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INTRODUCTION 
 
It is known to all that RNAs consist of coding RNAs 
(messenger RNAs, mRNAs) and noncoding RNAs 
(ncRNAs). In recent years, ncRNAs have been the 
centerpiece of human genome research [1]. NcRNAs  

 

have key implications for human health and 
dysregulation of ncRNAs causes a variety of human 
disorders, including cancer [2, 3]. There are many  
types of ncRNAs, including microRNA (miRNA), long 
ncRNA (lncRNA), pseudogene and circular RNA 
(circRNA) [4, 5]. In 2011, the team of Salmena et al. 
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ABSTRACT 
 
Objective: Ovarian cancer is one of the most common and lethal cancer types in women. The molecular 
mechanism of ovarian cancer progression is still unclear. 
Results: Here, we first reported that expression levels of three genes, GJB2, S100A2 and SPOCK2, were 
significantly higher in advanced stage than that in early stage of ovarian cancer, and upregulation of them 
indicated poor prognosis of patients with ovarian cancer. Subsequently, 8, 6 and 20 miRNAs were predicted to 
target GJB2, S100A2 and SPOCK2, respectively. Among these miRNA-mRNA pairs, hsa-miR-363-3p-SPOCK2 axis 
was the most potential in suppressing progression of ovarian cancer. Mechanistically, we found that hsa-miR-
363-3p-SPOCK2 axis was involved in regulation of actin cytoskeleton. Moreover, 6 pseudogenes and 8 lncRNAs 
were identified to potentially inhibit hsa-miR-363-3p-SPOCK2 axis in ovarian cancer. 
Conclusions: Collectively, we elucidate a regulatory role of pseudogene/lncRNA-hsa-miR-363-3p-SPOCK2 
pathway in progression of ovarian cancer, which may provide effective therapeutic approaches and promising 
prognostic biomarkers for ovarian cancer. 
Materials and methods: Differentially expressed genes (DEGs) in ovarian cancer were first screened using 
GSE12470, after which DEGs expression were validated using GEPIA. Kaplan-Meier analysis was employed to 
assess the prognostic values. Potential miRNAs were predicted by seven target prediction databases, and 
upstream lncRNAs and pseudogenes of hsa-miR-363-3p were forecasted through miRNet or starBase. UALCAN 
and starBase were used to obtain the co-expressed genes of SPOCK. Enrichment analysis for these co-expressed 
genes was performed by Enrichr. 
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proposed competing endogenous RNA (ceRNA) 
hypothesis, which is a regulatory mechanism between 
mRNAs and ncRNAs [6]. ceRNA mechanism 
demonstrates that lncRNAs, pseudogenes, circRNAs and 
mRNAs can cross-talk by competitively binding to 
shared miRNAs, thereby exerting their biological 
functions [7]. Increasing ncRNAs have been discovered 
to act as important tumor promoters or suppressors [8–
11]. Moreover, ncRNAs also serve as potential diagnostic 
and prognostic biomarkers for cancer [12–15]. To date, 
only an extremely limited number of ncRNAs have been 
characterized functionally in cancer, though thousands of 
ncRNAs have been annotated. 
 
Ovarian cancer ranks the seventh most common 
neoplasm among the world and the eighth leading cause 
of cancer deaths in women [16, 17]. Globally, 239,000 
new patients were affected by ovarian cancer and 
152,000 deaths occurred every year [18]. It’s widely 
known that ovarian cancer can be classified into three 
subtypes, including epithelial, specialized stromal cell 
and germ cell tumors, among which epithelial ovarian 
cancer occupies largest ratio in ovarian cancer. Besides, 
epithelial ovarian cancer is the most lethal gynecologic 
malignancy. Different types of epithelial ovarian cancer 
have distinct mutational spectrum and different 
prognosis [19–21]. To date, surgery and platinum/ 
taxane chemotherapy combinate as the main treatment 
for ovarian cancer [22, 23]. It’s an effective method for 
early stage ovarian cancer patients, with the five-year 
survival rates up to 92% [24]. However, in spite of huge 
advances in various therapies in the past few decades, 
only 19% ovarian cancer patients are diagnosed at early 
stage, due to deficiency of typical clinical symptoms and 
manifestations and fast tumor progression, and the five-
year survival rates of ovarian cancer are still only below 
30% [25]. Hence, it’s extremely meaningful to rapidly 
seek potential biomarkers and therapeutic targets for 
improving outcomes of ovarian cancer patients. 
 
In this study, we constructed a network linked to stage 
progression of ovarian cancer by a series of analytic 
processes (Figure 1). Firstly, we obtained differentially 
expressed genes (DEGs)-associated with stage 
progression of ovarian cancer using GEO dataset, 
GSE12470. Next, TCGA ovarian cancer cohort was 
employed to validate expression of these DEGs and 
perform survival analysis. Subsequently, upstream 
miRNAs of SPOCK2 were predicted. By expression 
correlation analysis and survival analysis, the most 
potential miRNA (hsa-miR-363-3p) binding to SPOCK2 
was identified. Finally, the potential upstream dys-
regulated mechanisms (pseudogenes and lncRNAs) and 
downstream modulatory pathway were explored.  
The established pseudogene/lncRNA-hsa-miR-363-3p-
SPOCK2 pathway shed novel insight into molecular 

mechanism of ovarian cancer progression and may 
provide effective therapeutic targets and promising 
prognostic biomarkers for ovarian cancer. 
 
RESULTS 
 
Screen of candidate genes associated with stage 
progression of ovarian cancer 
 
To identify the key genes involved in stage progression 
of ovarian cancer, GSE12470 dataset was selected to 
perform differential expression analysis using GEO2R. 
As described in materials and methods, all cases of 
GSE12470 were divided into three groups: “Nor” group, 
“Ear” group and “Adv” group. A lot of differentially 
expressed genes (DEGs) between “Nor” group and 
“Adv” group or between “Ear” group and “Adv” group 
were discovered as shown in Figure 2A and Figure 2B, 
respectively. A total of 2,555 and 2,310 DEGs were 
significantly upregulated and downregulated in early 
ovarian cancer samples compared with normal samples 
(Supplementary Table 1), respectively. And a total of 921 
and 196 DEGs were significantly upregulated and 
downregulated in advanced ovarian cancer samples 
compared with early ovarian cancer samples, respectively 
(Supplementary Table 2). This study aims to find those 
genes associated with stage progression of ovarian 
cancer. Therefore, we obtained the upregulated and 
downregulated DEGs that were commonly appeared in 
two comparison sets. As presented in Figure 2C–2D and 
Table 1, 35 upregulated DEGs and 2 downregulated 
DEGs were finally identified. The 37 DEGs were defined 
as candidate genes and selected for subsequent analysis. 
 
