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INTRODUCTION 
 
Lung cancer is the most common tumor worldwide, and 
carries the highest morbidity and mortality rates [1]. 
Lung cancer is classified into two major histological 
subtypes, small cell lung cancer (SCLC; 13% of cases) 
and non-small cell lung cancer (NSCLC; 83% of cases). 
Surgical resection is seldom an option for SCLC 
treatment, owing to typical advanced-stage diagnosis; 
thus, most SCLC patients receive chemotherapy, but its 
efficacy is generally limited. On the other hand, only a 
small number of early-stage NSCLC patients can be 
treated with surgery, which achieves a 5-year survival 
rate as high as 70% in patients with stage IA NSCLC 
[2]. Chemotherapy or radiotherapy are also indicated in 
patients with more advanced NSCLC, but are associated  

 

with a 5-year survival rate of only ~23%. While some 
success is being achieved with newer immunological 
and targeted therapies for NSCLC, there are still 
significant limitations precluding their use in many 
cases [3]. Notwithstanding, the low 5-year survival rate 
for patients with lung cancer is largely due to 
insufficient preventive efforts and generalized late 
diagnosis [4].  
 
Bioinformatics analysis allows screening of tumor-
associated biomarkers from large data repositories to 
assist early diagnosis and prognostic assessment of 
cancer [5, 6]. For example, mining of publicly available 
genomic repositories (i.e. The Gene Expression 
Omnibus database (GEO) and The Cancer Genome 
Atlas (TCGA) database) led to identification of a subset 
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ABSTRACT 
 
Lung cancer is the most common malignant tumor and the leading cause of cancer-related deaths worldwide. 
Because current treatments for advanced non-small cell lung cancer (NSCLC), the most prevalent lung cancer 
histological subtype, show limited efficacy, screening for tumor-associated biomarkers using bioinformatics 
reflects the hope to improve early diagnosis and prognosis assessment. In our study, a Gene Expression 
Omnibus dataset was analyzed to identify genes with prognostic significance in NSCLC. Upon comparison with 
matched normal tissues, 118 differentially expressed genes (DEGs) were identified in NSCLC, and their functions 
were explored through bioinformatics analyses. The most significantly upregulated DEGs were TOP2A, SLC2A1, 
TPX2, and ASPM, all of which were significantly associated with poor overall survival (OS). Further analysis 
revealed that TOP2A had prognostic significance in early-stage lung cancer patients, and its expression 
correlated with levels of immune cell infiltration, especially dendritic cells (DCs). Our study provides a dataset 
of potentially prognostic NSCLC biomarkers, and highlights TOP2A as a valuable survival biomarker to improve 
prediction of prognosis in NSCLC. 
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of cancer-dysregulated miRNAs, which may allow early 
detection of pre-cancerous and cancerous oral lesions 
[7], and of tumor microenvironment-related genes that 
predict poor outcomes in glioblastoma patients [8].  
 
In our study, a GEO dataset was selected for identification 
of differentially expressed genes (DEGs) in NSCLC. Gene 
ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG), and protein-protein interaction (PPI) 
network analyses were used to link DEGs’ genomic and 
functional information. In addition, data retrieved from 
TCGA and GTEx projects was evaluated through Gene 
Expression Profiling Interactive Analysis (GEPIA) to 
further assess the presence of relevant DEGs in NSCLC 
subtypes. Among the most significant DEGs, the TOP2A 
gene encoding human topoisomerase IIα (TOPIIα) 
emerged as a potential prognostic biomarker for early-
stage lung cancer. Furthermore, its expression was 
negatively correlated with tumor infiltration of immune 
cells (especially dendritic cells, DCs) in NSCLC samples. 
While functional studies are needed to complement our 
findings, the biomarker dataset provided by our study may 
serve to improve early diagnosis of NSCLC and help 
advance new therapeutic strategies. 
 
RESULTS 
 
Identification of DEGs in NSCLC 
 
The GEO dataset GSE103512 was selected for 
identification of DEGs in 60 human NSCLC specimens 
against 9 matched normal tissue samples using the 
GEO2R tool. Genes were defined as DEGs if they had a 
log2FC > 1.5 or < -1.5 and p < 0.01. A total of 118 
genes were identified as DEGs; among these, 11 were 
upregulated and 107 were downregulated in NSCLC 
(Figure 1). A full DEG list is shown in Supplementary 
Table 1. 
 
