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INTRODUCTION 
 

Cardiovascular disease contributes to major cause of 

mortality. Obesity, as a global pandemic, has been one 

of the main independent risk factors of cardiovascular 

disease such as hypertension, coronary heart disease and 

heart failure [1, 2]. When the amount of fat exceeds the 

capacity of subcutaneous storage, obesity spontaneously 

occurs [3]. Adipose tissue was initially related to 

metabolism, where stem cells had been recently 

identified. These so-called ADSCs displayed the ability 

of differentiation to vascular lineages such as smooth 

muscle cells (SMCs), endothelial cells (ECs) and even 

cardiomyocytes. Therefore, the interaction between 

ADSCs and vascular remodeling becomes a research 

hotspot.  

 

Since the discovery of bone marrow mesenchymal stem 

cells (MSCs), researchers keep trying to search for other 

stem cell pools. Perfect pools should possess similar 

therapeutic potential with relatively easy harvest in 

large quantities and minimally invasive procedure. 

Under such circumstances, ADSCs were first isolated 

from the processed lipoaspirate by Zuk and colleagues  

 

in 2001 [4]. It reported that adipose tissue contained 500 

times more stem cells than the same amount of bone 

marrow [5, 6]. In addition, ADSCs are less ethically or 

morally constrained. In addition to subcutaneous region, 

which is the most common site for adipose-related 

experiments, ADSCs can also be acquired from 

visceral, perivascular and pericardial regions. ADSCs, 

similar to other MSCs such as bone marrow-derived 

MSCs, express common markers of MSCs and have 

self-renewal ability [7]. They can also differentiate 

toward a variety of cell lineages such as adipocytes, 

osteocytes, chondrocytes and myogenic cells in 

response to specific culture media. Furthermore, 

ADSCs could give rise to cardiomyocytes, ECs, SMCs, 

hepatocytes, epithelial cells, and neural lineage cells [8, 

9]. Detailed differentiation capacities of ADSCs toward 

different cell lineages are listed in Table 1.  

 

ADSCs are separated from stromal-vascular fraction 

(SVF). SVF is the main component in the adipose tissue 

apart from adipocytes. Currently, isolation of SVF from 

adipose tissue is mainly by collagenase digestion 

followed by centrifugation [10]. SVF is composed of 

heterogeneous cellular population including ECs,
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Table 1. Differentiation abilities of ADSCs into multilineage cells. 

Cell lineage Author  Cell source 
Surface marker 

positive negative 

Adipocytes/ 

Osteoblasts/ 

Chondrocytes 

Li et al. [99] 
Human subcutaneous 

adipose tissue 

CD13, CD29, CD90, 

CD105, HLA-ABC 

CD14, CD19, CD34, 

CD45, HLA-DR 

Viero Nora et al. [100]  
Murine inguinal 

adipose tissue 
CD29,CD44, CD49e 

CD11b, CD34, CD45, 

CD90.2, CD117 

Saler et al. [101]  
Human subcutaneous 

adipose tissue 
CD13, CD73, CD90, CD105 CD14, CD34, CD45 

Griffin et al. [102]  

Human abdominal 

subcutaneous adipose 

tissue 

CD73, CD90, CD105 
CD14, CD19, CD34, 

CD45, HLA-DR 

Skeletal 

myocytes 

J.-H. Lee and D.M. 

Kemp [103] 

Human subcutaneous 

adipose tissue 

CD13, CD44, CD73, CD90, 

HLA-ABC 

CD34, CD45, CD56, 

CD184, HLA-DP, HLA-

DQ, HLA-DR 

Bayati et al. [104]  
Rat gonadal adipose 

tissue 
CD44, CD73, CD90 CD45 

Cardiomyocytes 

Choi et al. [105]  
Human subcutaneous 

adipose tissue 
CD73, CD90, CD105 CD34, CD45 

Chang et al. [106]  
Rat subcutaneous 

adipose tissue 
CD13, CD29, CD44, CD90 

CD31, CD34, CD45, 

CD117, CD140a, Flk-1 

Kim et al. [107]  

Human intra-

abdominal adipose 

tissue 

CD13, CD29, CD44, CD90, 

CD166, HLA-ABC 

CD31, CD34, CD45, 

CD117, HLA-DR 

Smooth muscle 

myocytes 
Parvizi et al. [61]  

Human subcutaneous 

adipose tissue 
CD29, CD44, CD90, CD105 CD31, CD45 

Endothelial cells 

Planat-Benard et al. 