Expression validation and survival analysis of 
candidate genes in ovarian cancer 
 
Next, for improving accuracy of analysis, TCGA ovarian 
cancer samples and GTEx normal data were introduced 
to validate expression levels of 37 candidate genes via 
GEPIA database. As shown in Figure 3, among the 37 
candidate genes, expression of 26 genes (ADAMDEC1, 
C11orf15, CCNA2, CHEK1, CLGN, DAPL1, EGFL6, 
FAM181A, FAM83D, FOXA2, GJB2, GPR19, 
LRRTM1, LYPD1, MAD2L1, NEIL3, PART1, PNOC, 
S100A2, SPOCK2, ST6GALNAC2, TGM1, XPR1, 
ZBED2, EPS8 and FAXDC2) were in accordance with 
the results acquired from GSE12470. Notably, only two 
genes (EPS8 and FAXDC2) were downregulated in 
cancer tissues compared with normal controls. In the 
following survival analysis, we focused on the 26 
candidate genes. Firstly, TCGA ovarian cancer cohort 
was introduced to assess the prognostic values (including 
OS and RFS) of the 26 candidate genes. As shown in 
Figure 4A, high expression of GJB2, S100A2, SPOCK2, 
TGM1or EPS8 indicated a poor OS of patients with 
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Figure 1. The visual flow-process diagram of this study. 
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ovarian cancer, whereas ovarian cancer patients with 
higher expression of ADAMDEC1, CHEK1, EGFL6, 
FAM181A, FOXA2, LYPD1, PART1 or XPR1 
possessed better OS. For RFS of patients with ovarian 
cancer, SPOCK2 and FAXDC2 were unfavorable 
prognostic biomarkers but ADAMDEC1, CCNA2, 
FAM181A, FOXA2, LRRTM1, NEIL3 and XPR1 were 

favorable prognostic biomarkers (Figure 4B). Among 
these genes, only expression levels of GJB2, S100A2, 
SPOCK2 and TGM1 were significantly upregulated in 
cancer samples and their high expression indicated poor 
prognosis (OS or RFS). The detailed information of 
survival analysis was listed in Figure 4C and Figure 4D. 
Subsequently, we introduced the ovarian cancer data 

 

 
 

Figure 2. Identification of differentially expressed genes (DEGs) between ovarian cancer and normal controls. (A) Volcano plot 
showing the DEGs between normal samples (n=10) and early ovarian cancer (n=8). (B) Volcano plot showing the DEGs between early ovarian 
cancer (n=8) and advanced ovarian cancer (n=35). Note: the black dots represent genes that are not significantly differentially expressed 
between two groups, and the green dots and red dots represent the downregulated and upregulated genes in early ovarian cancer 
(compared with normal samples) and advanced ovarian cancer (compared with early ovarian cancer), respectively. |log2FC| > 1 and P-value < 
0.05 were set as the cut-off criteria. FC = fold change. (C) The intersection of upregulated DEGs of “Nor vs Ear” and “Ear vs Adv”. (D) The 
intersection of downregulated DEGs of “Nor vs Ear” and “Ear vs Adv”. “Nor” vs Ear” represents the differential expression analysis between 
normal samples and early ovarian cancer. “Ear vs Adv” represents the differential expression analysis between early ovarian cancer and 
advanced ovarian cancer. 
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Figure 3. Expression levels of 26 key genes (ADAMDEC1 (A), C11orf15 (B), CCNA2 (C), CHEK1 (D), CLGN (E), DAPL1 (F), EGFL6 (G), 
FAM181A (H), FAM83D (I), FOXA2 (J), GJB2 (K), GPR19 (L), LRRTM1 (M), LYPD1 (N), MAD2L1 (O), NEIL3 (P), PART1 (Q), PNOC (R), S100A2 (S), 
SPOCK2 (T), ST6GALNAC2 (U), TGM1 (V), XPR1 (W), ZBED2 (X), EPS8 (Y) and FAXDC2 (Z)) in ovarian cancer determined by GEPIA database. “*” 
represents “P-value < 0.05”. Y axis indicates relative expression value, log2(TPM+1). TPM=Transcript per million. 
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other than TCGA to further assess the survival effects of 
GJB2, S100A2, SPOCK2 and TGM1 on prognosis (OS) 
by Kaplan-Meier plotter. As presented in Figure 4E–4G, 
ovarian cancer patients with higher expression of GJB2, 
S100A2 and SPOCK2 showed better OS, which was 
identical with the analytic results obtained from TCGA 
cohort. However, in 206008_at cohort, increased 
expression of TGM1 linked to favorable OS of ovarian 
cancer (Figure 4H), contrary to TCGA cohort. Taken 
together, GJB2, S100A2 and SPOCK2 might be three 
key genes in mediating tumor stage progression of 
ovarian cancer and causing poor prognosis. 
 
hsa-miR-363-3p-SPOCK2 axis is identified as a 
potential  pathway  linked  to  ovarian  cancer 
progression 
 
Growing evidences have suggested that miRNAs mainly 
participate in negatively regulating gene expression and 
thereby play important roles in a variety of human 
biological  processes,   including   cancer  initiation  and 

development [4, 26, 27]. Thus, we first predicted 
upstream miRNAs of GJB2, S100A2 and SPOCK2 
through seven predicting programs as mentioned above 
(Table 2). Finally, 8, 6 and 20 upstream miRNAs were 
found to potentially target GJB2, S100A2 and SPOCK2, 
respectively. For better visualization, miRNA-GJB2, 
miRNA-S100A2 and miRNA-SPOCK2 sub-networks 
were established as shown in Figure 5A–5C. Then, we 
evaluated the prognostic values of these miRNAs in 
ovarian cancer using TCGA data. As shown in Figure 
5D, among all the predicted miRNAs of GJB2, high 
expression of hsa-miR-522-3p and hsa-miR-105-5p 
indicated favorable OS of patients with ovarian cancer 
but hsa-miR-485-5p was an unfavorable prognostic 
biomarker for ovarian cancer. For S100A2, upregulation 
of hsa-miR-421 and hsa-miR-367-3p correlated with 
good and bad prognosis, respectively (Figure 5E). As 
presented in Figure 5F, regarding to these miRNAs of 
SPOCK2, high expression of hsa-miR-363-3p, hsa-miR-
362-3p and hsa-miR-942-5p showed favorable OS but 
increased expression of hsa-miR-137, hsa-miR-367-3p, 

