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INTRODUCTION 
 
Glioma is the most common primary intracranial tumor 
in adults, among which glioblastoma multiforme (GBM) 
has the highest degree of malignancy and a poor 
prognosis, with average survival rate of less than 15  

 

months and a 5-year survival rate of less than 10% [1]. 
Currently, glioma is primarily treated with surgical 
resection, radiation and chemotherapy. The concurrent 
addition of temozolomide (TMZ) to radiation as a 
chemotherapy adjuvant modestly improves survival 
among young patients with a good performance status 
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ABSTRACT 
 
Glioblastoma is a highly aggressive brain malignancy with a poor prognosis. Its high intratumor heterogeneity 
contributes to therapeutic resistance, tumor progression and recurrence. We sequenced 31 loci in 11 patients 
with glioblastoma (including one patient with samples available from the primary and recurrent tumors) to 
determine the genetic basis and intratumor heterogeneity of glioblastoma. By analyzing the somatic mutations, 
known driver genes were identified, including EGFR, PTEN and TP53, and the MUC16 gene exhibited the highest 
mutation rate in the samples examined. Through an evolutionary analysis of the sequencing results, the EGFR 
p.L861Q mutation was determined to play a role in the progression from the primary tumor to a relapsing tumor 
in one patient. We analyzed 1403 genes in blood-derived ctDNA that were previously revealed to play a role in 
tumorigenesis and the progression of cancer. Somatic mutations identified through ctDNA sequencing that match 
the results of multipoint exon sequencing in tumor tissues were detected, such as EGFR p.L861Q. These findings 
provide new insights into the intratumor heterogeneity and evolution of glioblastoma. In addition, ctDNA 
detection in blood samples represents a convenient method to dynamically identify the genetic changes and new 
therapeutic targets during the treatment of glioblastoma. 
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and has become the standard of care [2]. Despite the 
benefits of TMZ, tumors invariably recur, leading to a 
fatal outcome. Therefore, a more in-depth understanding 
of the occurrence and progression of glioma will be 
beneficial for the development of personalized treatment. 
 
Extensive genetic diversity in GBM results in resistance 
to standardized treatment and a poor prognosis. Through 
a recent exploration at the genetic level, a new strategy 
for obtaining a better understanding of and improving 
GBM treatment was discovered and proposed [1]. In 
particular, individualized targeted therapy is selected for 
individual tumor mutations [3, 4]. Although this 
approach seeks to maximize the drug response and 
patient survival, the intratumor heterogeneity of GBM 
poses significant challenges [5–7]. Specifically, each 
tumor contains multiple clones with different genetic 
alterations, which will require strategies designed to 
therapeutically target multiple molecules [5, 8]. The 
detection of a single tumor locus may not accurately 
reflect the genetic characteristics of other tumor regions, 
rendering the traditional biopsy prone to errors and 
posing a significant challenge in cancer medicine [9]. 
 
Tumor heterogeneity has been used to describe various 
forms of tumor variability, including variations in the 
intertumoral mutation pattern, variations in intratumor 
histology and intratumor mutational polyclonality [10]. 
Spontaneous somatic cell mutations combined with the 
microenvironment for the evolutionary selection of 
tumor subclones will promote the growth of single 
cancer cells into complex and heterogeneous tumor 
masses [11]. During the evolution of clones, new 
mutations become more frequent as tumors progress, 
increasing the difficulty of treating these tumors. The 
poor prognosis of patients often indicates the progres-
sion of tumor heterogeneity [12–14]. 
 
Based on accumulating evidence, GBM can be further 
classified at the genomic level to reveal the evolution of 
tumors [5]. In addition, tumor fragments from the same 
patient can be divided into different GBM subtypes [6]. 
In the present study, subclones were detected in patients 
with GBM prior to treatment and new subclones 
appeared in the same patients after standardized 
treatment. We also describe a subset of tumor-associated 
genetic changes in blood-derived ctDNA. 
 