[31]  

Human subcutaneous 

adipose tissue 
CD13, CD34, HLA-ABC 

CD14, CD31, CD45, 

CD144 

Moon et al. [34]  
Human subcutaneous 

adipose tissue 
CD34, CD44, CD90 CD31, CD45, Flk-1 

Zhang et al. [37]  

Human periumbilical 

subcutaneous adipose 

tissue 

CD13, CD29, CD44, CD73,  

CD90, CD105 
CD31, CD45 

Nerve cells 

Kang et al. [108]  
Rhesus subcutaneous 

adipose tissue 
CD13, CD59, CD90, HLA-1 

CD3, CD4, CD8, CD34,  

CD45 

Krampera et al. [109]  

Human abdominal 

subcutaneous adipose 

tissue 

CD44, CD73, CD90, CD105 
CD11c, CD14, CD31,  

CD34, CD45, CD123 

Ying et al. [110]  
Rat subcutaneous 

adipose tissue 
CD44, CD90 CD34, CD45 

Hepatocytes 

Lue et al. [111]  
Human subcutaneous 

adipose tissue 

CD34, CD90, CD105, 

CD133 
CD13, CD45 

Banas et al. [112]  

Human abdominal 

subcutaneous adipose 

tissue 

CD10, CD13, CD29, CD34,  

CD44, CD49d, CD59, 

CD71, CD90, CD105, 

CD120a,  

CD124, CD166, SH3 

CD11b, CD45, CD48,  

CD135 

Epithelial cells Brzoska et al. [113]  
Human subcutaneous 

adipose tissue 

CD10, CD13, CD44, CD90,  

vimentin 
CD31, CD34, CD45, vWF 

Pancreatic islet-

like cells 

Dhanasekaran et al. 

[114]  

Human omentum 

adipose tissue 
CD73, CD90, CD105 

CD31, CD34, CD45,  

HLA-DR 



www.aging-us.com 11758 AGING 

SMCs, fibroblasts, pericytes, immune cells, MSCs and 

other undefined cells [11]. Flow cytometry was applied 

in plenty of studies to illustrate the CD (cluster of 

differentiation) antigenic profile of both cultured and 

freshly-isolated ADSCs [12, 13]. There was common 

consensus that cultured ADSCs were positive for CD29 

[14–17], CD44 [14, 17], CD73 [18, 19], CD90 [14–18] 

and CD105 [14–18], negative for CD45 [14, 16] and 

CD31 [14, 15, 18]. The expression of some cell surface 

proteins remained controversial. For instance, CD34 

was expressed in the SVF cells and freshly isolated 

ADSCs while its expression disappeared after several 

passages [19, 20]. 

 

There are two types of adipose tissue in mammals, 

white and brown adipose tissue. White adipocyte 

functions as an energy storage pool, whereas brown 

adipocyte usually oxidizes fatty acids with specific 

expression of uncoupling protein-1 [21]. Most studies 

focus on ADSCs from white fat. Recently, two groups 

of scientists demonstrated a population of ADSCs from 

human brown adipose tissue [22, 23]. Silva et al found 

that ADSCs from adult mediastinal fat were able to 

differentiate toward both white and brown adipocytes. 

In addition, these cells expressed higher level of 

transmembrane protein 26 (TMEM26) and CD137 than 

white ADSCs [22]. On the contrary, human fetal brown 

ADSCs only differentiated into classical brown 

adipocytes with low expression of CD137. 