 

 
 

Figure 4. Prognostic values of 26 candidate genes in ovarian cancer assessed by Kaplan-Meier plotter database. (A) Prognostic 
values (overall survival, OS) of the 26 key genes in TCGA ovarian cancer cohort. (B) Prognostic values (relapse free survival, RFS) of the 26 key 
genes in TCGA ovarian cancer cohort. Green bars indicate a favorable prognosis; red bars indicate an unfavorable prognosis; black bars 
represent no statistical significance. (C) The detailed information of (A). (D) The detailed information of (B). (E) The prognostic value of GJB2 
in 223278_at ovarian cancer cohort. (F) The prognostic value of S100A2 in 204268_at ovarian cancer cohort. (G) The prognostic value of 
SPOCK2 in 202524_s_at ovarian cancer cohort. (H) The prognostic value of TGM1 in 206008_at ovarian cancer cohort. Logrank P < 0.05 was 
considered as statistically significant. 
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Table 1. Expression change of 37 significant candidate gene in ovarian cancer. 

Gene symbol Log2FCa Log2FCb 

ADAMDEC1 2.76 1.95 
C11orf45 1.59 1.30 
CCNA2 4.10 1.34 
CHEK1 2.88 1.37 
CLGN 3.32 1.81 
DAPL1 5.59 2.17 
EGFL6 2.68 1.79 
FAM122B 1.30 1.13 
FAM181A 1.70 1.30 
FAM83D 2.46 1.10 
FOXA2 3.19 1.57 
FRAS1 2.83 2.02 
GJB2 3.04 2.85 
GMCL1 1.44 1.02 
GPR19 3.20 1.32 
HRK 2.22 1.53 
HTR2C 2.61 3.12 
L3MBTL1 2.33 1.39 
LCT 5.25 6.82 
LRRTM1 3.22 2.55 
LYPD1 3.19 1.56 
MAD2L1 3.01 1.05 
NEIL3 1.98 1.10 
PART1 3.13 1.92 
PNOC 3.96 2.97 
RBM11 1.65 1.01 
S100A2 1.85 1.43 
SPOCK2 1.02 1.53 
ST6GALNAC2 1.42 1.59 
TGM1 2.12 2.07 
TMPO 1.18 1.09 
TMPRSS6 1.91 2.94 
XPR1 1.05 1.38 
ZBED2 5.98 1.53 
ZNF556 2.46 1.17 
EPS8 -1.48 -1.17 
FAXDC2 -2.23 -2.30 

aFC = (Early ovarian cancer samples)/(Normal samples); 
bFC = (Advanced ovarian cancer samples)/(Early ovarian cancer samples). 
 

hsa-miR-377-3p, hsa-miR-329-3p, hsa-miR-1297, hsa-
miR-1197, hsa-miR-2278, hsa-miR-4465 and hsa-miR-
3194-3p linked to unfavorable OS. In view of miRNA 
functional mechanism and oncogenic roles of GJB2, 

S100A2 and SPOCK2, upstream miRNAs of the three 
genes should be tumor suppressive miRNAs. Therefore, 
six miRNA-mRNA pairs, including hsa-miR-105-5p-
GJB2, hsa-miR-522-3p-GJB2, hsa-miR-421-S100A2,  
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Table 2. Prediction of miRNAs binding to GJB2, S100A2 or SPOCK2. 

Gene name miRNA name Predicting program Number 
GJB2 hsa-miR-23a-3p PITA, miRanda 2 
GJB2 hsa-miR-105-5p PITA, miRmap, microT, PicTar 4 
GJB2 hsa-miR-23b-3p PITA, miRanda 2 
GJB2 hsa-miR-485-5p PITA, miRmap 2 
GJB2 hsa-miR-522-3p PITA, miRmap, microT 3 
GJB2 hsa-miR-642a-5p PITA, miRmap 2 
GJB2 hsa-miR-140-3p PITA, miRmap 2 
GJB2 hsa-miR-224-3p miRmap, microT 2 
S100A2 hsa-miR-25-3p RNA22, TargetScan 2 
S100A2 hsa-miR-32-5p RNA22, TargetScan 2 
S100A2 hsa-miR-212-3p PITA, miRanda 2 
S100A2 hsa-miR-132-3p PITA, miRanda 2 
S100A2 hsa-miR-367-3p RNA22, TargetScan 2 
S100A2 hsa-miR-421 PITA, miRmap, microT, miRanda 4 
SPOCK2 hsa-miR-25-3p PITA, microT, miRanda, TargetScan 4 
SPOCK2 hsa-miR-26a-5p PITA, RNA22, PicTar, TargetScan 4 
SPOCK2 hsa-miR-26b-5p PITA, RNA22, PicTar, TargetScan 4 
SPOCK2 hsa-miR-32-5p PITA, microT, miRanda, TargetScan 4 
SPOCK2 hsa-miR-92a-3p PITA, microT, miRanda, TargetScan 4 
SPOCK2 hsa-miR-137 PITA, TargetScan 2 
SPOCK2 hsa-miR-363-3p PITA, microT, miRanda, TargetScan 4 
SPOCK2 hsa-miR-367-3p PITA, microT, miRanda, TargetScan 4 
SPOCK2 hsa-miR-377-3p PITA, miRmap, microT, miRanda 4 
SPOCK2 hsa-miR-379-5p PITA, miRmap 2 
SPOCK2 hsa-miR-329-3p PITA, microT 2 
SPOCK2 hsa-miR-92b-3p PITA, microT, miRanda, TargetScan 4 
SPOCK2 hsa-miR-362-3p PITA, microT 2 
SPOCK2 hsa-miR-942-5p PITA, miRmap 2 
SPOCK2 hsa-miR-1287-5p PITA, miRmap 2 
SPOCK2 hsa-miR-1297 PITA, PicTar, TargetScan 3 
SPOCK2 hsa-miR-1197 PITA, miRmap, microT 3 
SPOCK2 hsa-miR-2278 miRmap, PicTar, RNA22 3 
SPOCK2 hsa-miR-4465 RNA22, PicTar, TargetScan 3 
SPOCK2 hsa-miR-3194-3p miRmap, microT 2 

 

hsa-miR-363-3p-SPOCK2, hsa-miR-362-3p-SPOCK2 
and hsa-miR-942-5p-SPOCK2, were selected for 
subsequent expression correlation analysis. Figure 5G–5L 
told us that only hsa-miR-363-3p was significantly 
negatively correlated with SPOCK2 in ovarian cancer. 
Altogether, hsa-miR-363-3p-SPOCK2 axis may be the 
most potential pathway in mediating tumor stage 
progression of ovarian cancer. 

