
www.aging-us.com 12080 AGING 

 

INTRODUCTION 
 
Aging is an inevitable phenomenon in both humans and 
animals. In three key phases of the life cycle, namely 
young, adult and old, individuals present distinct 
biological characteristics and disease risks [1]. Thus, the 
identification of biological characteristics in particular 
age phases is valuable to understanding the develop-
ment of diseases, thereby aiding strategies to prevent 
disease and prolong lifespan. 

 

The gut microbiota is the largest flora that is most 
directly linked to the external environment in both 
humans and animals. The composition and function 
of the gut microbiota plays a vital role in maintaining 
the host’s health. Emerging research has reported that 
some microbial signatures are related to age. For 
example, during the neonatal period, Firmicutes acts 
as the dominant flora, whereas the abundance of 
Proteobacteria and Actinobacteria starts to increase 
from 3 to 6 months [2]. With the cessation of breast 
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ABSTRACT 
 
Age can significantly affect human physiology and disease risk. Recent studies have shown that age may affect 
the composition and function of the gut microbiota, but the underlying mechanisms remain largely unknown. 
Non-human primates are an ideal model for uncovering how age shapes the gut microbiota, as their microbial 
composition is highly similar to that of humans and is not easily affected by confounding factors. Here, using 
the 16S rRNA and metagenomic sequencing methods, we characterized the microbial phenotypes of 16 female 
cynomolgus macaques from three age groups (young, adult and old). Our findings revealed significant 
differences in microbial composition among the three groups. With increased age, the relative abundances of 
Veillonellaceae, Coriobacteriaceae and Succinivibrionaceae were significantly increased, Ruminococcaceae and 
Rikenellaceae were significantly decreased at the family level. Functional enrichment showed that genes that 
differed among the three groups were mainly involved in arginine biosynthesis, purine metabolism and 
microbial polysaccharides metabolism. Moreover, CAZymes corresponding to polysaccharide degrading 
activities were also observed among the three groups. In conclusion, we characterized the composition and 
function of the gut microbiota at different ages, and our findings provide a new entry point for understanding 
the effects of age on the human body. 
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milk, the increased abundance of Firmicutes 
represents gradual maturation of the gut microbiota 
[3]. The dynamic changes in the microbial 
composition tend to be stable by 3 years, which is 
highly similar to that in adults [4]. In adults, the 
microbial composition predominantly comprises the 
phyla Bacteroidetes and Firmicutes [5]. By contrast, 
the microbial composition in older individuals 
displays a higher Bacteroidetes ratio compared with 
their younger counterparts [6]. Evidence has been 
reported that the microbial composition may affect 
the rate of aging [7, 8]. Moreover, changes in gut 
physiology are modulated by age, such as 
degenerative changes in the enteric nervous system 
and gastric dysmotility, which have profound effects 
on the composition, diversity and functional 
characteristics of the gut microbiota [9]. These 
findings in humans and rodents provide valuable 
clues for further research. However, given that 
microbial composition is vulnerable to various con-
founding factors, such as social status, lifestyle, 
dietary and genetic diversity, potential bias cannot be 
completely ruled out. Moreover, using the 16S 
ribosomal RNA (rRNA) sequencing method, previous 
studies focused on changes in microbial composition. 
Further studies using shotgun metagenomics methods 
are required to identify the functional activity linked 
with age. 
 
Gut microbiota of the non-human primates, 
cynomolgus macaques, is more similar to that of 
humans than that of rodents [10], and is less affected 
by environmental and lifestyle factors when an 
identical diet and environmental condition are 
provided. Moreover, it has been reported that cyno-
molgus macaques can serve as a useful model for 
simulating human aging [11]. Here, to investigate the 
key age-related microbes and microbial functions, we 
selected 16 cynomolgus macaques aged from 2 to 20 
years, which showed high homogeneity in their living 
environments, daily diet and health condition. Using a 
combination of 16S rRNA and shotgun metagenomic 
sequencing methods, we sought to compare microbial 
composition and function for three different age 
phases (young, adult and old). 
 
RESULTS 
 
General characteristics of the recruited monkeys 
 
Sixteen healthy monkeys were included in this study 
under the same feeding and living conditions. 
According to age, these monkeys were divided into 
three groups: young, adult and old. The detailed 
characteristics of the recruited monkeys are shown in 
Supplementary Table 1. 

