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INTRODUCTION 
 
Aging poses profound health-related challenges that need 
to be tackled to reduce the social and economic burden 
on our aging society. Multidisciplinary perspectives will 
be of tremendous importance to understand the 
underlying molecular processes of aging and to 
accelerate the discovery and development of effective 
aging interventions. It is therefore indispensable that 
industry and academia develop deeper cooperation and 
greater interchange of knowledge and technology. For 
this purpose, world leading experts from diverse research 
fields and various sectors came together at the 6th 
installment of the Aging, Drug Discovery and Artificial 
Intelligence conference, which was held from the 10th to 
the 12th September 2019 in Basel as part of the Basel Life 
Science Week. The event was co-organized by the teams 
lead by Morten Scheibye-Knudsen, Center for Healthy 
Aging, University of Copenhagen, Denmark, and Alex 
Zhavoronkov, Insilico Medicine, Hong-Kong. In the 
following, we provide an overview of the discussed 

research topics. The meeting followed on the heels of the 
5th ARDD [1].  
 
Challenges in aging research 
 
Although great progress has been made towards the 
understanding of aging mechanisms, effective drug 
interventions are still missing for most age-related 
disorders. Targeting the aging process contrasts the 
traditional approach of “one disease-one drug”; thus, 
multiple challenges need to be overcome, as discussed by 
Nir Barzilai from the Albert Einstein College of 
Medicine, NY, USA. In particular, the political attention 
needs to be further strengthened by highlighting the 
clinical and economic benefits of aging interventions [2]. 
However, no party will cover intervention costs without 
an indication for which simple and reliable biomarkers 
are still lacking. Towards a resolution of this issue, the 
“Targeting Aging with Metformin” (TAME) study driven 
by Nir Barzilai may represent a proof-of-concept that 
could pave the way to clinical trials leading to healthy 
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ABSTRACT 
 
An increasing aging population poses a significant challenge to societies worldwide. A better understanding of the 
molecular, cellular, organ, tissue, physiological, psychological, and even sociological changes that occur with aging 
is needed in order to treat age-associated diseases. The field of aging research is rapidly expanding with multiple 
advances transpiring in many previously disconnected areas. Several major pharmaceutical, biotechnology, and 
consumer companies made aging research a priority and are building internal expertise, integrating aging research 
into traditional business models and exploring new go-to-market strategies. Many of these efforts are 
spearheaded by the latest advances in artificial intelligence, namely deep learning, including generative and 
reinforcement learning. To facilitate these trends, the Center for Healthy Aging at the University of Copenhagen 
and Insilico Medicine are building a community of Key Opinion Leaders (KOLs) in these areas and launched the 
annual conference series titled “Aging Research and Drug Discovery (ARDD)” held in the capital of the 
pharmaceutical industry, Basel, Switzerland (www.agingpharma.org). This ARDD collection contains summaries 
from the 6th annual meeting that explored aging mechanisms and new interventions in age-associated diseases.  
The 7th annual ARDD exhibition will transpire 2nd-4th of September, 2020, in Basel.  

mailto:bakula@sund.ku.dk
mailto:bakula@sund.ku.dk


www.aging-us.com 9973 AGING 

aging [3]. Indeed, metformin has been reported to extend 
lifespan in animal studies [4, 5] and linked to longevity in 
a retrospective clinical study on type 2 diabetes 
treatments [6]. A recently published human clinical trial 
further underlined its widespread effect based on 
transcriptomic data revealing gene expression changes of 
aging-linked metabolic and non-metabolic pathways [7].  
 
Besides Metformin there are multiple other well-studied 
drugs that show high potential as aging drugs, as outlined 
by Brian Kennedy from the National University of 
Singapore, Singapore. He summarized known lifestyle 
interventions and small molecules that have been shown 
to cause lifespan extension. However, whether these aging 
interventions improve the organismal healthspan often 
remains a mystery. His research group recently revealed 
that the tricarboxylic acid cycle intermediate α-
ketoglutarate increases the lifespan of mice [8]. Strikingly, 
the effect of α-ketoglutarate was even more profound on 
the healthspan than on the lifespan in mice that received 
the diet from the age of 18 months. Improved healthspan 
was indicated by a decreased level of inflammatory 
factors as well as a decreased frailty index.  
 