GO enrichment analysis of DEGs 
 
GO enrichment analysis was conducted on the 118 DEGs 
identified above. For cellular component (CC), the top ten 
terms were GO: 0005615~extracellular space, GO: 
0031012~extracellular matrix, GO: 0044421~extracellular 
region part, GO: 0005576~extracellular region, GO: 
0005578~proteinaceous extracellular matrix, GO: 
0031988~membrane-bounded vesicle, GO: 0070062~ 
extracellular exosome, GO: 1903561~extracellular vesicle, 
GO: 0043230~extracellular organelle, and GO: 
0016323~basolateral plasma membrane (Figure 2A). For 
molecular function (MF), the top ten terms were GO: 
0005539~glycosaminoglycan binding, GO: 
0008201~heparin binding, GO: 1901681~sulfur 
compound binding, GO: 0050840~extracellular matrix 
binding, GO: 0005509~calcium ion binding, GO: 

0005201~extracellular matrix structural constituent, GO: 
0030234~enzyme regulator activity, GO: 
0016209~antioxidant activity, GO: 0097367~carbohydrate 
derivative binding, and GO: 0008047~enzyme activator 
activity (Figure 2B). For biological process (BP), the top 
ten terms were GO: 1901700~response to oxygen-
containing compound, GO: 0042060~wound healing, GO: 
0009611~response to wounding, GO: 0072593~reactive 
oxygen species metabolic process, GO: 0070887~cellular 
response to chemical stimulus, GO: 0022610~biological 
adhesion, GO: 0006979~response to oxidative stress, GO: 
0010033~response to organic substance, GO: 
0009605~response to external stimulus, and GO: 
0007155~cell adhesion (Figure 2C).  
 
KEGG pathway analysis of DEGs 
 
KEGG pathway analysis was performed using the 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID) v6.8. Results indicated that the 
DEGs identified in NSCLC samples were mainly 
related to ‘complement and coagulation cascades’, ‘p53 
signaling pathway’, ‘ECM-receptor interaction’, ‘PPAR 
signaling pathway’, and ‘focal adhesion’ (Figure 2D). 
 
Validation of upregulated DEGs 
 
The DEGs upregulated in NSCLC were selected for 
validation by quantitative real-time PCR (qPCR) on 17 
paired NSCLC/adjacent non-tumor samples collected 
from surgical patients. The overall trend indicated that 
all the upregulated DEGs from the GEO database were 
also overexpressed at the mRNA level in our clinical 
NSCLC specimens. However, overexpression in  
 

 
 

Figure 1. Volcano plots of DEGs in NSCLC. NSCLC samples 
were analyzed against matched normal lung tissues in the GEO 
GSE103512 dataset. Data points in red represent upregulated 
genes. TOP2A was the most significant DEG. 
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NSCLC samples vs normal lung tissues was only 
significant for TOP2A (P = 0.018), SLC2A1 (P = 
0.011), TPX2 (P = 0.016), and ASPM (P = 0.049) 
(Figure 3A–3K).  
 
Using Gene Expression Profiling Interactive Analysis 
(GEPIA), a newly developed interactive web server for 
analyzing RNA-Seq expression data, we confirmed on 
NSCLC datasets retrieved from TCGA and GTEx 
projects that TOP2A (P < 0.05), SLC2A1 (P < 0.05), 
TPX2 (P < 0.05), and ASPM (P < 0.05) were up-
regulated in lung adenocarcinoma (LUAD) and lung 
squamous cell carcinoma (LUSC) specimens, compared 
to adjacent normal lung samples (Figure 4A–4D).  
 