Subcutaneous fat and visceral fat are the two main 

white adipose tissues. They were structurally and 

functionally different due to distinct characteristics 

biologically and functionally [24]. In the aspect of yield, 

the frequency of SVF cells in omental adipose tissue 

was significantly higher than that in subcutaneous 

adipose tissue [25]. In addition, it was noted that 

ADSCs isolated from each gram of visceral fat had 

more colony forming units than those from 

subcutaneous fat, implying that the visceral adipose 

tissue contained more ADSCs [26]. These differences 

may attribute to different sources of fat tissue. Not only 

characteristics of ADSCs vary from region to region, 

but also in one adipose tissue ADSCs display distinct 

features from subpopulation to subpopulation. A recent 

single-cell RNA sequencing article identified three 

major mesenchymal cell populations in the adipose 

tissue, which were DPP4+, ICAM1+ and CD142+ 

ADSCs in visceral adipose tissue of obese mice. Each 

of them had unique biological properties compared to 

other two subpopulations [27]. Above data 

demonstrates that ADSCs from different origins or even 

different subpopulations present distinct characteristics. 

 

In the present article, we will compare the profiles of 

ADSCs from multiple origins and further discuss their 

biological functions in vascular remodeling.  

Subcutaneous adipose-derived stem cells 
 

Subcutaneous ADSCs were one of the most commonly 

used cells in ADSCs research. Subcutaneous fat makes up 

about 80% of the whole body fat [28]. Subcutaneous 

ADSCs can differentiate into ECs in vitro [9, 29–31]. 

CD13+CD34+ cells from subcutaneous SVF cultured in 

semisolid medium expressed CD31 and vWF. Further 

experiment demonstrated that these cells could form 

vessel-like structure by applying matrigel-plug assay 

subcutaneously in mice [31]. Similar findings were 

reported in CD34+CD31- [30], Flk-1+ [29] and CD31-

CD34-c-kit- [32] subcutaneous ADSCs. Subcutaneous 

ADSCs also undergo endothelial differentiation in vivo. In 

a rat ischemic hindlimb model, injection of subcutaneous 

SVF cells could recover vascular supply and regenerate 

numerous CD31+ cells lining vessels [31]. Such effect of 

subcutaneous ADSCs was also confirmed by Cao et al 

[33] and Moon et al [34]. However, Nakagami et al 

claimed that injection of subcutaneous ADSCs did not 

express CD31 and von Willebrand factor in ischemic 

tissue in their model [32]. Another report showed that 

promoters of CD31 and CD144 in ADSCs were still 

methylated in response to endothelial growth factors, 

suggesting that ADSCs possessed the limited 

differentiation ability toward ECs lineage [35, 36]. 

Therefore, whether subcutaneous ADSCs can form 

functional endothelial cells remains unclear. 

 

To understand the mechanism of ECs differentiation, 

Zhang et al confirmed that the inhibition of PI3K 

pathway reduced expression of CD31 genetically as 

well as capillary density in subcutaneous ADSCs, while 

inhibition of MAPK did not have such effect [37]. 

Consistent results were also observed by Cao et al, 

indicating that PI3K was a key point for ADSCs 

differentiation toward ECs [33]. 

 

ADSCs could also differentiate into smooth muscle 

cells [38–40]. Rodriguez et al reported that processed 

lipoaspirate cells exhibited typical SMCs morphology 

and upregulated the expression of SMCs markers at 

both transcriptional and translation levels when cultured 

in SMCs induction media [39]. Specific vascular SMCs-

like ion channels were also identified in ADSCs treated 

by TGF-β1 [41]. In vivo, human ADSCs expressed 

alpha-smooth muscle actin and could survive for several 

months in the lower urinary tract of immunodeficient 

mice [38]. These results indicated that ADSCs could 

give rise to SMCs both in vitro and in vivo. However, 

compared to the ECs, the studies of SMCs 

differentiation in subcutaneous ADSCs are still limited. 