Co-expression and enrichment analyses reveal  
that hsa-miR-363-3p-SPOCK2 axis is involved  
in regulation of actin cytoskeleton 
 
Co-expression analysis was performed using two 
databases, namely UALCAN and GEPIA. 100 and 200 
co-expressed genes were obtained from UALCAN  
and GEPIA as listed in Supplementary Table 3. By 
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Figure 5. Identification of upstream potential miRNAs of GJB2, S100A2 and SPOCK2 by combination of miRNA prediction, 
survival analysis and correlation analysis. (A) The miRNA-GJB2 network established by Cytoscape. (B) The miRNA-S100A2 network 
established by Cytoscape. (C) The miRNA-SPOCK2 network established by Cytoscape. (D) Prognostic values (overall survival, OS) of potential 
upstream miRNAs of GJB2 in TCGA ovarian cancer cohort. (E) Prognostic values (overall survival, OS) of potential upstream miRNAs of S100A2 
in TCGA ovarian cancer cohort. (F) Prognostic values (overall survival, OS) of potential upstream miRNAs of SPOCK2 in TCGA ovarian cancer 
cohort. Green bars indicate a favorable prognosis; red bars indicate an unfavorable prognosis; black bars represent no statistical significance. 
(G) The expression correlation of hsa-miR-105-5p and GJB2 in ovarian cancer. (H) The expression correlation of hsa-miR-522-3p and GJB2 in 
ovarian cancer. (I) The expression correlation of hsa-miR-421 and S100A2 in ovarian cancer. (J) The expression correlation of hsa-miR-363-3p 
and SPOCK2 in ovarian cancer. (K) The expression correlation of hsa-miR-362-3p and SPOCK2 in ovarian cancer. (L) The expression correlation 
of hsa-miR-942-5p and SPOCK2 in ovarian cancer. 
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intersection of two gene sets, we found that 77 co-
expressed genes of SPOCK2 were commonly appeared 
in the two databases (Figure 6A and Supplementary 
Table 4). The 77 genes and their correlation coefficients 
were presented in Table 3. GO functional annotation and 
KEGG pathway enrichment analysis were introduced to 
better understand these genes via Enrichr database. The 
top 10 enriched GO terms were shown in Figure 6B–6D, 
containing membrane raft organization, membrane raft 
assembly and positive regulation of protein acetylation in 
the BP category, actin cytoskeleton, membrane raft and 

focal adhesion in the CC category, and cadherin binding 
involved in cell-cell adhesion, protein binding involved 
in cell-cell adhesion and cadherin binding in the MF 
category. The top 10 enriched KEGG pathways were 
presented in Figure 6E, including bacterial invasion of 
epithelial cells, leukocyte transendothelial migration 
and regulation of actin cytoskeleton. These findings 
demonstrate that hsa-miR-363-3p-SPOCK2 axis may 
regulate actin cytoskeleton and thereby take part in cell 
adhesion, invasion and migration, and finally suppress 
progression of ovarian cancer. 

 

 
 

Figure 6. Enrichment analysis of co-expressed genes of SPOCK2 in ovarian cancer. (A) Identification of co-expressed genes of 
SPOCK2 in ovarian cancer using UALCAN and GEPIA database. (B) The top 10 enriched biological process (BP) items for the co-expressed 
genes of SPOCK2. (C) The top 10 enriched cellular component (CC) items for the co-expressed genes of SPOCK2. (D) The top 10 enriched 
molecular function (MF) items for the co-expressed items for the co-expressed genes of SPOCK2. (E) The top 10 enriched KEGG items for the 
co-expressed items for the co-expressed genes of SPOCK2. 
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Table 3. The co-expressed genes of SPOCK2 commonly appeared in UALCAN database and GEPIA database. 

Common co-expressed genes of SPOCK2 Ra Rb 

RASGRP4 0.59 0.62 
SLC48A1 0.57 0.58 
ADORA1 0.53 0.50 
UNC5B 0.53 0.58 
OXTR 0.52 0.52 
CRB2 0.52 0.55 
TRIM36 0.50 0.47 
CADM3 0.48 0.46 
SLC22A18AS 0.48 0.41 
ZBED2 0.47 0.53 
TNS3 0.47 0.49 
KIF21A 0.46 0.43 
S100A10 0.45 0.43 
CLIC5 0.45 0.44 
CAMK2G 0.44 0.46 
RAB19 0.42 0.46 
CACNG4 0.42 0.41 
TBC1D2 0.41 0.43 
UPK3B 0.41 0.41 
MYADM 0.41 0.42 
ANXA7 0.40 0.39 
CLDN15 0.40 0.40 
WNT10A 0.40 0.41 
CCDC85A 0.39 0.39 
CD151 0.39 0.38 
CASKIN2 0.39 0.37 
AMOTL2 0.38 0.43 
DTX4 0.38 0.40 
IGFBP6 0.37 0.34 
ANXA2P2 0.37 0.36 
ST6GAL2 0.37 0.34 
ANXA2 0.37 0.46 
KRT80 0.37 0.39 
CLSTN2 0.37 0.37 
ANXA9 0.37 0.37 
DNM3 0.37 0.41 
SHISA4 0.36 0.37 
PLA2G7 0.36 0.34 
INF2 0.36 0.35 
CHRDL1 0.36 0.42 
RAPGEF3 0.36 0.40 
SLC4A11 0.36 0.35 
PNPLA2 0.36 0.32 
RNASEL 0.35 0.36 
TPRN 0.35 0.36 
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OLFML2A 0.35 0.35 
TGM1 0.35 0.37 
VSIG10L 0.35 0.32 
SERPINB5 0.35 0.32 
LRRN4 0.34 0.35 
FNDC4 0.34 0.37 
PRSS33 0.34 0.32 
ST5 0.34 0.35 
GNG12 0.33 0.33 
VSTM2L 0.33 0.35 
TNNT2 0.33 0.31 
BAIAP2 0.33 0.37 
ARL13B 0.32 0.37 
SERPINA5 0.32 0.31 
ZMIZ1 0.32 0.36 
CHST11 0.32 0.34 
SLC29A3 0.32 0.37 
ANO9 0.32 0.31 
PKP3 0.31 0.31 
VCL 0.31 0.34 
ARNTL 0.31 0.32 
BET1L 0.31 0.35 
TMEM9B 0.31 0.31 
GDPD5 0.30 0.31 
SCD5 0.30 0.33 
FAM69A 0.30 0.31 
TNS1 0.30 0.32 
ARPC1B 0.30 0.31 
SMPD1 0.30 0.32 
PXN 0.30 0.35 
RHOF 0.30 0.35 
RIC8A 0.30 0.34 