Protein-protein interaction network and correlation 
analysis of upregulated DEGs 
 
We used the STRING database (https://string-db.org/) 
to construct protein-protein interaction (PPI) networks 

for 11 DEGs upregulated in NSCLC (Figure 5A). 
Results showed that TOP2A, TPX2, and ASPM were 
interconnected. GEPIA was next used to conduct 
correlation analysis on these three genes. The 
correlation coefficients for TOP2A & ASPM, TOP2A 
& TPX2, and TPX2 & ASPM were 0.63, 0.57, and 0.69 
respectively (P = 0.000) (Figure 5B–5D). These data 
suggest that overexpression of TOP2A, TPX2, and 
ASPM may significantly impact the development or 
progression of NSCLC. 
 
Correlations between upregulated DEGs in NSCLC 
and patient survival 
 
To assess whether upregulation of TOP2A, SLC2A1, 
TPX2, and ASPM in NSCLC is correlated with patient 
overall survival (OS), we interrogated NSCLC datasets 
using the Kaplan Meier plotter platform 
(http://kmplot.com/analysis/). Results showed that high 
expression of TOP2A, SLC2A1, TPX2, or ASPM was

 

 
 

Figure 2. GO and KEGG enrichment analysis of DEGs in NSCLC. (A) Cellular component. (B) Molecular function. (C) Biological process. 
(D) Biochemical and signal transduction pathways revealed by KEGG pathway analysis. 

https://string-db.org/
http://kmplot.com/analysis/
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significantly associated with poor OS (P = 1.6e-11, P < 
1e-16, P < 1e-16, and P = 1.4e-11, respectively)  
(Figure 6A–6D).  
 
To confirm the relationship between TOP2A (the 
most significantly upregulated DEG) and patient 
prognosis, we analyzed TOP2A protein expression in 
a tissue microarray (TMA) of NSCLC samples by 
immunohistochemistry (IHC). TOP2A signal loca- 

lized mainly in the nucleus and to a lesser extent in 
the cytoplasm of tumor cells. TOP2A immuno-
reactivity was next categorized into four levels, i.e. “-
”, “+”, “++”, and “+++”, according to the intensity 
and density of TOP2A-positive cells in each sample 
(Figure 6E). Using sample-associated clinical data, 
Kaplan-Meier analysis confirmed that patients with 
high TOP2A expression had significantly  
worse OS (P = 0.0259) (Figure 6F). These results

 

 
 

Figure 3. Validation of DEGs expression by qPCR. (A–K) Detection of DEGs expression in NSCLC (T) and adjacent non-tumor lung 
specimens (N) using qPCR. (n = 17; P < 0.05 indicates significance). 
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strongly suggest that assessment of TOP2A expression, 
at the protein and/or mRNA levels, could be a valuable 
aid for NSCLC prognosis evaluation. 
 
To further investigate the possible impact of TOP2A 
expression on lung cancer, we analyzed the relationship 
between TOP2A expression and clinical characteristics 
of lung cancer patients in the Kaplan-Meier plotter 
databases (Table 1). High TOP2A expression was 
significantly associated with poor OS in both female (P 
= 1.3e-05) and male (P = 5.8e-06) patients. In addition, 
high TOP2A expression was associated with poor OS in 
Stage 1 (P = 9.6e-08), Stage T1 (P = 7.6e-05), Stage N0 
(P = 3.6e-04), and Stage M0 (P = 3.2e-05) patients. 
These results indicated that TOP2A expression levels 
can inform prognosis in early-stage lung cancer 
patients. Therefore, we propose that TOP2A may serve 
as an efficient survival biomarker to significantly 
improve the prediction of NSCLC prognosis. 

TOP2A expression correlates with immune 
infiltration in NSCLC 
 
Tumor-infiltrating immune cells may restrict or promote 
tumor growth and thus play a critical role in tumor 
development. Therefore, we investigated the 
relationship between TOP2A expression and immune 
infiltration in NSCLC using Tumor IMmune Estimation 
Resource (TIMER), which allows systematic analysis of 
immune infiltrates across diverse cancer types 
(https://cistrome.shinyapps.io/timer/). Six immune cell 
types (B cells, CD4+ T cells, CD8+ T cells, neutrophils, 
macrophages, and DCs) were assessed by TIMER 
against TCGA lung cancer datasets. Results showed a 
slight correlation of TOP2A expression with B cells 
(partial.cor = -0.137, P = 2.48e-03), CD4+ T cells 
(partial.cor = -0.128, P = 4.65e-03), CD8+ T cells 
(partial.cor = 0.09, P = 4.65e-02), and neutrophils 
(partial.cor = 0.105, P = 2.10e-02) in LUAD, and with 