Similar within-sample microbial diversity among the 
three groups 
 
To characterize the gut composition of monkeys among 
the three age groups, 16S rRNA gene sequencing was 
initially used. In total, we identified 905,921 high-
quality reads, ranging from 47,691 to 66,725 per 
sample, with an average read length of 439.06 bp 
(439.06 ± 2.88 bp). A Venn diagram showed that three 
age groups shared 677 of the 969 operational taxonomic 
units (OTUs, defined based on 97% sequence 
similarity), whereas 33, 42 and 35 OTUs were unique to 
young, adult and old monkeys, respectively (Figure 
1A). At the phylum and family levels, the relative 
abundance of microbes in the three groups is presented 
in Figure 1B, 1C. Our findings revealed that the 
microbial composition of cynomolgus monkeys was 
dynamically changed with age. The phyla Firmicutes, 
Bacteroidetes and Proteobacteria dominated in the gut 
microbiota of monkeys. Prevotellaceae and 
Ruminococcaceae represented the most abundant 
families among the three groups, but showed a down-
ward trend with age. 
 
The α-diversity, including microbial community 
richness (Chao, Ace) and diversity (Shannon, 
Invsimpson), was compared among the young, adult 
and old groups. A downward trend was observed in 
these indexes with increased age, although no statistical 
difference was detected (Wilcoxon rank-sum test, all p 
values>0.05) (Supplementary Figure 1A–1D). 
 
Significant differences in the microbial composition 
among the three groups 
 
To further explore whether the microbial composition of 
the young, adult and old groups differed significantly, β-
diversity analysis was carried out. Firstly, at the OTU 
level, a 3-D principal component analysis (PCA) plot 
displayed that there was a discriminative trend among the 
three groups, but no statistical difference was detected 
(PERMANOVA, all p values>0.05) (Figure 2A). 
Interestingly, we found that samples from the adult group 
were distributed in the central region, whereas samples 
from the young and old groups were distributed on both 
sides. This finding suggested that gut microbial 
composition may change dynamically with age. 
Moreover, we found that the gut microbiota of the adult 
group showed more variation than the young group, 
which was consistent with previous reports in humans 
[12]. To further display the differences of the bacterial 
communities among the three groups, the partial least 
squares discriminant analysis (PLS-DA) was performed, 
the bacterial communities of the three groups clustered 
separately (Figure 2B), indicating distinctive fecal 
microbial communities among three groups. 



www.aging-us.com 12082 AGING 

 
 

Figure 1. Comparison of the microbial composition between the three groups. (A) Venn diagram depicting OTU richness and the 
overlap in microbial communities between the young (green), adult (red) and old (blue) monkeys. (B, C) Relative abundance of OTUs assigned 
at the phylum and family levels.  

 

 
 

Figure 2. Comparison of the microbial composition between the young, adult and old groups. (A) 3-D Principle component 
analysis (PCA) plot of samples along principle component (PC) 1,2 and 3, which explained 14.73%, 9.67% and 9.18% of the total variance, 
respectively. (B) Partial least squares discriminant analysis (PLS-DA) plot of gut microbiota among three groups: young (n=5, 2–4 years, green 
dots), adult (n=6, 5–13 years, red dots) and old (n=5, 17–20 years, blue dots). 
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To identify the profiles of gut microbiota at different 
age phases, LEfSe analysis was performed. This 
analysis identified 148 different OTUs responsible for 
this discrimination (Figure 3A, Supplementary Figure 
2A). With increased age, the relative abundances of 
Veillonellaceae (p=0.014), Coriobacteriaceae 
(p=0.022) and Succinivibrionaceae (p=0.009) were 
significantly increased, whereas Ruminococcaceae 
(p=0.003) and Rikenellaceae (p=0.009) were sig-
nificantly decreased with age at the family level (Figure 
3C, Supplementary Figure 3). Moreover, among these 
differentially represented microbes, we found that 
Ruminiclostridium 9 was the only OTU that dynamical-
ly changed in all three groups (Figure 3B). 
 
