
were from Cell Signaling Technology (Beverly, MA, 
USA). Antibodies against stathmin and p-stathmin (S16, 
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S25, S38, S63) were from Abcam (Cambridge, UK). 
Antibodies against MMP2, MMP9 and β-actin were 
from Santa Cruz Biotechnology (Dallas, TX, USA). β-
actin was used as the internal reference. Quantification 
of the band densitometry was performed by Image J 
1.43 software (NIH, MD, USA). 
 
Statistical analysis 
 
Data are presented as mean ± standard deviation (SD) 
and analyzed base on SPSS 18.0 software. Students’t-
test, or one-way analysis of variance (ANOVA) was 
performed to compare differences between groups. The 
Spearman method was performed to correlate analysis. 
A value of P < 0.05 was considered statistically 
significant. 
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