 

 
 

Figure 4. Validation of selected DEGs by GEPIA. (A–D) Expression of TOP2A, SLC2A1, TPX2, and ASPM in NSCLC subtypes (LUAD, n = 
483; LUSC, n = 486) and normal lung tissues. 

https://cistrome.shinyapps.io/timer/
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macrophages (partial.cor = -0.225, P = 7.16e-07) and 
DCs (partial.cor = -0.1, P = 2.93e-02) in LUSC (Figure 
7). The further define the correlation between TOP2A 
expression and immune infiltrates in lung cancer, gene 
markers of tumor-infiltrating immune cells were also 
evaluated. Again, slight correlations with TOP2A levels 
were determined for gene markers of B cells, CD4+ T 
cells, CD8+ T cells, neutrophils, macrophages, and DCs 
(Figure 8A–8F). Especially, we detected a more 
significant negative correlation between TOP2A 
expression and gene markers of DCs in LUSC (HLA-
DPA1: cor = -0.265, P = 2.08e-09; HLA-DPB1: cor = -
0.3, P = 9.02e-12; HLA-DQB1: cor = -0.268, P = 
1.23e-09; HLA-DRA: cor = -0.27, P = 1e-09; CD1C: 
cor = -0.346, P = 1.62e-15; NRP1: cor = -0.281, P = 

1.69e-10; ITGAX: cor = -0.27, P = 7.71e-10) (Figure 
8F). Therefore, we speculate that TOP2A 
overexpression might influence antitumor immune 
responses in the NSCLC microenvironment. 
 
DISCUSSION 
 
Among all malignant tumors, lung cancer currently 
carries the highest incidence (11.6%) and mortality rate 
(18.4%) in the world. [9]. Although it is widely 
recognized that new cancer cases could be avoided by 
eliminating or reducing exposure to known lifestyle and 
environmental risk factors [10], the current burden of 
lung cancer requires urgent efforts to identify key genes 
with diagnostic and prognostic significance. 

 

 
 

Figure 5. Correlation analysis of DEGs in NSCLC. (A) PPI network of upregulated DEGs. (B–D) Analysis of TOP2A, TPX2, and ASPM by 
GEPIA’s correlation model. The correlation coefficients for TOP2A & ASPM, TOP2A & TPX2, and TPX2 & ASPM were 0.63, 0.57, and 0.69, 
respectively (P = 0.000). 
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Figure 6. Association of TOP2A, SLC2A1, TPX2, and ASPM with overall survival in patients with lung cancer. Survival analyses 
were conducted using the Kaplan Meier plotter tool. (A) OS based on high vs low TOP2A expression (P = 1.6e-11). (B) OS based on high 
vs low SLC2A1 expression (P < 1e-16). (C) OS based on high vs low TPX2 expression (P < 1e-16). (D) OS based on high vs low ASPM expression 
(P = 1.4e-11). (E) IHC analysis of TOP2A expression in NSCLC (80X and 800X magnifications). (F) OS of NSCLC patients with high or low TOP2A 
protein expression (P = 0.0259). 
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Table 1. Correlation of TOP2A mRNA expression and clinical prognosis in lung cancer for different clinicopathological 
factors. 

Clinicopathological 
characteristic 

Overall survival (n = 1926) 

N Hazard ratio P 
Gender    

Female 715 1.68(1.33-2.13) 1.3E-05 
Male 1100 1.44(1.23-1.69) 5.8E-06 

Smoking    
Yes 820 1.37(1.11-1.68) 0.0031 
No 205 1.38(0.79-2.41) 0.26 

Grade    
I 201 1.09(0.76-1.56) 0.63 
II 310 1.23(0.9-1.69) 0.19 
III 77 1.24(0.64-2.4) 0.52 