Alternations of arginine and purine metabolism as 
well as changes in microbial peptidoglycan with age 
 
To characterize the functions encoded by the gut 
microbial DNA, we performed whole-genome shotgun 

sequencing of stool samples obtained from the three 
groups. A total of 1,602,244,870 filtered reads and 
45,088,293 open reading frames (ORFs) were used for 
functional annotation in the KEGG and CAZy 
databases. Using linear discriminant analysis (LDA) 
effect size (LEfSe) analysis, we identified 44 KEGG 
enzymes responsible for discrimination among the three 
groups (LDA>2.0). Pathway-enrichment analysis 
revealed that these differential enzymes were mainly 
involved in amino acid metabolism (especially arginine 
metabolism) and nucleotide metabolism (purine 
metabolism), as well as microbial polysaccharides 
including lipopolysaccharide (LPS), glycosaminoglycan 
(GAG) and peptidoglycan (PGN) (Figure 4A, 
Supplementary Figure 2B). The marked enzymes 
involved in arginine and purine metabolism, as well as 
microbial polysaccharide are presented in Figure 4B. 
Our data showed that arginine biosynthesis and purine 
metabolism were enriched in the adult and old groups, 
respectively. For polysaccharide metabolism, GAG and 

 

 
 

Figure 3. The most differentially expressed taxa among the three groups. (A) Heatmap of the 148 discriminative OTU abundances 
among the young, adult and old groups (LDA>2.0). OTUs (raw) were sorted by taxa and enriched groups, samples (column) were sorted by 
age. The intensity of color (blue to red) indicated the score normalized abundance for each OTU. (B) Venn diagram for different OTUs among 
the three groups. Blue designates enriched taxa between the young and adult groups; green designates enriched taxa between the adult and 
old groups; yellow designates the enriched taxa between the young and old groups. (C) Scatter diagram of the relative abundances of the 
age-related microbial families Ruminococcaceae and Veillonellaceae. The correlation was tested by Pearson’s correlation analysis and was 
adjusted by partial correlation analysis. 
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PGN were significantly enriched in the young group, 
whereas LPS was enhanced in the old group. 
 
Age-related microbial functions in CAZymes 
 
To further uncover the function of the gut microbiota, 
the differential CAZymes among the three groups were 
analyzed. In total, we identified 21 CAZymes 
responsible for the discrimination among the three 
groups (LDA>2.0) (Figure 5A, Supplementary Figure 

2C). These CAZymes were mainly involved in the 
utilization of plant and animal carbohydrates, and 
microbial polysaccharide metabolism (Figure 5A, 
Supplementary Figure 4). The gut microbiota of the 
adult group had a greater utilization capacity for mucin 
rather than plants compared with the old group (Figure 
5B). Interestingly, we found that the CAZymes related 
to PGN were also significantly changed (Figure 5C), 
which was consistent with the altered KEGG pathways. 
Moreover, analysis of CAZyme profiles showed that the 

 

 
 

Figure 4. Age-related microbial functions in the KEGG pathway. Different KEGG enzymes identified by LEfSe analysis of the 
metagenomic sequences (LDA>2.0). (A) Heatmap of the abundances of different enzymes. Enzymes (raw) were sorted by taxa and enriched 
group, and samples (column) were sorted by age. The intensity of the color (blue to red) indicates the score normalized abundance for each 
enzyme. (B) Boxplot for the marked KEGG enzymes in different age groups. ECs were classified into pathways for arginine, purine and 
microbial polysaccharide metabolism. The abundances of different ECs were calculated by reads number. LEfSe was used to detect features 
with significantly different abundances using the Kruskal–Wallis rank sum test, and LDA was performed to evaluate the effect size of each 
feature. *P<0.05 **P<0.01. LPS, lipopolysaccharide; GAG, glycosaminoglycan; PGN, peptidoglycan.  
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microbiota of the adult group had greater functional 
capacity for the utilization of starch than the old group, 
and PGN utilization occurred predominantly in the old 
group. 
 
DISCUSSION 
 
The gut microbiota coexists with the human body and 
changes with age. In this study, we explored age-related 
changes in microbial composition and function in three 
representative age phases in monkeys. We found that the 
microbial composition of monkeys differed significantly 
at different age phases. A panel of microbes such as 
Veillonellaceae, Coriobacteriaceae, Ruminococcaceae 
and Rikenellaceae dynamically changed in prevalence 
with increased age. Functionally, we found that arginine 
biosynthesis, purine metabolism and microbial poly-
saccharides metabolism were dynamically changed. Our 
findings provide new insight into how age influences the 
host through the gut microbiota.  
 