RESULTS 
 
Known driver gene mutations and significantly 
mutated genes (SMGs) in GBM samples 
 
All point mutations were expressed in the following 6 
forms: C>A(G>T), C>G(G>C), C>T(G>A), T>A(A>T), 
T>C(A>G), and T>G(A >C). Tumor samples and point 

mutation types were clustered according to the number of 
point mutations (Supplementary Figure 1A). As expected, 
we detected a point mutation variation in samples 
collected at different loci of the same original tumor, but 
in the patients with recurrent tumors (NO. 05-recurrent), 
the mutation variation was less than the original sample 
(NO. 05-primary) (Supplementary Figure 1A). The 
overall mutation pattern of GBM was dominated by C>T 
and G>A (Supplementary Figure 1A), particularly in 
recurrent samples (derived from NO. 05-recurrent). 
 
We next identified the driver gene mutations in these 
GBM samples using the CGC513 (https://cancer.sanger. 
ac.uk/census), Bert Vogelstein125 [15] and SMG127 
[16] driver mutation databases for comparison. We 
subsequently selected the top 50 driver gene mutations 
for mapping and observed higher mutation frequencies 
for MUC16 (a 19/31 ratio), EGFR (a 19/31 ratio) and 
PTEN (a 16/31 ratio) (Figure 1A). The IDH1 mutation 
was detected in two patients (NO. 03 and NO. 05-
recurrent) at 18% (not shown in the figure). The MUC16 
gene, also called CA125, was recently shown to play a 
pivotal role in promoting ovarian cancer growth and 
metastasis [17] and is associated with a higher tumor 
mutation load (TML), better survival outcomes and better 
immune response in patients with gastric cancer [18]. 
 
We also identified 55,992 SNVs from our exon 
sequencing of 31 GBM loci. High-frequency mutations 
in GBM were analyzed using MuSiC software [19] and 
the convolution test (CT), Fisher’s test (Fisher’s 
combined P-value test, FCPT), and the likelihood ratio 
test (LRT). If the false discovery rate (FDR) ≤ 0.2 in two 
of three tests, the gene was considered a high-frequency 
mutation. Sixty-seven SMGs, including EGFR, PTEN, 
VNN1, and ZSCAN23, were identified (the top 50 are 
shown in Figure 1B). We analyzed our SMG data with 
the PathScan module of MuSiC [19] software to perform 
a pathway enrichment analysis and obtain insights into 
the genetic alterations in canonical signaling pathways. 
The significantly enriched pathways of high-frequency 
mutated genes were revealed and included focal 
adhesion, axon guidance, NGF signaling and the cAMP 
signaling pathway, among others (Supplementary Figure 
1B). In addition, heatmaps of SMGs in tumor-related 
pathways were used to observe the variations in the 
mutation frequencies (Supplementary Figure 2). Again, 
we observed intratumor heterogeneity in the mutations in 
genes involved in these pathways associated with tumor 
formation and progression. 
 
MUC16, the gene with the highest mutation 
frequency, indicates a good prognosis 
 
We counted the gene mutations obtained from 
multipoint sequencing in 11 patients, and the 10 genes 
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with the highest mutation frequencies were MUC16, 
FAT1, EGFR, PTEN, ZFHX3, FAT4, FAT3, TSC1, 
ARHGAP5 and ATRX (Figure 1C). FAT1, FAT3 and 
FAT4 are cadherin family members, and this family of 
molecules is likely to be important in mammalian 
developmental processes and cell communication [20]. 
The loss of FAT1 also contributes to the mechanism of 
resistance mediated by CDK4/6i in ER+ breast cancer 

[21]. EGFR, PTEN and ATRX are commonly mutated 
genes in glioma [1]. Multipoint sequencing can identify 
new high-frequency mutated genes in GBM. By 
analyzing the GO biological processes of genes that 
were mutated in more than three patients, we mainly 
observed enrichment in double-strand break repair, 
histone modification and phosphatidylinositol-mediated 
signaling, among other processes (Figure 1D). 