Stage    
1 577 2.14(1.61-2.85) 9.6E-08 
2 244 0.97(0.67-1.4) 0.88 
3 70 0.96(0.56-1.66) 0.89 
4 4 － － 

AJCC Stage T    
1 437 1.78(1.33-2.39) 7.6E-05 
2 589 1.3(1.04-1.63) 0.02 
3 81 1.35(0.82-2.24) 0.24 
4 46 1.02(0.54-1.91) 0.95 

AJCC Stage N    
0 781 1.47(1.19-1.81) 3.6E-04 
1 252 1.34(0.98-1.84) 0.064 
2 111 0.96(0.64-1.44) 0.84 

AJCC Stage M    
0 681 1.55(1.26-1.91) 3.2E-05 
1 10 － － 

OS analyses were conducted using the Kaplan-Meier plotter online platform. 
 

 

 

Figure 7. Correlation of TOP2A expression with immune cell infiltration levels in LUAD and LUSC. Tumor-infiltrating immune cells 
included B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and DCs. Gene expression levels against tumor purity are displayed in 
the left-most panel. 
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Figure 8. Correlation of TOP2A expression with gene markers of tumor-infiltrating immune cells in NSCLC. (A) Correlation with 
gene markers of B cells in LUAD. (B) Correlation with gene markers of CD8+ T cells in LUAD. (C) Correlation with gene markers of CD4+ T cells 
in LUAD. (D) Correlation with gene markers of neutrophils in LUAD. (E) Correlation with gene markers of macrophages in LUSC. (F) Correlation 
with gene markers of DCs in LUSC.  
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Our study interrogated 60 NSCLC samples and 9 
matched normal lung controls in a GEO dataset to 
identify DEGs in NSCLC. A total of 118 genes (11 
upregulated and 107 downregulated) were identified as 
DEGs. GO analysis showed that most of these DEGs 
were related to structures or functional processes 
affecting the extracellular space/matrix, suggestive of 
diverse roles in the tumor microenvironment. Association 
with GO ‘glycosaminoglycan binding’ molecular 
function, as well as GO ‘oxygen-containing compound’ 
and ‘wound healing’ biological processes indicated the 
DEGs’ involvement in the anti-inflammatory response. 
These findings were supported by KEGG pathway 
analysis, which showed significant correlations with the 
complement system. 
 
In general, the genes that were highly expressed in 
tumor tissues had known tumor-promoting effects, 
while the lowly expressed genes generally mediate 
tumor-suppressing effects. For validation analysis, we 
focused on putative tumor-promoting genes, which are 
more directly targetable and have therefore greater 
potential clinical applicability. Overall, our qPCR 
assays on 17 independent NSCLC samples confirmed 
that all the upregulated DEGs in the GEO dataset were 
also expressed at higher levels in our NSCLC samples, 
compared to matched non-tumor controls. However, 
mRNA overexpression in our NSCLC cohort was only 
significant for TOP2A, SLC2A1, TPX2, and ASPM. 
We speculate that increasing sampling size may still 
lead to validation of more DEGs. In addition, GEPIA 
analysis demonstrated that TOP2A, SLC2A1, TPX2, 
and ASPM were upregulated in clinical samples from 
two major subtypes of NSCLC, i.e. LUAD and LUSC, 
which stresses the potential relevance of these DEGs in 
NSCLC development and/or progression. Moreover, 
these findings are partially supported by a previous gene 
expression profiling study that identified TOP2A and 
TPX2 as putative biomarkers of NSCLC [11].  
 
The TOP2A gene is located at 17q12⁃21 and encodes the 
human topoisomerase IIα (TOPIIα), which mediates DNA 
decatenation by rejoining DNA double strand breaks to 
separate entangled sister chromatides during cell division 
[12, 13]. TOP2A is highly expressed in dividing cells, and 
is considered as a proliferation marker in both normal and 
tumor cells. TOP2A is highly expressed in esophageal, 
liver, gastric, breast, and colorectal cancers. In breast 
cancer, high expression of TOP2A is associated with low 
expression of estrogen receptor (ER) and high expression 
of Ki-67, and was proposed to be an important prognostic 
molecular indicator [12, 14–18]. The SLC2A1 gene 
encodes GLUT1, a glucose transporter that mediates a 
rate-limiting step for glucose metabolism in cancer cells 
[19–21]. SLC2A1 is considered an early marker of 
malignant tumors, overexpressed in esophageal squamous 