But how can we fill the gap between lab animal 
research, which has traditionally stopped at murine 
studies, and human clinical trials? Matt Kaeberlein 
from the University of Washington, Seattle, USA, and 
colleagues several years ago initialized the dog aging 
project to overcome this barrier [9]. Companion animals 
like dogs as model organisms provide multifarious 
advantages including a faster aging pace than humans, 
high genetic diversity and a shared environment with 
humans [10]. The dog aging project aims to investigate 
the influence of genetic and environmental determinants 
on the life- and healthspan of domestic dogs based on 
survey, sequencing, blood biochemistry and -omics data 
collection. Further, the project provides the opportunity 
to test aging interventions, as already initiated for the 
mammalian Target of Rapamycin (mTOR) inhibitor 
rapamycin. Notably, the completed phase 1 for the 
rapamycin intervention trial revealed no-side effects and 
improved cardiac function in treated dogs [11]. 
 
Aubrey de Grey from the SENS Research Foundation, 
Mountain View, California, USA, emphasized that 
placing the focus on healthspan and not on lifespan will 
help to rebut societal concerns for longevity 
investigations [12]. Further, he discussed that human 
diseases with a higher prevalence at older ages should be 
treated and explored differentially than communicable 
diseases. In this regard, he introduced the SENS Research 
Foundation (SRF) and their concept of maintenance by 
targeting mechanisms that mitigate cellular damage 
accumulating during aging. Notably, treatments of age-
related diseases directed by spinouts of SRF aim to 

increase the healthspan of elderly - increased longevity is 
considered as a positive side-effect.  
 
Cellular pathways of lifespan regulation 
 
Aging entails a functional decline of multiple cellular 
pathways that are required to maintain the cellular 
homeostasis. Nine hallmarks of aging were classified 
several years ago [13]; however, how these cellular 
mechanisms are regulated and interconnected is still not 
well understood. Adam Antebi from the Max Planck 
Institute for the Biology of Aging, Cologne, Germany, 
gave insights into how the nucleolus functions as a 
cellular stress signaling hub during aging [14]. Recent 
work from his group revealed a correlation between 
reduced nucleolar size, reduced nucleolar fibrillarin 
expression and extended lifespan in the nematode 
C. elegans [15]. In line with their observation, a ncl-1 
mutant strain with enlarged nucleoli reduced the 
lifespan of various genetic longevity models; conversely 
knockdown of nucleolar fibrillarin reduced nucleolar 
size and extended lifespan. Alongside reduced nucleolar 
size, long-lived C. elegans genotypes showed decreased 
ribosome biogenesis. A similar correlation between the 
nucleolus size and lifespan was observed in Drosophila, 
mice as well as in isolated muscle cells from elderly 
people who underwent a short-term period of reduced 
caloric intake and exercise. A function of the nucleolus 
in innate immunity was further demonstrated by the 
observation of decreased nucleolar size and fibrillarin 
expression upon bacterial infections [16]. These 
observations further link proteostasis and immune 
function with the aging process.  
 
Thorsten Hoppe from the University of Cologne, 
Cologne, Germany, presented his latest research results 
regarding microRNA-dependent regulation of 
proteostasis and longevity. Recently, his research group 
used an in vivo reporter assay [17] to identify protein 
degradation defects in C. elegans mutants lacking the 
microRNA mir-71 [18]. The study revealed that the 
microRNA mir-71 regulates food odor perception and 
subsequently controls the expression of tir-1 mRNA in 
AWC (amphid wing cell C) olfactory neurons. 
Disturbance of this pathway leads to reduced 
proteostasis in the intestine and premature aging in 
worms. Overall, their study highlighted a signaling axis 
between the brain and gut in response to food odor, a 
mechanism that may be relevant for age-associated 
neurological disorders such as Parkinson’s disease. 
 