Previous clinical and rodent studies have suggested that 
age may affect the composition of the gut microbiota  
[4, 13, 14]. Here, monkeys were used to investigate this 

issue and this animal model has the following 
advantages: (i) the microbial composition of monkeys is 
highly similar to that of humans [10], which makes it 
easier to translate these findings into human research; 
(ii) it can effectively avoid the influences of con-
founding factors such as living environment and genetic 
background; (iii) nonhuman primates exhibit similar 
key life span metrics as humans [11]. Here, we 
characterized the composition and function of the gut 
microbiota at three representative age phases, which is a 
new development in this field. 
 
Our results showed that the α-diversity of the gut 
microbiota in cynomolgus macaques was reduced with 
age, which was consistent with previous human studies 
[15]. Moreover, we found that the microbial composition 
of the three groups was significantly different. Firmicutes 
and Bacteroidetes were the dominant phyla in both 
humans and cynomolgus macaques [16, 17]. Similar to 
human studies, we found that, compared with the young 
and adult groups, the old group showed a slight increase 
in Firmicutes, whereas Bacteroidetes gradually decreased 
after youth [18]. We also found some differences between 
monkey and human studies, for example, Actinobacteria

 

 
 

Figure 5. Age-related microbial functions in CAZymes and food utilization. Different CAZymes identified using LEfSe analysis of the 
metagenomic sequences (LDA>2.0). (A) Heatmap of the abundances of different CAZymes. CAZymes (raw) were sorted by taxa and enriched 
group, and samples (column) were sorted by age. The intensity of color (blue to red) indicates the score normalized abundance for each 
enzyme. (B) The ratio of CAZymes represented within the metagenomes related to plant and animal carbohydrate utilization (left) or the 
ratio of mucin glycan to plant carbohydrate utilization (right) in the cynomolgus macaques. The boxplot distributions were tested using the 
nonparametric two-sided Wilcoxon rank sum test. (C) Boxplot for the marked CAZymes in different age groups. Representative CAZymes 
were classified into pathways for starch (left) and microbial peptidoglycan (right). The abundances of different CAZymes were calculated by 
the log RPKM. LEfSe detected the features with significantly different abundances using the Kruskal–Wallis rank sum test, and LDA was 
performed to evaluate the effect size of each feature. *P<0.05, **P<0.01.  
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was increased in prevalence with age in monkeys, 
whereas human studies showed the opposite trend. This 
may result from the inevitable confounding factors. With 
increased age, the relative abundances of Veillonellaceae 
and Coriobacteriaceae were significantly increased, and 
Ruminococcaceae and Rikenellaceae were significantly 
decreased at the family level. There is evidence to confirm 
that the family Veillonellaceae is associated with age-
related diseases such as atherosclerosis and stroke [19]. 
Another family Ruminococcaceae plays a vital role in the 
maintenance of gut health through degrading cellulose 
and hemicellulose components of plant material by 
CAZymes and transporters. These compounds are 
fermented and converted into short-chain fatty acids 
(mainly acetate, butyrate and propionate), which are 
absorbed by the host and are important for metabolic and 
immunological homeostasis [20]. Our finding showed that 
the relative abundance of Ruminococcaceae was 
negatively correlated with age. Consistent with our 
findings, previous studies showed that Ruminococcaceae, 
one of the core microbiota, becomes less abundant in 
older people, whereas some taxa associated with 
unhealthy aging emerge. These findings suggested that 
Ruminococcaceae may have a positive effect on the aging 
process [21, 22]. Interestingly, at the species level, we 
found that Ruminiclostridium_9 shared across the three 
age groups. Previous research showed that it played a role 
in controlling obesity development [23]. Further studies 
are required to determinate whether supplementation of 
this strain can result in body fat reduction. Here, we also 
found that some microbes belonging to Lachnospiraceae 
and Prevotellaceae dynamically changed with age, which 
needs to be addressed in further investigations. 
 
At the functional level, we found that arginine 
biosynthesis, purine metabolism and microbial 
polysaccharide metabolism were dynamically changed 
with age. With increased age, arginine biosynthesis was 
significantly upregulated in the adult group. As arginine 
can improve immune function and overall health, 
compelling evidence shows that enteral or parenteral 
administration of arginine reverses endothelial dys-
function associated with major cardiovascular risk 
factors, including aging [24]. This finding suggests that 
the body may regulate self-protection with age. 
Moreover, purine metabolism was increased in the old 
group. Uric acid, a metabolite of purine, mainly exerts 
antioxidant activity [25], suggesting increased oxidative 
stress in the older population. Consistent with this 
speculation, we also observed increased biosynthesis of 
LPS in the old group. LPS plays a key role during host–
pathogen interactions and chronic inflammation [26]. 
We also found that the gut microbiota of the young 
group was enriched in genes involved in the degradation 
of glycosaminoglycan, which has been linked with 
skeletal growth and animal development [27]. 