cell carcinoma, gastric carcinoma, and colon cancer, 
among others, often in association with poor prognosis 
[22–25]. The TPX2 gene is located at 20q11.2 and 
encodes a microtubule-associated protein involved in 
spindle assembly during cell mitosis. TPX2 over-
expression is common to many tumor types. In 
hepatocellular carcinoma, it was correlated with increased 
proliferation, apoptosis inhibition, and induction of EMT 
[26]. In breast cancer, TPX2 silencing repressed 
PI3K/AKT and activated p53 signaling, which inhibited 
proliferation and promoted apoptosis [27]. The ASPM 
gene, located at 1q31, encodes a 3477 amino-acid-long 
protein involved in mitotic spindle regulation and DNA 
double-strand break repair. ASPM overexpression has 
been associated with the development of various tumors 
[28, 29]. In hepatocellular carcinoma, ASPM was 
suggested to be a novel marker for vascular invasion, 
early recurrence, and poor prognosis [28]. In prostate 
cancer, high ASPM expression correlated with tumor 
progression and predicted poor outcome [29]. Altogether, 
the above findings from diverse tumor types are consistent 
with our expression data and our PPI network results, 
suggesting that TOP2A, TPX2, and ASPM function 
interconnectedly to increase mitotic rate in tumor cells. In 
subsequent studies, TOP2A-, TPX2-, and ASPM-specific 
knockout cell and animal models could be used to validate 
the contribution of each gene to NSCLC progression and 
survival.  
 
Our survival analyses on the Kaplan-Meir plotter tool 
indicated that upregulation of TOP2A, SLC2A1, TPX2, 
and ASPM independently predicted poor OS in NSCLC 
patients. Moreover, for TOP2A, high expression was 
associated with poor OS in Stage 1, Stage T1, Stage N0, 
and Stage M0 NSCLC patients. An association between 
TOP2A and poor OS was further confirmed by assessing 
protein expression by IHC in a NSCLC TMA. These 
results indicated that TOP2A expression levels may aid 
prognosis evaluation in early-stage lung cancer patients.  
 
The role of TOP2A in development/progression of 
NSCLC is still unclear. Since our GO and KEGG 
enrichment analyses indicated that the identified DEGs 
were also involved in immune responses, we assessed 
molecular markers of tumor-infiltrating immune cells, 
which critically affect early anti-tumor responses and 
often sustain tumor growth through immuno-suppressive 
actions. TOP2A expression was slightly correlated with B 
cells, CD4+ T cells, CD8+ T cells, and neutrophils in 
LUAD, and with macrophages and DCs in LUSC. In 
particular, a more significant negative correlation between 
TOP2A expression and HLA-complex members, CD1C, 
NRP1, and ITGAX expression in DCs was detected in 
LUSC. Since DCs are crucial antigen presenting cells 
(APCs) that trigger T-cell mediated antitumor immunity 
[30], impaired function of tumor-infiltrating DCs may 
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seriously affect the body's anti-tumor immune response. 
Although further proof is clearly needed to establish a 
causal relationship, these data suggest that TOP2A 
overexpression may impair DC-mediated anti-tumor 
immune response in NSCLC. 
 
In summary, through bioinformatics analyses we 
showed that TOP2A, SLC2A1, TPX2, and ASPM are 
overexpressed in NSCLC and show significant 
association with poor OS. As cell-cycle dependent 
proteins with interrelated functions, TOP2A, TPX2, and 
ASPM play key roles in the mitotic machinery that 
drives tumor cell replication in NSCLC and other tumor 
types. Further analysis confirmed that TOP2A 
expression was correlated with the prognosis of early-
stage lung cancer patients and was negatively correlated 
with immune cell infiltration in NSCLC, especially of 
DCs. Thus, our study provided a potential biomarker 
dataset for NSCLC prognosis and suggested that 
TOP2A, in particular, may be a valuable survival 
biomarker to improve prognostic efforts and possibly 
guide new therapeutic developments for NSCLC. 
 