aCorrelation coefficient determined by UALCAN database. 
bCorrelation coefficient determined by GEPIA database. 
 

Upstream potential pseudogenes and lncRNAs of 
hsa-miR-363-3p 
 
Pseudogene and lncRNA are two considerable subtypes 
of noncoding RNA (ncRNA), which may function as 
ceRNAs to interact with mRNAs by competing for 
shared miRNAs. Therefore, starBase database was first 
utilized to predict the upstream potential pseudogenes 
that could potentially bind to hsa-miR-363-3p. 56 
pseudogenes were obtained as shown in Figure 7A. 
Based on ceRNA mechanism, these pseudogenes should 
be oncogenes in ovarian cancer. The expression levels of 
the 56 pseudogenes were detected using GEPIA 

database. Finally, only 6 pseudogenes, RPS26P15 
(Figure 7B), AC004057.1 (Figure 7C), RPS26P31 
(Figure 7D), RPS26P6 (Figure 7E), RPS26P3 (Figure 
7F) and RPS26P47 (Figure 7G,) were significantly 
upregulated in cancer tissues when compared with 
normal controls. Then, expression differences of the 6 
pseudogenes among various major stages were also 
determined. As shown in Figure 7H–7M, all of the 6 
pseudogenes expression were higher in advanced stage 
than that in early stage of ovarian cancer in general. 
Expression correlation analysis revealed that hsa-miR-
363-3p was significantly correlated with RPS26P15 
(Figure 7N), AC004057.1 (Figure 7O), RPS26P6 (Figure 
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7Q) or RPS26P3 (Figure 7R). For hsa-miR-363-3p-
RPS26P31 (Figure 7P) and hsa-miR-363-3p-RPS26P47 
(Figure 7S) pairs, no significant relationship was 
observed but still presented negative correlations. All 
these findings indicated that RPS26P15, AC004057.1, 
RPS26P31, RPS26P6, RPS26P3 and RPS26P47 were the 
most potential pseudogenes in regulating hsa-miR-363-
3p in ovarian cancer. Subsequently, those lncRNAs that 
could potentially bind to hsa-miR-363-3p were also 
predicted. 90 and 33 upstream lncRNAs were found in 
starBase and miRNet as presented in Figure 8A and 
Figure 8B, respectively. The detailed lncRNAs were 
listed in Supplementary Table 5. By intersection of the 
two databases, eight lncRNAs (SNHG5, DAPK1-IT1, 

MALAT1, TBX5-AS1, SNHG14, OIP5-AS1, PITPNA-
AS1 and XIST) were commonly appeared. Taken 
together, overexpressed lncRNAs/pseudogenes-
mediated downregulation of hsa-miR-363-3p leads to 
increased expression of SPOCK2, modulating actin 
cytoskeleton and thereby resulting in progression of 
ovarian cancer (Figure 9). 
 
DISCUSSION 
 
Ovarian cancer is notorious for its aggressive natural 
characteristic. Though great developments have been 
achieved in diagnosis and therapy for ovarian cancer, 
patients’ prognosis is still dismal. Exploration of 

 

 
 

Figure 7. Identification of upstream potential pseudogenes of hsa-miR-363-3p in ovarian cancer. (A) The pseudogenes-hsa-miR-
363-3p network constructed by Cytoscape. The expression levels of RPS26P15 (B), AC004057.1 (C), RPS26P31 (D), RPS26P6 (E), RPS26P3 (F) 
and RPS26P47 (G) in ovarian cancer compared with normal controls. “*” represents “P-value < 0.05”. Y axis indicates relative expression 
value, log2(TPM+1). TPM=Transcript per million. Expression differences of RPS26P15 (H), AC004057.1 (I), RPS26P31 (J), RPS26P6 (K), RPS26P3 
(L) and RPS26P47 (M) among various major stage in ovarian cancer. P-value < 0.05 was considered as statistically significant. (N) The 
expression correlation of hsa-miR-363-3p and RPS26P15 in ovarian cancer. (O) The expression correlation of hsa-miR-363-3p and AC004057.1 
in ovarian cancer. (P) The expression correlation of hsa-miR-363-3p and RPS26P31 in ovarian cancer. (Q) The expression correlation of hsa-
miR-363-3p and RPS26P6 in ovarian cancer. (R) The expression correlation of hsa-miR-363-3p and RPS26P3 in ovarian cancer. (S) The 
expression correlation of hsa-miR-363-3p and RPS26P47 in ovarian cancer. 
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molecular mechanisms of ovarian cancer progression is 
valuable and helpful for developing novel therapeutic 
approaches and thus improving patients’ survival. 
 