 

In terms of SMCs differentiation from ADSCs, various 

potential mechanisms behind cell differentiation were 

reported [42]. TGF-β signaling pathway was one of 
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them. Many downstream proteins were involved 

including mitogen activated protein kinase 

(MEK)/extracellular signal regulated kinase (ERK), c-

Jun N-terminal kinase (JNK) and Smad2/3 [42]. 

Sphingosylphosphorylcholine (SPC) and sphingosine-1-

phosphate were also referred to induce the 

differentiation of ADSCs into SMCs-like cells through 

G-protein coupled receptor by activating MEK/ERK 

signalling cascades [43], ras homolog gene family 

member A (RhoA)/Rho kinase mechanism [44] and 

TGF-β1 pathway [43, 45]. Autocrine TGF-β1/Smad2 

pathway was activated in ADSCs in response to 

angiotensin-II when differentiated into contractile 

smooth muscle-like cells [46]. The activation of Notch 

pathway was also identified [47]. Additionally, bone 

morphogenetic protein-4 [48] and Med23 [49] were 

strongly related with the initiation of SMCs 

differentiation. Deleting Med23 in ADSCs increased 

SMCs marker myosin regulatory light polypeptide 9 

(Myl9). Activin A was indispensable in the early stages 

of ADSCs differentiation into vascular SMCs when 

cultured with ECs [50]. However, induction of activin A 

secretion after stimulating ADSCs towards SMCs 

diminished ADSCs’ vasculogenic activity [51]. The 

summary of mechanisms of ADSCs differentiation into 

SMCs is displayed in Figure 1. 

 

ADSCs can differentiate to cardiomyocytes as well. 

Planat-Bénard et al obtained functional cardiomyocyte-

like cells from ADSCs [52], which were subsequently 

applied in models of chronic myocardial infarction in 

rats [53] and nonhuman primates [54], significantly 

improving heart function. In addition, ADSCs were 

believed to possess therapeutic effect in acute 

myocardial infarction [55] and chronic heart failure 

[56]. Angiogenesis was commonly observed in these 

disease models facilitated by a series of paracrine 

factors secreted from ADSCs [57]. miRNAs derived 

from ADSCs were found to be involved in the process 

of neovascularization [58].  

 

ADSCs have a great potential in vascular tissue 

engineering based on their multiple differentiation 

abilities. A small artificial blood vessel was successfully 

manufactured by seeding SMCs-differentiated ADSCs 

on the scaffold [59]. After the application of pulsatile 

stimulation, the collagen content and biomechanical 

indicators of artificial vascular wall were significantly 

improved. Nevertheless, only the medial layer of blood 

vessels was produced. The feasibility and safety of 

these vascular grafts also required further investigation. 

Another research group constructed a two-layered 

small-diameter blood vessel by applying SMCs and ECs 

both differentiated from ADSCs [60]. Mechanical 

stimulation enhanced SMCs generation from ADSCs, 

which provided a novel method in vascular tissue 

engineering [61]. ADSCs from different donors varied 

from on the differentiation and migration of SMCs in 

tissue engineered blood vessel construction. Diabetic 

donors showed impaired differentiation abilities of 

ADSCs while different gender or body-mass index had 

no such effect [62]. ADSCs from the obese diminished 

the pro-angiogenic potential owing to reduced 

expression of miR-126 through inhibition of ERK1/2 

MAPK pathway [63]. Another article reported that 

diabetic ADSCs led to increased inflammation in 

adipose tissue [64], which may impair vascular 

remodeling. Besides, ADSCs from the aged failed to 

facilitate both SMCs differentiation and migration [62]. 

Cryopreservation of ADSCs also attenuated their 

differentiation towards SMCs-like cells [65]. Above 

findings provide new ideas for the application of 

adipose-derived stem cells in vascular engineering. 

 

ADSCs also have therapeutic effect on abdominal aortic 

aneurysm treatment via their immunoregulatory 

capacity, trophic factor production and extracellular 

matrix synthesis [66]. Xie et al performed tail-vein 

injection of ADSCs in mice with abdominal aortic 

aneurysm and found increased aortic FoxP3+ regulatory 

T cells and M2 macrophages, but decreased neutrophils, 

CD28− T cells and circulating monocytes, suggesting 

that ADSCs had anti-inflammatory capability. 