MATERIALS AND METHODS  
 
GEO dataset 
 
The GEO dataset GSE103512 [31] was selected for our 
study. The platform for GSE103512 is GPL13158, 
[HT_HG-U133_Plus_PM] Affymetrix HT HG-U133+ 
PM Array, which includes 280 formalin-fixed, paraffin 
embedded normal and tumor samples of four cancer 
types (breast, colorectal, prostate, and non-small cell 
lung cancer). The array contains 65 breast cancer 
samples with 10 matched normal samples; 57 colorectal 
cancer samples with 12 matched normal samples; 60 
NSCLC samples with 9 matched normal samples; and 
60 prostate cancer samples with 7 matched normal 
samples. We only analyzed NSCLC samples and their 
matched controls for DEG identification. 
 
Identification of DEGs  
 
Gene expression analysis of NSCLC and matched 
normal tissues was performed with the GEO2R tool 
(https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE103
512). DEGs were sorted by log2FC > 1.5 or < -1.5 and p 
< 0.01. 
 
Enrichment analysis 
 
GO enrichment and KEGG pathway analyses were 
performed using DAVID v6.8 (https://david.ncifcrf. 
gov/), an online set of functional annotation tools to 
infer biological activities for large gene lists [32, 33]. P 
< 0.05 denoted statistical significance. 

RNA extraction and qPCR analysis 
 
For qPCR validation of DEGs defined in the GEO dataset 
GSE103512, 17 paired NSCLC and adjacent non-tumor 
lung samples were collected from patients who underwent 
surgery in the Department of Thoracic Surgery (Tangdu 
Hospital, Fourth Military Medical University). The study 
was approved by the Ethics Committee of First Affiliated 
Hospital of Fourth Military Medical University 
(KY20183327-1). Total RNA was extracted from samples 
using Total RNA Kit II (Omega Bio-tek, GA, USA) 
following manufacturer’s instructions, and then reversely 
transcribed to cDNA using the PrimeScript RT Reagent 
Kit (TaKaRa, Kusatsu, Japan). qPCR was carried out 
using the SYBR Premix Ex Taq II Kit (TaKaRa, Kusatsu, 
Japan). PCR primers are listed in Table 2. 
 
GEPIA-based analysis of RNA-sequencing 
expression data  
 
GEPIA [34] is a newly developed interactive web server 
for analyzing RNA-Seq expression data of 9,736 tumors 
and 8,587 normal samples from TCGA and GTEx 
projects using a standard processing pipeline (http:// 
gepia.cancer-pku.cn/index.html). It is developed by 
Zefang Tang, Chenwei Li, and Boxi Kang (Zhang Lab, 
Peking University), and provides customizable 
functions such as differential expression analysis, 
profiling according to cancer type or pathological stage, 
patient survival analysis, similar gene detection, and 
correlation and dimensionality reduction analyses. We 
selected NSCLC specimens and normal lung tissues for 
differential expression analysis, and DEGs for 
correlation analysis. The Spearman method was used to 
determine significant correlations. 
 
PPI network analysis 
 
PPI network analysis was performed on DEGs using 
STRING software (https://string-db.org/) [35].  
 
Survival analysis 
 
The Kaplan Meier plotter [36, 37] (http://kmplot. 
com/analysis/) is an open source software that allows to 
assess the effect of 54,000 genes on survival in 21 cancer 
types. TOP2A, SLC2A1, TPX2, and ASPM were the 
DEGs selected for validation as survival biomarkers by 
the Kaplan Meier plotter. OS was calculated using 
Kaplan-Meier analysis and log-rank test. 
 
Immunohistochemistry 
 
A TMA of 90 NSCLC and matched normal samples 
was purchased from Shanghai Biochip Company 
(Shanghai, China). Twenty paired samples were

https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE103512
https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE103512
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://gepia.cancer-pku.cn/index.html
http://gepia.cancer-pku.cn/index.html
https://string-db.org/
http://kmplot.com/analysis/
http://kmplot.com/analysis/
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Table 2. Sequences of PCR primers. 