In this study, based on comprehensive expression 
analysis and survival analysis, three genes (GJB2, 
S100A2 and SPOCK2) were identified as key genes 
which may be associated with progression of ovarian 

cancer. Expression levels of GJB2, S100A2 and 
SPOCK2 were increased in ovarian cancer and their 
upregulation was linked to poor prognosis of patients 
with ovarian cancer. The 3 genes have been confirmed to 
act as oncogenes in multiple human cancers and link to 
cancer progression. Besides, many studies have also 
demonstrated that the three genes may serve as promising 
biomarkers for cancer. For example, GJB2 promoted 

 

 
 

Figure 8. Screening upstream potential lncRNAs of hsa-miR-363-3p. (A) The potential lncRNAs of hsa-miR-363-3p predicted by 
starBase database. (B) The potential lncRNAs of hsa-miR-363-3p predicted by miRNet database. (C) 8 intersected lncRNAs (SNHG5, DAPK1-
IT1, MALAT1, TBX5-AS1, SNHG14, OIP5-AS1, PITPNA-AS1 and XIST) from starBase and miRNet databases. 
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early stage breast cancer progression by regulating 
cancer stemness [28]; Zhu et al. suggested that GJB2 
was a prognostic marker in patients with pancreatic 
cancer by genome-scale analysis [29]; the group of  
Sun D found that GJB2 was identified as predictive 
biomarkers for pancreatic cancer by integrated whole 
genome microarray analysis and immunohistochemical 
assay [30]; Masuda et al. indicated that overexpressed 
S100A2 was a prognostic marker for patients with  
stage II and III colorectal cancer [31]; Kwon et al. 
showed that S100A2 was significant for progression  
of prostate adenocarcinoma [32]. Regrading to 
SPOCK2, the group of Ren F confirmed that SPOCK2 
contributed to the progression of endometrial cancer  
by modulating the biological behavior of cancer  
cells [33]. All these reports together with our current 
analytic results of expression and survival analysis 
demonstrate that GJB2, S100A2 and SPOCK2 may be 
three key oncogenes in the progression of ovarian 
cancer. 
 
miRNAs, a class of identified ncRNA molecules, play 
important roles in regulating the biological behaviors by 
suppressing target gene expression [26, 27]. Therefore, 
we intended to seek those miRNAs targeting to GJB2, 
S100A2 or SPOCK2. Using several online databases, 
some potential miRNAs, including 8 for GJB2, 6  
for S100A2 and 20 for SPOCK2, were predicted. 
According to the action mechanism of miRNA, these 
miRNAs should be tumor suppressive miRNAs in 

ovarian cancer. After performing survival analysis, six 
miRNA-mRNA pairs (hsa-miR-105-5p-GJB2, hsa-miR-
522-3p-GJB2, hsa-miR-421-S100A2, hsa-miR-363-3p-
SPOCK2, hsa-miR-362-3p-SPOCK2 and hsa-miR-942-
5p-SPOCK2) possessed the most potential functions in 
ovarian cancer and were selected for subsequent 
expression correlation analysis. Correlation analysis 
showed that only hsa-miR-363-3p-SPOCK2 pair existed 
significant negative relationship. Altogether, hsa-miR-
363-3p-SPOCK2 axis was considered as the potential 
pathway, involving in progression of ovarian cancer. 
Numerous studies supported that hsa-miR-363-3p 
functioned as a key suppressor in development of 
multiple human cancers. For example, hsa-miR-363-3p 
was found to inhibit tumor growth and metastasis of 
colorectal cancer via targeting SPHK2 [34]; He et al. 
suggested that hsa-miR-363-3p acted as a tumor 
suppressor in osteosarcoma cells by inhibiting PDZD2 
[35]. These reports partially supported the accuracy of 
our bioinformatics analysis. Next, the co-expressed 
genes of SPOCK2 were acquired using UALCAN and 
GEPIA databases. Enrichment analysis for these co-
expressed genes revealed that they were significantly 
enriched in actin cytoskeleton-associated pathways. It 
has been well documented that actin cytoskeleton is 
closely correlated with cancer invasion and metastasis 
[36, 37]. Hence, hsa-miR-363-3p-SPOCK2 axis may 
suppress invasion and metastasis through regulation of 
actin cytoskeleton and finally block stage progression of 
ovarian cancer. 

 

 
 

Figure 9. Model of the pseudogene/lncRNA-hsa-miR-363-3p-SPOCK2 network and its expression and potential roles in 
ovarian cancer progression. 
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In additional to miRNAs, there are also some other types 
of ncRNAs, such as lncRNAs and pseudogenes. They 
can serve as ceRNAs of mRNAs by competitively 
binding to common miRNAs, thereby participating in 
human health and disorders, containing cancer [13, 38, 
39]. The upstream pseudogenes of hsa-miR-363-3p-
SPOCK2 axis were first obtained by starBase database. 
Expression differences between ovarian cancer samples 
and control normal or among various major stages were 
further determined using GEPIA database. Among 56 
predicted pseudogenes, only 6 pseudogenes (RPS26P15, 
AC004057.1, RPS26P31, RPS26P6, RPS26P3 and 
RPS26P47) were significantly upregulated in cancer 
samples (compared to normal samples) and advanced 
stage of ovarian cancer (compared to early stage ovarian 
cancer). Expression correlation analysis demonstrated 
that hsa-miR-363-3p was inversely linked to RPS26P15, 
AC004057.1, RPS26P31, RPS26P6, RPS26P3 or 
RPS26P47. By combination of ceRNA mechanism and 
these analytic findings, the six pseudogenes were 
identified as the potential regulators of hsa-miR-363-3p-
SPOCK2 axis in ovarian cancer. Finally, using starBase 
and miRNet databases, the upstream regulatory lncRNAs 
of hsa-miR-363-3p-SPOCK2 axis were also predicted. 
Eight lncRNAs (SNHG5, DAPK1-IT1, MALAT1, 
TBX5-AS1, SNHG14, OIP5-AS1, PITPNA-AS1 and 
XIST) were commonly appeared in the two databases. 
Among these LncRNAs, MALAT1 and SNHG14 have 
been demonstrated to function as oncogenes in ovarian 
cancer. For example, lncRNA MALAT1 promoted 
proliferation and metastasis of epithelial ovarian cancer 
via the PI3K-AKT pathway [40]; lncRNA SNHG14 
enhanced proliferation and metastasis of ovarian cancer 
by sponging miR-219a-5p [40]. The rest lncRNAs were 
also found to function as oncogenes in other types of 
human cancer. For example, lncRNA SNHG5 facilitated 
growth and invasion of melanoma by regulating the miR-
26a-5p/TRPC3 pathway [41]; lncRNA OIP5-AS1 
predicted poor prognosis and regulated cell proliferation 
and apoptosis in bladder cancer [42]; lncRNA XIST 
enhanced pancreatic cancer cells invasion through 
promotion of TGF-β2 expression by targeting miR-141-
3p [43]. These reports further supported that the 8 
lncRNAs, similar to 6 potential pseudogenes, may also 
play crucial roles in regulating hsa-miR-363-3p-SPOCK2 
axis, thus involving in progression of ovarian cancer. 
 