 

 
 

Figure 1. Driver gene mutation analysis and significantly mutated genes (SMGs) in GBM. (A) The top 50 driver genes with the 
highest mutation frequencies were selected for inclusion in the heat maps. The abscissa lists the sample names and the ordinate lists the 
gene names. The left graph shows the number of mutant samples and the top graph shows the number of mutated genes in each sample. (B) 
The graph on the right shows the log10 P-value of each gene mutation. The heat map (middle panel) presents gene mutations in GBM 
samples. The graph on the left shows the mutation frequency in the GBM samples examined. The mutant load is shown on the top of the 
heat map. (C) Mutation heatmap. (D) GO analysis. 
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Few mutations were identified in MUC16 in primary 
GBM samples, but a 15 percent mutation frequency was 
observed in recurrent GBM (Figure 2A–2B) in the 
CGGA (Chinese Glioma Genome Atlas) GBM 
database, validating our results. This finding indicates 
the importance of MUC16 in GBM recurrence. The 
most frequently mutated gene, MUC16, in our 
sequencing data also contains multiple mutation sites in 
the gene mutation data provided by TCGA (Figure 2C). 
By analyzing the TCGA clinical data, the overall 
survival curve showed that patients with GBM carrying 

a mutation in the MUC16 gene had a poor survival 
outcome (Figure 2D). Based on these results, multipoint 
sampling is a better indicator of underlying tumor 
progression. 
 
Analysis of subclones and the evolution of primary 
and recurrent GBM samples from the same patient 
 
We next outperformed a subclone analysis of primary 
and recurrent GBM samples from patient NO. 05 with 
the aim of exploring the genetic evolution of GBM. 

 

 
 

Figure 2. Multipoint sequencing provides a new map of mutations. (A–B) Genes that were mutated in the patient cohort were 
detected in CGGA primary and recurrent GBM WES databases. (C) MUC16 mutations in the TCGA database. (D) Survival curves of patients 
carrying wild type and mutant MUC16. 
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Multiple subclones were detected in each site of 
primary and recurrent tumor samples from patient NO. 
05, but the mutated genes and frequency between tumor 
sites differed (Figure 3A and 3B). Clone 0 was present 
at a higher proportion in all sites, but clone 4 was 
present at a higher proportion in pri1 (NO. 05-primary 
1) and pri2 (NO. 05-primary 2). Notably, clone 6 

accounted for a higher VAF in all recurrent samples 
(Figure 3B–3D), suggesting that the gene mutations 
present in clone 6 play an important role in GBM 
recurrence. Further analysis using Pyclone CCF 
package ClonEvol [22] revealed the evolutionary 
relationship between the primary and recurrent GBM 
tumors in patient NO. 05 (Figure 3E). An analysis of the 

 

 
 

Figure 3. Analysis of the subclones and evolution of primary and recurrent GBM samples from patient NO. 05. (A) Four intra-
tumor loci from the primary tumor and 5 intra-tumor loci from the recurrent tumor from the same patient were sequenced and analyzed. (B) 
VAF distribution of different subclone types at each intratumor locus. (C) A clonal evolution map of each intratumor locus. (D) Clonal 
structure distribution of each intratumor locus. (E) A tumorigenic chart of intratumor loci. 
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subclones and evolutionary relationship in patients NO. 
05 and NO. 04 (Supplementary Figure 3) indicated that 
different branches appeared during GBM progression, 
and a complex pattern of intratumor heterogeneity 
gradually formed in these tumors. H&E (Supplementary 
Figure 4) and immunofluorescence staining (Supple-
mentary Figure 5) of the tumors from patient NO. 05 
also revealed significant intratumor differences. 
 
The ctDNA in the blood predicts the overall genetic 
information of the GBM 
 
The ctDNA in the blood carries the genetic information 
of the tumor and has become an indicator of the 

occurrence and progression of tumors following a liquid 
biopsy [23–25]. Because of the limited amount of 
ctDNA in the blood, we were unable to detect all 
genetic mutations identified in the tumors. In this study, 
we selected 1,403 common genes, which are known to 
be involved in tumor progression, and detected their 
common mutation sites for evaluation in ctDNA. 
Importantly, the EGFR p.L861Q mutation in the ctDNA 
of patient NO. 05 was detected in all recurrent samples 
but only in some of the original samples (Figure 4). By 
comparing the ctDNA sequencing data with tumor 
tissue exon sequencing results from all 11 patients with 
GBM and the TCGA gene mutation database, ctDNA 
sequencing detected common gene mutations in GBM 