Additionally, we observed a higher relative abundance 
of enzymes involved in PGN biosynthesis in both the 
young and adult age groups relative to the old age 
group. In agreement with these findings, the 
CAZymes related to PGN catabolism were also 
significantly increased in the old group relative to the 
young or adult groups. A recent study showed that 
PGN can cross the blood–brain barrier, and influence 
brain molecules and functions through activating the 
PGN-pattern recognition receptor (PGN-PRR) path-
way in an age-specific manner [28]. This finding 
facilitates our understanding of age-related brain 
changes or diseases.  
 
It should be noted that our research had the following 
limitations. Firstly, our study was based on a cross-
sectional design. The longitudinal collection of feces at 
different age stages would be the best way to study the 
effects of age on the gut microbiota, but the dynamic 
collection of feces over a decade time-span is 
challenging, and the gut microbiota may be significantly 
changed under long-term storage conditions. In 
addition, consistent with other monkey research, the 
sample size was relatively limited. Thus, our findings 
may require further validation. Finally, we provided 
evidence of alternations in age-related microbial 
structure and function, but further in-depth research is 
required to confirm this. 
 
In conclusion, we provide initial evidence as to how age 
shapes the structure and function of the gut microbiota 
based on monkey studies. Our findings provide insight 
into how the gut microbiota physiologically affects the 
host at different age stages. 
 
MATERIALS AND METHODS 
 
Site and sample collection 
 
Our study was conducted in Zhongke Experimental 
Animal Co., Ltd. (hereafter referred to as "Zhongke"), 
which is a breeding base for cynomolgus monkeys in 
Suzhou, China (E 31°07'03" to 31°07'06", N 120°19'08" 
to 120°19'15"). The housing conditions and animal care 
procedures were detailed in a previous report [29] and 
were in accordance with Chinese regulatory require-
ments and accredited by the Association for the 
Assessment and Accreditation of Laboratory Animal 
Care International (AAALAC). In brief, monkeys in 
Zhongke were provided standard sanitation, an adequate 
and regular diet, and a stable social structure. All 
procedures involving non-human primates were 
approved by the Animal Care and Use Committee of 
Chongqing Medical University and were in compliance 
with the Guide for the Care and Use of Laboratory 
Animals [29]. 
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All 16 cynomolgus macaques, as listed in supplemental 
data, were randomly selected from different enclosures. In 
accordance with previous reports [30], the 16 macaques 
were assigned into three age groups: young (2–4 years), 
adult (5–15 years) and old (17–20 years). All macaques 
were housed in free enclosures without manual inter-
vention measuring 8 × 3 × 3 m (L × W × H), were 
provided with water ad libitum, and were fed daily with 
fresh fruit, vegetables and compound high-nutrition 
monkey food [29]. Collection of fecal samples occurred 
immediately after the first defecation using a germ-free 
device, and samples were stored in liquid nitrogen before 
being transported on ice to maintain a temperature chain 
of < −80°C. 
 
16S rRNA gene sequencing and data processing 
 
DNA extraction and amplification of the 16S rRNA gene 
were performed as previously described [31]. Briefly, 
DNA was extracted from stool samples using the 
E.Z.N.A® DNA kit (Omega Bio-Tek, USA). The V3-V4 
hypervariable regions of the bacterial 16S rRNA gene 
were amplified with primers 338F (5ʹ- ACTCCTACGGG 
AGGCAGCAG-3ʹ) and 806R (5ʹ-GGACTACHVGGG 
TWTCTAAT-3ʹ) by the thermocycler PCR system 
(GeneAmp 9700, ABI, USA). The PCR conditions were 3 
min of denaturation at 95°C, followed by 27 cycles of 30 s 
at 95°C for denaturation, 30 s for annealing at 55°C, and 
45 s for elongation at 72°C, and a final extension at 72°C 
for 10 min. The PCR was performed in triplicate in a 
20 μL mixture containing 4 μL of 5 × FastPfu buffer, 2 μL 
of 2.5 mM dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL 
of FastPfu polymerase and 10 ng of template DNA. The 
resulting PCR products were separated on 2% agarose 
gels, purified using the AxyPrep DNA Gel Extraction Kit 
(Axygen Biosciences, Union City, CA, USA) and 
quantified using QuantiFluor™-ST (Promega, USA) 
according to the manufacturer’s protocol. Purified 
amplicons were pooled in equimolar concentrations and 
paired-end sequenced (2 × 300) on an Illumina MiSeq 
platform (Illumina, San Diego, USA) according to the 
standard protocols by Majorbio Bio-Pharm Technology 
Co. Ltd. (Shanghai, China). The raw reads were deposited 
into the NCBI Sequence Read Archive (SRA) database 
(Accession Number: SRP218284).  
 