CONCLUSIONS 
 
In summary, a series of integrated bioinformatics 
analyses suggest that hsa-miR-363-3p-SPOCK2 axis may 
play key roles in progression of ovarian cancer by 
regulating actin cytoskeleton. Furthermore, the potential 
upstream pseudogenes and lncRNAs of has-miR-363-3p-
SPOCK2 axis are successfully identified. The constitutes 
in this pseudogenes/lncRNAs-hsa-miR-363-3p-SPOCK2 

network may be utilized as promising therapeutic targets 
and prognostic biomarkers in the future. 
 
MATERIALS AND METHODS 
 
Microarray 
 
The mRNA microarray profiles of ovarian cancer were 
downloaded from GEO database (http://www.ncbi.nlm. 
nih.gov/geo) by searching keywords ((“gene” OR 
“mRNA” [all fields] AND (“ovarian cancer” OR 
“ovarian carcinoma” OR “EOC” [all fields]) AND 
“Homo sapiens” [porgn]). Then, the titles and abstracts of 
datasets were screened, and the full information of the 
datasets of interest were further evaluated and finally 
selected according to the following inclusion criteria: (1) 
selected datasets should be mRNA transcriptome data; 
(2) the data should be derived from tumor tissues and 
normal tissues of patients with ovarian cancer; (3) only 
datasets containing more than 5 cancer samples and 5 
normal samples were included; (4) cancer samples in 
selected datasets should contain early stage and advanced 
stage ovarian cancer. Finally, only one dataset GSE12470 
was included in this study. GSE12470 dataset, which is 
based on the platform of Agilent-012097 Human 1A 
Microarray (V2) G4110B, contained 53 tissue samples, 
involving 10 normal samples, 8 early ovarian cancer 
samples and 35 advanced ovarian cancer samples. 
 
Differential expression analysis 
 
The differentially expressed genes (DEGs) were obtained 
by conducting differential expression analysis. GEO2R 
(http://www.ncbi.nlm.nih.gov/geo/geo2r), an online 
analytic tool provided by the GEO database, was 
employed to perform differential expression analysis. 
Firstly, we divided the 53 samples into three groups, 
namely normal group (“Nor”, 10 samples), early stage 
ovarian cancer group (“Ear”, 8 samples) and advanced 
stage ovarian cancer group (“Adv”, 35 samples). Then, 
differential expression analysis was successively done 
between “Nor” group and “Ear” group, “Ear” group and 
“Adv” group. |log2FC| > 1 and P-value < 0.05 were set as 
the cut-off criteria. Finally, VENNY 2.1.0 
(http://bioinfogp.cnb.csic.es/tools/venny/index.html) was 
utilized to draw the Veen diagrams. The DEGs were 
commonly upregulated or downregulated in “Ear” group 
(compared with “Nor” group) and “Adv” group 
(compared with “Ear” group). These DEGs were re-
defined as significant DEGs. FC = fold change. 
 
Gene Expression Profiling Interactive Analysis 
(GEPIA) database analysis 
 
GEPIA database (http://gepia.cancer-pku.cn/detail.php), 
a newly developed interactive web server for analyzing 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://gepia.cancer-pku.cn/detail.php
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the RNA sequencing expression data, included 9,736 
tumors and 8,587 normal samples from The Cancer 
Genome Atlas (TCGA) and The Genotype-Tissue 
Expression (GTEx) projects [15, 44]. GEPIA database 
was used to validate the expression levels of significant 
DEGs in ovarian cancer. |log2FC| > 1 and P-value < 0.05 
were set as the cut-off criteria. After entering the gene 
symbols into the “Gene” column, the expression box 
plots were automatically generated on the webpage. 
Similarly, gene expression differences among various 
major stages were also determined using GEPIA 
database. Besides, GEPIA database was also introduced 
to identify the co-expressed genes of SPOCK2 in ovarian 
cancer. 
 
Kaplan-Meier plotter analysis 
 
Kaplan-Meier plotter is a database that can be capable of 
assess the effect of 54,000 genes on survival in 21 cancer 
types, and the miRNA subsystems in this database 
include 11,000 samples from 20 different cancer types 
[45, 46]. Kaplan-Meier plotter was utilized to evaluate 
the prognostic values of genes or microRNAs in ovarian 
cancer. Briefly, genes or microRNAs were first typed 
into the database. All cases of ovarian cancer were 
classified into a low expression group and a high 
expression group based on the median expression value. 
Subsequently, Kaplan-Meier survival plots were 
generated on the webpage. The hazard ratio (HR), 95% 
confidence interval (CI) and logrank P-value were also 
automatically calculated and displayed on the webpage. 
A logrank P-value < 0.05 was considered as statistically 
significant. 
 
miRNA prediction 
 
In this study, a relatively comprehensive method of 
miRNA prediction was utilized. Seven databases, 
containing PITA (https://genie.weizmann.ac.il/pubs/ 
mir07/mir07_dyn_data.html), RNA22 (https://cm. 
jefferson.edu/rna22/), miRmap (https://mirmap.ezlab. 
org/), microT (http://www.microrna.gr/webServer), 
miRanda (http://www.microrna.org/microrna/home.do), 
PicTar (http://www.pictar.org/) and TargetScan 
(www.targetscan.org/), were employed to predict the 
upstream miRNAs potentially binding to GJB2, S100A2 
and SPOCK2. Only these miRNAs appeared more than 
one predicting programs were selected for subsequent 
analysis. 
 
starBase database analysis 
 
starBase database is a widely-used open-source platform 
for studying the ncRNA interactions from CLIP-seq, 
degradome-seq and RNA-RNA interactome data [47, 
48]. Herein, starBase database was introduced to analyze 

the expression correlation between miRNA and gene or 
pseudogene. R < -0.1 and P-value < 0.05 were set as the 
cut-off criteria for identifying the significant miRNA-
gene/pseudogene pairs. starBase database was also used 
to predict the pseudogenes and lncRNAs that can 
theoretically bind to hsa-miR-363-3p. 
 