 

 
 

Figure 4. Sequencing and analysis of the ctDNA. (A) Magnetic resonance images show the different locations of tissue samples derived 
from patient NO. 05. (B) SNP density circos map of the primary and recurrent GBM samples from patient NO. 05. The first circle represents 
sample (i), the second circle represents sample (ii), the third circle represents sample (iii), the fourth circle represents the repeat of sample 
(iii), the fifth circle represents chromosomes, the sixth circle represents sample (I), the seventh circle represents sample (II), the eighth circle 
represents sample (III), the ninth circle represents sample (IV), the tenth circle represents sample (V), and the eleventh circle represents gene 
mutations detected using ctDNA testing. 
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tumors (Figures 5A–5C, Supplementary Figure 6 and 
Supplementary Figure 7) and obtained additional gene 
mutation information that failed to be detected in tumor 
tissue samples (Figure 5B and 5C). 
 
DISCUSSION 
 
GBM shows obvious molecular heterogeneity and 
invasive behavior [5, 7, 10, 26]. The heterogeneity of a 
tumor refers to the genetic changes in its subpopulations 

of cells after multiple division sand proliferation during 
tumor growth [5, 6, 11, 27–30]. Following the 
development of new detection technology, the most 
recent data, including next-generation sequencing data, 
support the clonal evolution model as the main 
theoretical basis of heterogeneity [30–32]. By 
sequencing 31 intratumor loci and ctDNAs from 11 
patients with primary and recurrent GBM, we observed 
high intratumor heterogeneity at the levels of both 
somatic gene mutations and chromosomal copy numbers 

 

 
 

Figure 5. Comparison of EGFR mutations identified using ctDNA and tumor DNA sequencing. (A–C) Mutation hotspots of EGFR 
mutations present in the TCGA database, patient tissue WES data and ctDNA testing results. 
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in the present study. The intratumor heterogeneity of 
GBM has been suggested to contribute to therapeutic 
resistance [33], tumor progression and recurrence [34]. 
Interestingly, even recurrent GBM presented a high 
degree of genetic heterogeneity in the present study. 
Moreover, the subclone analysis revealed different 
signatures of intratumor heterogeneity between primary 
and recurrent GBM (Figure 3A–3C). For instance, clone 
6 was only present in recurrent tumors (Figure 3B), 
suggesting that it may represent a causal factor of 
recurrent GBM that is more refractory to treatment  
than the primary tumor. These results suggest the 
selective evolution of the tumor subclone structure after 
treatment (Figure 3A). Further investigations of the 
underlying detailed molecular changes and driving force 
of the heterogeneity in recurrent GBM might sub-
stantially improve the therapeutic efficacy and 
prognosis of GBM. 
 
Additional treatment strategies for GBM are urgently 
needed. Precision medicine has been a major focus in the 
field, with the goal of matching specific tumor mutations 
with potential therapeutic drugs to provide individualized 
treatment options [35, 36]. An increasing number of 
studies have identified a number of driver gene 
mutations, including TP53, PTEN, EGFR, PIK3CA, 
ATRX, IDH1, PIK3R1, and PDGFRA, MSH6 and 
PRDM2, in GBM [1, 37, 38]. Consistent with these 
findings, frequent mutations in these known driver genes 
were detected in our GBM samples (Figure 1A and 1C). 
In the present study, MUC16 was the most frequently 
mutated known driver gene in the GBM tissue samples 
sequenced (Figure 1A). Studies of MUC16 in other 
tumor types have indicated that MUC16 is a critical 
therapeutic target [17, 18]. For instance, an antibody 
(DUC5754A) against MUC16 has been advanced to a 
phase 1 clinical trial for ovarian cancer [39]. In addition, 
we detected the EGFR p.L861Q mutation in all 
intratumor loci in recurrent tumors but in a few loci in 
primary GBM tumors from patient NO. 05, suggesting 
that the EGFR p.L861Q mutation potentially represents a 
marker for predicting recurrence. 
 