Moreover, they confirmed that the immunosuppression 

was mainly mediated through paracrine factors secreted 

by ADSCs [67]. Despite limited application in 

aneurysm, ADSCs will be promising alternatives from 

the perspective of vascular tissue engineering [68]. 

 

Abdominal (visceral) adipose-derived stem cells 
 

Subcutaneous and visceral ADSCs displayed inherently 

different potentials in proliferation and differentiation, 

even though both of them were able to generate specific 

cells under corresponding culture conditions [69, 70]. 

For instance, subcutaneous ADSCs were better and 

more easily differentiated to mature adipocytes than 

visceral ADSCs in vitro [71, 72]. However, no 

agreement was reached with respect to the trends for 

proliferation and differentiation since the results 

between different study groups seemed contradictory 

[25, 73, 74]. This may result from inconsistent methods 

they adopted, such as culture conditions, passage 

number and donor populations. One article pointed out 

that visceral ADSCs was a more appropriate cell model 

in vitro for the investigation of molecular mechanisms 

of metabolic disorders such as obesity because visceral 

adipose tissue was closely associated with metabolic 

process [69]. Cells from the superficial layer 

(subcutaneous) had a greater proliferative rate and 

induced more outgrowth of neurite-like processes than 

those from the deep layer [75]. Wee Kiat Ong et al 
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comprehensively screened the cell-surface markers of 

subcutaneous and visceral ADSCs. The expression of 

two cell-surface markers, CD10 and CD200, were 

pointed out to be associated with adipogenic capacity 

[76]. They discovered that CD10 was specifically 

expressed in subcutaneous ADSCs and CD200 was 

predominantly expressed in visceral ADSCs, which 

could be the specific markers for those ADSCs from 

different locations [76]. Above researches demonstrated 

that visceral ADSCs and subcutaneous ADSCs shared a 

lot of similarities but also had many differences. 

 

Madonna et al described that murine visceral ADSCs in 

methylcellulose medium could spontaneously undergo 

neovascularization differentiation, forming CD31+CD34+ 

tube-like structures [77]. Another group focused on the 

adipose tissue-derived myogenic cells. They identified a 

subpopulation of myogenic cells from the rat visceral 

ADSCs, and discovered coexpressing telomerase and 

myocardin A with enhanced abilities of proliferation and 

differentiation. Further experiments confirmed that 

myocardin A helped maintain the myogenic stemness of 

visceral ADSCs through the upregulation of telomerase 

activation and enhancing myogenic gene expression [78]. 

The differences of subcutaneous, preperitoneal and 

visceral ADSCs from morbidly obese women were 

investigated. Visceral ADSCs secreted the highest levels 

of IL (interleukin)-6 and MCP (monocyte chemoattractant 

protein)-1, indicating that they had the most pro-

inflammatory effect. On the contrary, preperitoneal 

ADSCs showed less pro-inflammatory features although 

they were from internal adipose depot [79]. 

 

Due to the promising conclusion from in vitro 

experiments, visceral ADSCs were exploited 

therapeutically. KDR+CD34−CD31− cells isolated from 

human visceral adipose tissue and ADSCs from murine 

adipose tissue were intravenously and intramuscularly 

respectively injected to the surgical mice with femoral 

artery ligation [33, 80]. Both groups concluded the 

 

 
 

Figure 1. Mechanisms of ADSCs differentiation into SMC and EC. TGF-β pathway plays a central role in the differentiation of ADSCs 
into SMC. ADSCs secrete TGF-β through MEK/ERK-dependent mechanism when treated with SPC. Meanwhile, SPC activates the Rho/ROCK 
system and subsequently promotes the binding of MRTF and SRF. MRTF, SRF, Smad2/3 and Myocardin jointly initiate the expression of 
smooth muscle related genes. Med23 represses SMC differentiation via promoting ELK1-SRF to combine with the promoter. PI3K pathway 
involves in EC differentiation of ADSCs. EC: endothelial cell, SMC: smooth muscle cell, ROCK: Rho-associated protein kinase, SRF: serum 
response factor, MRTF: myocardin related transcription factor, ELK1: ETS Like-1 protein. 



www.aging-us.com 11761 AGING 

enhanced capillary density and Doppler tissue perfusion 

scores. Others applied visceral ADSCs in acute and 

chronic animal models of myocardial infarction [81]. 