Cornelis F. Calkhoven from the European Research 
Institute the Biology of Ageing, Groningen, 
Netherlands, shared with the audience his latest research 
of the mTORC1 driven transcription factor C/EBPβ-
LIP. Research of Cornelis Calkhovens group revealed 
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that reduced expression of C/EBPβ-LIP in a mouse 
model decreased age-dependent physical decline, 
immune aging, and tumor incidence, while improving 
metabolic function [19, 20]. Notably, increased lifespan 
was observed in female but not in male mice [20]. 
Further, they used a compound library of FDA 
approved drugs in a luciferase-based reporter assay to 
identify drugs that reduce LIP expression [21]. In the 
long-term, pharmacological inhibition of LIP expression 
could be used to mimic the effects of caloric restriction. 
 
Aged stem cell rejuvenation 
 
Stem cell rejuvenation holds great promise for the 
treatment of age-related disorders since stem cell 
exhaustion is thought to be a common feature of the aging 
process in multiple tissues [22]. Allowing self-renewal 
may boost the repair capacity of tissues and counteract the 
functional decline during aging. Danica Chen from the 
University of California, Berkeley, USA highlighted the 
Sirtuins, a NAD+-dependent protein deacetylase protein 
family, as key players during the aging process and as a 
promising target for stem cell rejuvenation [23]. Sirtuins 
were originally identified to increase the lifespan of yeast 
and the mammalian homologues Sirt2, Sirt3, and Sirt7 
have been shown to be downregulated in aged 
hematopoietic stem cells (HSC) [24, 25]. Danica and her 
team uncovered a mitochondrial metabolic checkpoint 
guarded by sirtuins that ensures mitochondrial health in 
HSCs [26–28]. The mitochondrial metabolic checkpoint 
becomes dysregulated in HSCs of old mice, resulting in 
loss of HSC maintenance due to NLRP3 inflammasome 
activation. Notably, targeting the Sirtuins-NLRP3 
signaling pathway improved the function and repair 
capacity of aged HSCs. 
 
Ana Martin-Villalba from the German Cancer Research 
Center, Heidelberg, Germany, introduced the audience to 
the world of neuronal stem cell regeneration. With age, 
the number of neuronal stem cells (NSCs) declines in the 
subventricular zone. Recently, Ana Martin-Vallalbas 
group revealed that a fast decline of all subpopulations of 
NSCs occurs from young to middle-aged mice, however, 
in old mice the decline was slowed down [29]. The 
remaining population of neuronal stem cells is 
maintained in a resistant quiescent state by inflammatory 
signals. However, once activated old NSCs show a 
functional similarity to young NSCs. Highlighting the 
potential of NSCs re-activation in the aged brain to 
counteract age-related neurological decline. 
 
Jerome Feige from Nestlé Research, Lausanne, 
Switzerland, emphasized different targeting strategies for 
augmenting the repair capacity of aged muscle stem cells. 
Loss of muscle mass and function can start at the early 
adult stage and lead to sarcopenia, which contributes 

vastly to the diminished life quality of the elderly [30]. 
The integrity of muscle stem cells is not only influenced 
by intrinsic mechanisms but also by the diverse muscle 
stem cell microenvironment, including fibro-adipogenic 
progenitor cells (FAPs) [31]. In line with this, recent work 
from his group revealed targeting of the muscle stem cell 
niche as a promising intervention strategy [32]. 
Transcriptome profiling identified the FAPs secreted 
matricellular protein WISP1 as an important factor for 
maintaining the integrity of muscle stem cells. 
Consequently, the expression of WISP1 declines during 
age and restoration of WISP1 expression counteracts the 
loss of muscle regeneration capacity.  
 
Targeting the stem cell niche to rejuvenate stem cell 
function was also discussed by Pekka Katajisto from 
the Institute of Biotechnology, HiLIFE, University of 
Helsinki, Helsinki, Finland and the Karolinska Institute. 
Intestinal stem cells (ISCs) are supported by Paneth 
cells that are specialized epithelial cells localized in the 
stem cell niche. Caloric restriction inhibits mTORC1 
signaling in Paneth cells, which promote ISC function 
via paracrine mechanism, and thereby improve 
regenerative capacity of intestinal epithelium after 
irradiation in mice [33]. During aging, the functionality 
of ISCs and Paneth cells decreases in human and in 
mice [34]. The loss of function is in part caused by an 
increase in Notum secreted by Paneth cells. Notum is a 
deacylase that inactivates Wnt ligands necessary for 
ISC maintenance and function. Strikingly, the Notum 
inhibitor ABC99 increased the Wnt signaling pathway 
in ISCs and restored the functionality of aged ISCs in 
vivo.  
 