Based on accumulating evidence, ctDNA, which is 
released into the blood after the apoptosis of tumor cells, 
has potential as a tumor biomarker [40–43]. Moreover, 
ctDNA provides a comprehensive picture of the tumor 
genome, as it reflects the DNA released from multiple 
tumor regions [44–47]. Recently, ctDNA has been 
detected in the cerebrospinal fluid (CSF) from patients 
with brain malignancies [44]. Compared to ctDNA 
testing, single-site biopsy or several reliable biopsies are 
needed to obtain the same amount of genetic information 
[44–47]. However, ctDNA also has some substantial 
limitations, such as the generally very low level of 
ctDNA in plasma, resulting in a small range of genes that 

are able to be detected using sequencing [48]. In the 
present study, we selected 1,403 genes involved in 
tumorigenesis and progression for detection and 
compared them with the sequencing results obtained 
from intratumor loci. Importantly, the information 
obtained from the analysis was highly consistent with the 
findings from the sequencing of intratumor loci (Figures 
4 and 5). Thus, blood-derived ctDNA can be used as a 
liquid biopsy to help diagnose and monitor GBM. 
 
Our study has provided a better understanding of 
intratumor heterogeneity, disease progression and 
recurrence in patients with GBM. Our analysis of the 
temporal sequence of mutations and chromosomal copy 
number revealed genetic forces acting on the cancer 
genome and provided new insights into the patterns and 
dynamics of tumor evolution. Further investigations will 
provide more detailed descriptions of the mechanisms of 
disease relapse and new therapeutic strategies for this 
disease. 
 
MATERIALS AND METHODS 
 
Blood specimen collection and preservation 
 
Streck noninvasive blood vessel collection tubes 
(218962, 10 mL, cell-free DNA BCT) were used to 
collect venous blood prior to surgery. The supernatant 
and cell pellet were separately preserved after 
centrifugation. The first centrifugation was conducted at 
1600 × g for 10 minutes at 4°C. The blood cell pellet was 
collected after centrifugation and stored at -80°C. The 
upper plasma fraction was subjected to a second 
centrifugation step (4°C, 16000 × g, 10 minutes). The 
upper plasma fraction produced after second 
centrifugation step was collected and stored at -80°C. 
 
Clinical samples 
 
Our study was approved by the Ethics Committee of the 
Affiliated Hospital of Hebei University (HDFY-KL-LL-
2018-17). All tissues were stored in liquid nitrogen for 
whole exome sequencing (WES). Clinical data for the 
tumor samples used in this study are listed in the 
supplementary table (Supplementary Table 1). 
 
DNA sequencing 
 
Qualified tissue and blood cell DNA samples were 
randomly disrupted into 150- to 220-bp fragments by 
Covaris, and then the Agilent SureSelect Human All 
Exon V6/V7 kit was used for library construction and 
capture. The captured library was subjected to whole-
exome sequencing to identify somatic mutations, 
including single nucleotide variants (SNVs), insertions 
or deletions (INDELs), and copy number alterations 
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(CNAs). A 100X target coverage of coding bases in the 
exome was achieved for all samples. 
 
The ctDNA was extracted from the upper centrifugal 
plasma of patients. A captured ctDNA library was then 
constructed. The purified library was sequenced using a 
NovaSeq 6000 sequencer. The ctDNA sequencing 
method was based on next-generation high-throughput 
sequencing (NGS) and designed to detect a variety of 
solid tumor- and drug-related gene mutations. The panel 
design adopted Roche NimbleGen SeqCap probe design 
technology and covered hot spots, drug-related 
mutations and key areas of 1403 genes to ensure the 
comprehensive detection of hot spots and rare and 
unknown mutation sites to the maximum extent and to 
ensure that valuable mutation information for patients 
was not ignored. 
 
Bioinformatics analyses and statistical analyses 
 
The caner genome atlas (TCGA) somatic mutation 
(SNPs and small INDELs) data used in this study  
were retrieved from the following website: https://xena. 
ucsc.edu/welcome-to-ucsc-xena/. CGGA [49] WES 
sequencing results were analyzed using the website: 
http://cgga.org.cn/index.jsp. GO and survival analyses 
were performed using the R package Clusterprofiler [12] 
and survminer v0.2.1 (https://www.rdocumentation. 
org/packages/survminer). The mutation hotspot graphic 
was generated using the R package GenVisR [13]. The 
genome circos map was produced using the R package 
Rcircos [14] (https://www.rdocumentation.org/packages/ 
RCircos). The nonredundant biological terms for large 
clusters of genes in a functionally grouped network were 
visualized using the Cytoscape plug-in clueGO [50]. 
 