They transplanted rat visceral ADSCs intramuscularly 

into the rat with left anterior descending coronary artery 

ligation. Left ventricular end-diastolic volume, left 

ventricular ejection fraction and cardiac output were 

improved in rats received ADSCs therapy [53, 82]. 

Although many in vivo experiments have been done, the 

mechanism whereby ADSCs improved cardiac or 

vascular functions remained poorly understood. 

Additionally, whether to use raw or purified ADSCs such 

as c-kit+CD34+ was still under debate. At last, data from 

large animals such as the dogs and the primates were 

limited. Metabolic dysfunction leads to many diseases 

such as atherosclerosis and diabetes mellitus. Silvana 

Baglioni et al believed that the metabolic dysfunctions 

were related to ADSCs. They assessed the abilities of 

proliferation and differentiation of subcutaneous ADSCs 

and visceral ADSCs from the perspective of 

electrophysiological properties and functional activities. 

Visceral ADSCs showed less membrane potential, 

capacitance and K+-current parameters, as well as less 

adiponectin secretion and susceptibility to lipolysis. Such 

differences may contribute to the development of many 

metabolic-related diseases [24]. 

 

Other adipose-derived stem cells 
 

Most of the literatures paid heavily attention on the 

identification and function of subcutaneous and visceral 

ADSCs for their easy access. Only little effort has been 

carried out on ADSCs from perivascular, cardiac and 

other regions. Theoretically, adipose tissue could be 

adjacent to all vessels and organs except for central 

nerve system. Such adipose tissues anatomically contact 

the adventitial side of the arteries and organs, which 

may play a more important role in vascular remodeling. 

Mihaela Crisan et al firstly confirmed a perivascular 

origin for mesenchymal stem cells in multiple human 

organs, such as skeletal muscle, pancreas, adipose 

tissue, and placenta, with the absence of expression of 

hematopoietic, endothelial, and myogenic cell markers. 

They also identified the multilineage potentials 

including osteogenic, chondrogenic, and adipogenic 

potentials but did not further study the relationship 

between these perivascular MSCs and vascular 

remodeling [83]. G. Lin et al also succeeded to identify 

ADSCs from perivascular location where they seemed 

to express both CD34 and smooth muscle actin. This 

research demonstrated a more precise location of 

ADSCs within in human adipose tissue by employing 

immunofluorescence of SSEA (stage-specific 

embryonic antigen) 1, STRO-1 and OCT (octamer-

binding transcription factor)-4. Based on the results 

gained above, they proposed that ADSCs were either 

subsets of pericytes or vascular progenitors surrounding 

around the vessels [84]. Meanwhile, a population of 

CD34+ ADSCs, which expressed pericyte and MSCs 

markers, was discovered in periendothelial location, 

participating endothelial stabilization. These CD31-

CD144-CD34+ cells localized in pericytic position and 

the functional analysis revealed that these cells were 

associated with vascular structures. The effect of 

vascular stabilization by CD31-CD144-CD34+ cells was 

achieved by bidirectional paracrine interaction with 

endothelial cells, such as VEGF, IL-6, IL-8 and MCP-1. 

In addition, a substantial proliferative response was 

detected in these cells when treated with FGF, EGF and 

PDGF-BB which were all produced by endothelial cells, 

suggesting a potential interaction with endothelial cells 

in vascular remodeling [85]. Another study revealed the 

expression of STRO-1, 3G5 and CD146 in MSCs 

around the perivascular regions of blood vessels in 

human adipose tissue sections. However, further 

relationship between MSCs and vascular function was 

not discussed [86]. Investigation into adipocyte 

progenitors revealed that preadipocytes localized to 

pericytes and endothelial cells of the blood vessels 

within adipose tissue which shed light on a 

developmental relationship between these cells [87]. 