UALCAN database analysis 
 
UALCAN database is a portal for analyzing gene 
expression and survival effect, which provides easy 
access to publicly available cancer transcriptome data 
including ovarian cancer [49, 50]. In this study, the 
database was utilized to obtain the co-expressed genes of 
SPOCK2 in ovarian cancer. Then, these co-expressed 
genes were intersected with the co-expressed genes 
acquired from GEPIA database as mentioned above. The 
co-expressed genes commonly appeared in the two 
databases were re-defined as co-expressed genes of 
interest and were chosen for subsequent enrichment 
analysis. 
 
Enrichr database analysis 
 
Gene Ontology (GO) functional annotation and KEGG 
pathway enrichment analysis for the co-expressed genes 
of SPOCK2 was performed using Enrichr database as 
we previously described [51–53]. Three categories, 
including biological process (BP), cellular component 
(CC) and molecular function (MF), were included in 
GO functional annotation. The top 10 enriched GO 
items and KEGG pathways were displayed on the 
webpage and downloaded as images. 
 
miRNet database analysis 
 
miRNet (https://www.mirnet.ca/), an easy-to-use 
comprehensive platform integrated data from several 
miRNA-linked databases (TarBase, miRTarBase, 
miRecords, miRanda), was employed to predict the 
potential lncRNAs binding to hsa-miR-363-3p. 
Subsequently, these lncRNAs were intersected with the 
lncRNAs obtained from starBase database to acquire the 
most potential regulatory lncRNAs of hsa-miR-363-3p. 
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SUPPLEMENTARY MATERIALS 
 
 
Please browse Full Text version to see the data of Supplementary Tables 1–3. 
 
Supplementary Table 1. The significant DEGs between normal samples and early ovarian cancer samples. 
 
Supplementary Table 2. The significant DEGs between early ovarian cancer samples and advanced ovarian cancer 
samples. 
 
Supplementary Table 3. The co-expressed genes of SPOCK2 from UALCAN and GEPIA databases. 
 
Supplementary Table 4. The co-expressed genes of SPOCK2 commonly appeared in UALCAN and GEPIA databases. 

Co-expressed genes 
RASGRP4 
SLC48A1 
ADORA1 
UNC5B 
OXTR 
CRB2 
TRIM36 
CADM3 
SLC22A18AS 
ZBED2 
TNS3 
KIF21A 
S100A10 
CLIC5 
CAMK2G 
RAB19 
CACNG4 
TBC1D2 
UPK3B 
MYADM 
ANXA7 
CLDN15 
WNT10A 
CCDC85A 
CD151 
CASKIN2 
AMOTL2 
DTX4 
IGFBP6 
ANXA2P2 
ST6GAL2 
ANXA2 
KRT80 
CLSTN2 
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ANXA9 
DNM3 
SHISA4 
PLA2G7 
INF2 
CHRDL1 
RAPGEF3 
SLC4A11 
PNPLA2 
RNASEL 
TPRN 
OLFML2A 
TGM1 
VSIG10L 
SERPINB5 
LRRN4 
FNDC4 
PRSS33 
ST5 
GNG12 
VSTM2L 
TNNT2 
BAIAP2 
ARL13B 
SERPINA5 
ZMIZ1 
CHST11 
SLC29A3 
ANO9 
PKP3 
VCL 
ARNTL 
BET1L 
TMEM9B 
GDPD5 
SCD5 
FAM69A 
TNS1 
ARPC1B 
SMPD1 
PXN 
RHOF 
RIC8A 
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Supplementary Table 5. The potential upstream lncRNAs of hsa-miR-363-3p predicted by starBase and miRNet 
databases. 

lncRNAs predicted by starBase lncRNAs predicted by miRNet 
LINC01128 NEFL 
MDS2 XIST 
AC239868.3 SCAMP1 
AL358472.2 MALAT1 
LINC00467 SNHG5 
C1orf143 OIP5-AS1 
AC074117.1 RNU4ATAC 
AC016700.3 DAPK1-IT1 
PAX8-AS1 AC005307.3 
AC018470.1 AC005943.5 
AC016708.1 AC007228.9 
AC105760.2 AC034220.3 
WWTR1-IT1 AC074117.10 
AC104472.1 AC093627.10 
AC007620.3 LINC00657 
CTBP1-AS2 PITPNA-AS1 
AC097376.2 RP1-5O6.6 
AC104793.1 RP11-206L10.11 
PURPL RP11-234O6.2 
NR2F1-AS1 RP11-449D8.1 
MIR3936HG RP11-46C20.1 
SNHG4 RP11-473I1.10 
AL049555.1 RP11-492E3.1 
SNHG5 RP11-65F13.2 
AL513550.1 RP11-815I9.4 
AL022069.1 RP11-98I9.4 
AC093627.4 RP3-341D10.4 
AC011294.1 RP3-368A4.6 
FEZF1-AS1 RP3-508I15.9 
WEE2-AS1 RP3-523K23.2 
AC021242.3 RP4-714D9.5 
AF131215.6 SNHG14 
AC124067.4 TBX5-AS1 
AC084082.1  

AL354707.1  

DAPK1-IT1  

LINC00963  

AL117339.4  

LINC00858  

KCNQ1OT1  

MALAT1  

AP000577.1  

AP001541.1  

TBX5-AS1  
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HNF1A-AS1  

AC131212.3  

LINC00365  

INTS6-AS1  

AC005519.1  

AL136040.1  

LINC02321  

LINC01550  

MEG8  

PWAR5  

SNHG14  

ARHGAP11B  

OIP5-AS1  

PLA2G4E-AS1  

AC090510.3  

GABPB1-IT1  

GABPB1-AS1  

AC055855.1  

AC015712.2  

AC130650.2  

PITPNA-AS1  

AC026271.3  

CCDC144NL-AS1  
AC111170.3  

AC087741.1  

LINC01915  

AC011825.4  

AC018445.3  

AC011447.7  

AC005394.2  

AC008555.8  

AC012617.1  

AC022150.4  

AC007228.2  

AC012313.1  

NORAD  

SNHG17  

DUXAP8  

AP000553.1  

AL022322.1  

AL021707.2  

NDUFA6-AS1  

LINC01560  

XIST  

JPX  

Z83843.1  

 