Primer  Sequence 
TOP2A-Forward Primer ACCATTGCAGCCTGTAAATGA 
TOP2A-Reverse Primer GGGCGGAGCAAAATATGTTCC 
MMP12-Forward Primer CATGAACCGTGAGGATGTTGA 
MMP12-Reverse Primer GCATGGGCTAGGATTCCACC 
SPP1-Forward Primer CTCCATTGACTCGAACGACTC 
SPP1-Reverse Primer CAGGTCTGCGAAACTTCTTAGAT 
MMP1-Forward Primer AAAATTACACGCCAGATTTGCC 
MMP1-Reverse Primer GGTGTGACATTACTCCAGAGTTG 
UBE2C-Forward Primer GACCTGAGGTATAAGCTCTCGC 
UBE2C-Reverse Primer TTACCCTGGGTGTCCACGTT 
SLC2A1-Forward Primer GGCCAAGAGTGTGCTAAAGAA 
SLC2A1-Reverse Primer ACAGCGTTGATGCCAGACAG 
TPX2-Forward Primer ATGGAACTGGAGGGCTTTTTC 
TPX2-Reverse Primer TGTTGTCAACTGGTTTCAAAGGT 
DSP-Forward Primer GCAGGATGTACTATTCTCGGC 
DSP-Reverse Primer CCTGGATGGTGTTCTGGTTCT 
ASPM-Forward Primer GGCCCTAGACAACCCTAACGA 
ASPM-Reverse Primer AGCTTGGTGTTTCAGAACATCA 
RRM2-Forward Primer CACGGAGCCGAAAACTAAAGC 
RRM2-Reverse Primer TCTGCCTTCTTATACATCTGCCA 
IGFBP3-Forward Primer AGAGCACAGATACCCAGAACT 
IGFBP3-Reverse Primer GGTGATTCAGTGTGTCTTCCATT 
GAPDH-Forward Primer   GCACCGTCAAGGCTGAGAAC 
GAPDH-Reverse Primer   TGGTGAAGACGCCAGTGGA 
 

 
excluded from analysis owing to incomplete patient 
information and/or sample absence. Therefore, IHC was 
performed as reported previously [4] on 70 matched 
specimens. Paraffin sections were dewaxed, followed 
by antigen retrieval with Tris-EDTA buffer (pH 9). 
Deparaffinized sections were treated with methanol 
containing 3% hydrogen peroxide for 15 min, washed 
with PBS, and incubated with blocking serum for 30 
min. Then, sections were incubated with anti-TOP2A 
(66541-1-Ig, Proteintech, USA) diluted 1:100, at 4ºC 
overnight. Immunoperoxidase staining was conducted 
using a streptavidin-peroxidase kit and 3,3′-
diaminobenzidine (Zhongshan Jinqiao Co., Beijing, 
China). Hematoxylin was used to counterstain the 
nuclei. Intensity and density of TOP2A-positive cells 
was evaluated and scored as reported before [4]. 
 
TIMER analysis 
 
TIMER (https://cistrome.shinyapps.io/timer/) [38, 39] is 
a comprehensive resource for systematic analysis of 
immune infiltrates across diverse cancer types using 
RNA-Seq expression profiling data. Six immune cell 
types (B cells, CD4+ T cells, CD8+ T cells, neutrophils, 
macrophages, and dendritic cells) were assessed by 
TIMER on NSCLC sample data, and the correlation 
between TOP2A expression and immune infiltration  

was determined. In addition, we assessed the corre- 
lations between TOP2A expression and gene markers of 
tumor-infiltrating immune cells [40]. 
 
Statistical analysis 
 
Data were analyzed using GraphPad Prism 5.0. 
Expression levels of DEGs between NSCLC and 
matched normal tissues were compared by paired two-
tailed t-test. OS was calculated using Kaplan-Meier 
analysis and log-rank test. P < 0.05 was considered 
significant.  
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SUPPLEMENTARY MATERIAL  
 
Please browse Full Text version to see the data of 
Supplementary Table 1. GEO Dataset analysis of 
upregulated and downregulated genes in NSCLC 
compared to their normal samples. 
 