Drug discovery in aging research 
 
Different strategies are pursued for the identification of 
aging interventions: de novo drug discovery or 
repurposing of existing drugs. In particular, repurposing 
of FDA-approved drugs provides numerous advantages, 
including lower costs and shorter timeline for the drug 
development pipeline. Alexey Moskalev from the 
Moscow Institute of Physics and Technology, Moscow, 
Russia, approached the question if aging drug discovery 
is becoming a reality. Geroprotection, is not a recent 
idea and already received attention in the 1950s where 
Denham Harman proposed the free radical theory of 
aging and the potential of antioxidants [35]. Since that 
time, more than 250 compounds have been shown to 
increase lifespan in aging model organisms by targeting 
cellular processes such as autophagy, cellular 
senescence or DNA repair [36]. As aging is a 
multifaceted process, recent studies indicate that a 
combined use of drugs leading to healthy aging may 
increase the benefit of single interventions [37, 38]. 
However, clinical trials for geroprotectors are still 
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lacking due to the missing availability of reliable 
biomarkers and beneficial drug classification [39]. 
 
One of the first and best-studied aging targets is the 
nutrient sensor mTOR. However, the regulatory 
mechanism is still not fully understood and studying 
mTOR regulation may help to identify new 
interventions in the future, as outlined by David 
Rubinsztein from the Cambridge Institute of Medical 
Research, University of Cambridge, UK. Recent work 
by David Rubinsztein’s group highlights the regulatory 
mechanism that leucine imposes on mTOR signaling 
[40]. Interestingly, in most of the cell types they 
studied, the described signaling pathway was driven by 
the leucine metabolite acetyl-coenzyme A and was 
independent of any, so far, identified leucine receptor. 
However, leucine sensing does appear to be mediated 
by leucine sensors in some cell types, like HEK293 
cells. In addition, David Rubinsztein underscored the 
potential of drug repurposing for the identification of 
autophagy inducers in brain disease [41]. A screen for 
FDA-approved L-type calcium channel blockers 
identified Felodipine as a strong autophagy inducer. 
Felodipine showed neuroprotective effects in a mouse 
model of Parkinson’s disease at plasma concentrations 
similar to those seen in people taking the drug for 
hypertension.  
 
Anne Bertolotti from the MRC, Cambridge, UK, 
discussed her research concerning the selective inhibition 
of phosphatases to enhance the protein quality control 
system in neurological disorders. Guanabenz was 
identified to selectively inhibit the protein phosphatase 
PPP1R15A, thereby inhibiting the dephosphorylation of 
elF2alpha [42]. Prolonged activation of elF2alpha reduced 
ER-stress caused by misfolded proteins via regulating 
protein translation/chaperone availability rate. Based on 
the promising effects of Guanabenz, its derivate Sephin1 
prevented molecular and physiological changes in disease 
models of Charcot-Marie-Tooth 1B and amyotrophic 
lateral sclerosis [43]. To expand the approach of 
phosphatase inhibition, Anne Bertolottis group developed 
a platform to screen for phosphatase inhibitors [44]. As a 
proof-of-concept, Raphin1 was identified as novel 
PPP1R15B inhibitor that attenuates neurological decline 
in a Huntington’s disease mouse model.  
 
Andrea Ablasser from the Global Health Institute, 
École Polytechnique Fédérale de Lausanne (EPFL), 
Lausanne, Switzerland, discussed the potential of 
targeting the cytosolic DNA sensing pathway cGAS-
Sting in human disease [45, 46]. The cGAS-Sting 
pathway triggers the inflammatory response and thus it 
represents a promising target for inflammatory-driven 
diseases. Recently, her group identified C-176, C-178 
and its derivates as small-molecule inhibitors of STING 

mediated IFNbeta response [47]. A three-month 
treatment with C-176 in a mouse model of 
inflammatory disease strongly reduced inflammatory 
parameters. Targeting the cGAS-Sting pathway may 
also be relevant for senescence-mediated pathologies as 
the cGAS-Sting pathway was recently shown to be a 
crucial regulator of cellular senescence [48]. 
 