Somatic SNV test 
 
SNV is defined as a single nucleotide variant, which 
refers to the variation caused by the replacement of a 
single nucleotide in the genome. We used MuTect [51] 
software to search for somatic SNVs and annotated the 
results with Annovar software. 
 
Somatic INDELs/SNVs/SVs 
 
The Somatic INDEL sites were detected using Strelka 
[52] and annotated using Annovar software. We used 
Control-FREEC [53] and lumpy [54] to detect somatic 
CNVs and SVs in paired samples of tumor and normal 
tissues. 
 
Somatic mutations 
 
The mutation spectrum and mutation signature were 
analyzed. All point mutations were reported in the 

following 6 forms: C>A(G>T), C>G(G>C), C>T(G>A), 
T>A(A>T), T>C(A>G), and T>G(A>C). Tumor 
samples and point mutation types were clustered 
according to the number of point mutations. The 
preference of point mutation types and the degree of 
similarity of each tumor sample were studied. Mutation 
characteristics were analyzed to extract the mutation 
features of somatic point mutations based on the 
number of 96 point mutations in various tumor samples 
and using non-negative Matrix Factorization (NMF) 
[55]. Each mutation feature reflects the physical, 
chemical or biological process of a cancer somatic 
mutation. The COSMIC web site lists more than 30 
known mutations. 
 
Driver mutations 
 
We compared somatic cell variations with known driver 
genes and screened known driver genes in these tumor 
samples. The driver genes used for comparison were 
derived from the following sites: 
 
(1) CGC513: the driver genes listed in the Cancer Gene 

Census (https://cancer.sanger.ac.uk/census); 
 
(2) Bert Vogelstein125: 125 mut-driver genes in the 

paper by Bert Vogelstein and colleagues [15]; 
 
(3) SMG127: significant mutated genes identified in 

pan-cancer data [16]. 
 
Significantly mutated genes (SMGs) 
 
High frequency mutations in tumors were analyzed 
using MuSiC [19] software. MuSiC sets somatic cell 
mutations in all tumor samples as the background, 
performs statistical tests on various mutation types in 
genes, and detects genes with a significantly higher 
mutation frequency than the background mutation rate. 
MuSiC software performs the SMG test using three 
methods, including a convolution test (CT), Fisher’s test 
(Fisher’s combined P-value test, FCPT), and likelihood 
ratio test (LRT). If FDR ≤ 0.2 in two inspections, the 
gene will be categorized as a high-frequency mutation. 
PathScan [56] (a module of MuSic) was used to analyze 
high-frequency mutated genes. The metabolic pathway 
databases used for enrichment were KEGG, PID and 
Reactome. 
 
Evolutionary tree analysis 
 
According to the mutation frequency identified in 
somatic sites as the Vaf (variant allele frequency) 
combined with copy number variations, Pyclone 
software was used to calculate the proportion of mutant 
cells in the CCF (cancer cell fraction) of tumor and 

https://xena.ucsc.edu/welcome-to-ucsc-xena/
https://xena.ucsc.edu/welcome-to-ucsc-xena/
http://cgga.org.cn/index.jsp
https://www.rdocumentation.org/packages/survminer
https://www.rdocumentation.org/packages/survminer
https://www.rdocumentation.org/packages/RCircos
https://www.rdocumentation.org/packages/RCircos
https://cancer.sanger.ac.uk/census
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studied the clone structures. ClonEvol [22] software 
was employed to analyze the evolutionary relationship 
between tumor samples. 
 