Single-cell transcriptional analysis identified four 

mesenchymal stem-like cells populations locating in the 

adipose tissue of the perivascular niche. However, they 

did not investigate the effect of vascular remodeling for 

each subpopulation [88]. Overall, the existence of 

perivascular adipose tissue-derived stem cells has been 

confirmed but their functions and properties remain 

unknown where many scientists are currently paying 

more and more attention.  

 

Cardiac adipose-derived stem cells, another novel type of 

stem cells separated from adipose tissue surrounding the 

heart, have been uncovered to be conducive to 

cardiovascular remodeling over recent years. In 

accordance to two different adipose depots, cardiac 

adipose-derived stem cells can be divided into epicardial 

and pericardial ADSCs. In comparison with adipose stem 

cells from other sources, cardiac ADSCs were prone to 

differentiate prominently into cardiovascular cells [89]. 

What is more, it was known that epicardial ADSCs 

embraced higher cardiomyogenic potential than 

pericardial ADSCs [90]. Of note, electrical and 

mechanical stimulation could strengthen the expression of 

several specific genes that were worthwhile for 

cardiodifferentiation [91, 92]. Up to now, it has been 

continuously reported that cardiac ADSCs exerted 

advantageous effect on cardiac function improvement and 

angiogenesis in experimental animal models of 

myocardial infarction. There was a research showing that 

perivascular ADSCs provided more potent cardiac 

reparative activity than subcutaneous ADSCs in view of 
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their intrinsic properties toward myogenic differentiation 

and vasculogenesis [93]. Furthermore, injury-induced 

perivascular ADSCs might promote this process as a 

result of extra HGF production [94]. Angiogenesis is 

essential for cardiac repair in ischemic heart disease. 

Epicardial ADSCs isolated from samples within 

cardiovascular risk factors such as obese, hyperlipidemic 

and type-2 diabetic obviously impeded vessel formation 

[95], reminding us that selection of suitable tissue was 

vital for cell therapies. Differentiation and maturation of 

the transplanted cells collaborated with more relevant 

paracrine effect were considered to account for 

angiogenesis [96]. Agreed with this mechanistic basis, 

Wang et al speculated that newly formed cardiomyocytes 

might be partially derived from self-replicating cardiac 

cells albeit the instructive signals between ADSCs and 

cardiomyocytes remained unclear [97]. Taken together, 

cardiac ADSCs represent promising candidates for future 

use in cardiovascular regeneration therapies even though 

these cells are not easily accessible [98].  

 

Adipose-derived stem cells around other regions, 

despite being rarely discussed, are of great value, which 

calls for extensive and in-depth studies to explore their 

physiological and pathological mechanisms. 

 

SUMMARY 
 

Stem cell therapy presents a promising future in the 

field of regenerative medicine. Generating a large 

number of cardiovascular cell lineages is a key step in 

cell therapy of cardiovascular disease. ADSCs are 

among one of the most promising cell types for 

translational medicine and provide unprecedented 

opportunities for their easier isolation and less ethical 

aspects. In addition to differentiation into osteoblasts, 

cartilage and fat cells, ADSCs have been shown to 

differentiate into endothelial cells, smooth muscle cells 

and cardiomyocytes. The latter three are closely related 

to cardiovascular remodeling and disease progression. 

Previous studies demonstrated that different sources of 

ADSCs have different proliferative and differentiation 

abilities. In this review, we roughly divided ADSCs into 

subcutaneous, visceral and other ADSCs based on their 

origins. The properties of three different ADSCs were 

carefully compared to each other. This is also the first 

review of the relationship between cardiovascular 

remodeling and ADSCs from different origins. 

Although there are still many obstacles to overcome, we 

hope that clinical application of ADSCs will be widely 

used in the near future. 
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