Morten Scheibye-Knudsen from the Center for 
Healthy Aging, Copenhagen, Denmark, highlighted the 
diversity of aging features consistent with the 
complexity of the aging process [49]. He supplied 
evidence for a role of DNA damage in the aging process 
both through highlighting that loss of DNA repair leads 
to premature aging and by showing novel data 
suggesting that stimulating DNA repair might 
significantly extend the lifespan of model organisms. 
Importantly, in collaboration with Insilico Medicine, his 
team has discovered an abundance of small molecules 
able to stimulate DNA repair. 
 
Andrei Gudkov from the Department of Cell Stress 
Biology at Roswell Park Comprehensive Cancer Center, 
and its spinoff biotech company Genome Protection, 
Inc. (GPI), both in Buffalo, NY, discussed his ongoing 
work regarding the impact of genotoxic stress as a 
driver of cellular senescence and aging. Recently, a 
research study indicated that the re-activation of retro 
transposable elements may be a source of DNA damage 
during aging [50]. Inhibition of LINE1-encoded reverse 
transcriptase significantly reduced age-related systemic 
inflammation, accumulation of DNA damage markers 
and may provide a target for antiaging and anticancer 
interventions. Andrei Gudkov also briefly discussed the 
hurdle to assess the health status of organisms such as 
mice. In order to simplify this, they developed the 
physiological frailty index, a non-invasive method to 
determine the biological age of mice [51].  
 
Quentin Vanhaelen, from Insilico Medicine, shared 
their recent work showing how AI for generative 
chemistry can be used to drive rapid drug discovery. 
Point in question was the demonstration that efficacious 
drugs can be developed in just 21 days for a new target. 
Here, an effective inhibitor of discoidin domain receptor 
1 (DDR1), a kinase target implicated in fibrosis, was 
generated [52]. Clearly, AI driven discovery has now 
progressed to a level where small molecule design can 
be done more rapidly and accurately than ever before. 
Generative chemistry technology combined with other 
computational chemistry techniques was applied to 
develop specific and selective modulators for multiple 
targets implicated in aging and age-related diseases.  
 
Adriano Aguzzi from the Institute of Neuropathology, 
University of Zürich, Zürich, Switzerland, discussed the 
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latest development in the research of prion diseases. 
Prion diseases are a group of neurodegenerative 
disorders that are caused by misfolding and aggregation 
of the prion protein PrPC [53]. Adriano Aguzzi shared 
his recent results regarding the disease-causing 
mechanism and possible interventions. Notably, prion 
diseases share some clinical and molecular features with 
age-related neurodegenerative diseases such as 
Alzheimer’s disease and Parkinson’s disease [54]. Thus, 
new insights in one of them may help to find 
interventions for all of these devastating disorders.  
 
Big data analysis and technologies to accelerate 
aging drug discovery 
 
Recent advances in omics technologies have dramatically 
increased the volume of data representing the complexity 
of cellular processes and diseases. But how can we 
implement big data to increase our knowledge about 
aging processes and aging drug discovery? Vadim 
Gladyshev from Brigham and Women’s Hospital, 
Harvard Medical School, MA, USA highlighted the 
importance of discovering novel biomarkers of aging to 
assess the effect of longevity interventions in humans and 
animal models. His group identified longevity signatures 
based on comparative analysis of transcriptomic and 
metabolomic data. Signatures were identified by 
comparing short-lived and long-lived species [55, 56], 
interventions leading to longevity [57], different ages [58] 
and different cell types [59]. These signatures could be 
used to identify novel longevity interventions.  
 
Alexander Tyshkovskiy from Brigham and Women’s 
Hospital, Harvard Medical School, Boston, MA, USA, 
and Belozersky Institute of Physico-Chemical Biology, 
Moscow State University, Moscow, Russia, gave insights 
into the gene expression signatures of different longevity 
interventions in mice. To identify common patterns of 
different interventions, they analyzed transcriptomic data 
of mice of both sexes and different ages subjected to eight 
different longevity interventions [57]. Combining their 
data with published data from other groups, they 
identified gene expression signatures associated with 
lifespan extension. Notably, they developed the web-
based tool GENtervention (http://gladyshevlab.org/ 
GENtervention/), which can be utilized to investigate 
associations between genes and longevity. Overall, the 
identified signatures may help to identify new lifespan-
extending interventions in the future. 
 