H&E staining, immunofluorescence staining, and 
confocal imaging 
 
Paraffin-embedded tissue sections were used for H&E 
staining. For immunofluorescence staining, the sections 
were incubated with primary antibodies (1:100 dilution) 
(p-EGFR and POLK, from CST Cell Signaling 
Technology) overnight at 4°C, followed by a 1-h 
incubation with a fluorescently labeled secondary 
antibody (1:100 dilution) at 37°C. Images were obtained 
with a confocal microscope (Olympus FluoView 1200 
system). All confocal scanning parameters were 
maintained at constant values between samples, and the 
images were minimally processed to maintain the 
integrity of the data. 
 
Abbreviations 
 
SMGs: significantly mutated genes; ctDNA: circulating 
tumor DNA; SNV: single-nucleotide variant; CTX: 
interchromosomal translocation; ITX: intrachromosomal 
translocation; INS: inversion; DEL: deletion; DUP: 
tandem duplication and INV: inversion. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 
 

 
 

Supplementary Figure 1. (A) The abscissa indicates the sample name, the ordinate indicates the proportion of each mutation type in the 
sample, and different colors represent different SNV mutation types. (B) Pathway analysis of SMGs. The ordinate provides the pathway 
description, the abscissa lists the gene detection rate in each pathway, the size of the dot represents the number of genes in each pathway 
and the color of the dot represents the range of p values. 
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Supplementary Figure 2. Significantly mutated genes (SMGs) involved in the cell cycle, ErbB signaling, RAS signaling, NF-
kappa signaling, apoptosis and the wnt signaling pathway. The graph on the right presents the log10 P-value of each gene mutation. 
The heat map (middle panel) presents gene mutations in GBM samples. The graph on the left shows the mutation frequency in the GBM 
samples examined. The mutant load is shown on top of the heat map. 
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Supplementary Figure 3. Analysis of the subclones and evolution of GBM samples from patient NO. 04. 
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Supplementary Figure 4. (A) Magnetic resonance images of the primary glioblastoma tumor from patient NO. 05. (i, ii, and iii) indicate the 
locations of the multipoint samples. (B) HE staining and genome mutation circos plots of primary multipoint samples from patient NO. 05. 
The first circle indicates chromosomes. The dark purple dots in the second circle represent the density of SNPs, The dark blue points in the 
third circle denote the density of INDELs. The fourth circle presents the CNV results, where red indicates an increased copy number, blue 
indicates a decreased copy number, and green indicates a normal copy number. The fifth circle presents the SV results. Due to the large 
amount of data, only SV data from exons and splice sites are displayed: CTX (brown), ITX (blue), INS (orange), DEL (dark red), DUP (light 
purple) and INV (green). (C) Magnetic resonance images of the recurrent tumors from patient NO. 05. (I-V) indicate the locations of the multi-
point samples. (D) HE staining and genome mutation circos plots of recurrent multipoint samples from patient NO. 05. 
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Supplementary Figure 5. (A) Magnetic resonance images of the primary glioblastoma tumors from patient NO. 05. (i–iii) indicate the 
locations of the multi-point samples. (B) Immunofluorescence staining of primary multipoint samples from patient NO. 05. (C) Magnetic 
resonance images of the recurrent tumors from patient NO. 05. (I–V) indicate the locations of the multi-point samples.  
(D) Immunofluorescence staining of recurrent multipoint samples from patient NO. 05. 
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Supplementary Figure 6. Results of the ctDNA test and statistical analysis of the same mutations in the region of the ctDNA sequenced 
identified using exon sequencing at different tumor sites from patients NO. 05-recurrent and NO. 04. 
 

 
 

Supplementary Figure 7. Matching probability of ctDNA test and exon sequencing data in the region of the ctDNA sequenced from each 
patient. 
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Supplementary Table 
 
 
Supplementary Table 1. Clinical data for the tumor samples 

ID Age Gender Sample type Number of samples 
NO.01 62 male rGBM 3 
NO.02 56 female GBM 1 
NO.03 51 female GBM 1 
NO.04 66 male GBM 5 
NO.05 45 male GBM 4 
NO.05-recurrent 46 male rGBM 5 
NO.06 19 male GBM 1 
NO.07 32 male GBM 4 
N0.08 62 male GBM 1 
N0.09 70 male GBM 4 
NO.10 61 male GBM 1 
NO.11 64 male GBM 1 

 