Clearly, the analysis of large datasets has become an 
essential part of biomedical research where Insilico 
Medicine is a front-runner on the industrial side. In this 
meeting, Ivan Ozerov, from Insilico Medicine, 
introduced the multi-omics and drug discovery pipeline 
Pandomics [60]. He demonstrated how published gene-

expression datasets can be combined with user owned 
unpublished data, and how that can lead to the 
identification of altered pathways as well as possible 
molecules. Notably, the toolset gives information of 
possible patents and other information that could guide 
industries in decision making regarding the pursuit of 
specific small molecules.  
 
Michael A. Petr from the Center for Healthy Aging, 
University of Copenhagen, Copenhagen, Denmark, 
emphasized the advantages of studying aging processes 
and interventions in M. musculus and D. melanogaster 
animal models. Here he presented a specific case of 
studying various model organisms of a premature aging 
disorder in a single study, applying an intervention to 
the models, and developing a technology to automate 
the phenotyping process. The technology evolved due to 
the limitations of high time and labor demand, as well 
as costs to phenotype any model organism. Thus, he and 
his colleagues developed a system utilizing computer 
vision and deep learning to finely track model 
organisms allowing hundreds of conditions to be tested 
in parallel, while simultaneously generating a 
comprehensive palette of data outputs (unpublished 
data, http://www.tracked.bio). 
 
The longevity industry 
 
In addition to the academic talks, several companies 
presented solutions to multiple issues within the aging 
and drug discovery field. Martin Borch Jensen, from 
Gordian Biotechnology, San Francisco, USA, presented 
a discovery platform that allows simultaneously 
screening thousands of therapeutics in individual animal 
models. This addresses the problem that age-related 
diseases involve a complex interplay between cells and 
the aged environment, which is not captured with 
traditional screening methods. By starting the drug 
discovery process with high-throughput target 
validation in realistic, aged, disease environments, the 
time and cost of later development for inefficacious 
targets can be avoided. 
 
A major obstacle to drug development lies with the 
initial conversion of academic ideas to fundable small 
molecules. Here, Tyler Golato, from Molecule 
Protocols, Basel, Switzerland, demonstrated their 
distributed IP platform whereby multiple investors can 
spread the risk of small molecule development by 
sharing initial early investment. This platform may 
solve a major problem in drug development for 
academia where the jump to commercialization is often 
very difficult.  
 
Reason, from Repair Biotechnologies, Syracuse, NY, 
USA, introduced the two ongoing projects of the newly 
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established company Repair Biotechnologies. The 
projects focus on gene therapy-based repair of the two 
common aging features thymic atrophy and 
atherosclerosis that cause immunological dysfunction and 
cardiovascular disease. Recently, Repair Biotechnology 
has closed their first funding round allowing them to test 
their therapies in animal models with the long-term goal 
for clinical transition. 
 
Anastasia Georgievskaya, from Haut.Ai, Tallinn, 
Estonia, demonstrated how AI and computer vision 
technology can be implemented to develop powerful 
tools to study skin pathologies. Recently, Haut.AI 
developed the PhotoAgeClock, a non-invasive 
biomarker that can predict the age of humans with an 
accuracy of 2.3 years mean absolute error [61].  
 
Martin-Immanuel Bittner, from Arctoris Ltd, Oxford, 
UK, showed us how drug discovery and development can 
be accelerated by making use of automation. One of the 
applications of automation and robotics is in 
characterizing novel compounds such as senolytic agents 
applicable for targeting age-related diseases. He made the 
argument that automated experimentation using robotics 
is the perfect companion to next generation AI-driven 
drug discovery, by providing large amounts of structured, 
validated, and highly reproducible data.  
 
Unmesh Lal, from Frost and Sullivan, ended the 
meeting with an overview of the aging, drug discovery 
and AI field. He highlighted the many industry partners 
involved and the opportunities for growth. 
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