Raw fastq files were demultiplexed and quality-filtered 
using QIIME (version 1.9.1, http://qiime.org/). The 250 
bp reads were truncated at any site of more than three 
sequential bases receiving an average quality score of 
<20. Low-quality reads (reads shorter than 50 bp or 
barcode/primer errors or reads with a quality value <20) 
were removed. 
 
Operational taxonomic units (OTUs) were clustered 
with 97% similarity cutoffs using UPARSE (version 

7.1, http://drive5.com/uparse/) with a novel ‘greedy’ 
algorithm that performs chimera filtering and OTU 
clustering simultaneously. The taxonomy of each 16S 
rRNA gene sequence was analyzed by the RDP 
classifier algorithm (http://rdp.cme.msu.edu/) against 
the Silva (SSU128) 16S rRNA database using a 
confidence threshold of 70%. 
 
Shotgun metagenome sequencing and data 
processing 
 
The fecal samples were further investigated by 
metagenomic sequencing. The concentration of the 
extracted DNA was determined by the TBS-380 
method, its purity was measured with a NanoDrop 
2000 spectrophotometer, and its quality was 
confirmed by electrophoresis on a 1% agarose gel. 
The DNA was then fragmented to an average size of 
about 300 bp using Covaris M220 (Gene Company 
Limited, China) for paired-end library construction. A 
paired-end library was constructed using the 
TruSeq™ DNA Sample Prep Kit (Illumina, San 
Diego, CA, USA). Adapters containing the full 
complement of sequencing primer hybridization sites 
were ligated to the blunt-end of fragments. Paired-end 
sequencing was performed on the Illumina HiSeq4000 
platform (Illumina Inc., San Diego, CA, USA) at 
Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, 
China) using the HiSeq 3000/4000 PE Cluster Kit and 
the HiSeq 3000/4000 SBS Kit according to the 
manufacturer’s instructions (www.illumina.com). 
Sequence data associated with this project have been 
deposited in the NCBI Short Read Archive database 
(Accession Number: SRP218382).  
 
Adapter sequences were stripped from the 3' and 5' ends 
of the paired end Illumina reads using SeqPrep (https:// 
github.com/jstjohn/SeqPrep). Sickle (https://github. 
com/najoshi/sickle) was used to remove the low-quality 
reads (length <50 bp or with a quality value <20 or 
having N bases). 
 
The metagenomics data obtained were assembled using 
MEGAHIT [32] (https://github.com/voutcn/megahit). 
The final assembly containing contigs of 300 bp or 
more, was used for further gene prediction and 
annotation. 
 
The prediction of ORFs from each assembled contig 
was performed using MetaGene software [33] 
(http://metagene.cb.k.u-tokyo.ac.jp/). The predicted 
ORFs with lengths of 100 bp or over were retrieved and 
translated into amino acid sequences. 
 
All genes predicted to have 95% sequence identity 
(90% coverage) were clustered using CD-HIT software 

http://qiime.org/
http://drive5.com/uparse/
http://rdp.cme.msu.edu/
https://github.com/jstjohn/SeqPrep
https://github.com/jstjohn/SeqPrep
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle
https://github.com/voutcn/megahit
http://metagene.cb.k.u-tokyo.ac.jp/
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[34] (http://www.bioinformatics.org/cd-hit/), and 
representative sequences containing the longest 
sequences from each cluster were used to construct non-
redundant gene catalogs. High quality reads were 
mapped to the representative sequences with 95% 
identity using SOAPaligner [35] (http://soap.genomics. 
org.cn/) to evaluate gene abundance in each sample. 
 
KEGG annotation was conducted using BLASTP 
(Version 2.2.28+) against the Kyoto Encyclopedia of 
Genes and Genomes database [36] (http://www. 
genome.jp/keeg/) with an e-value cutoff of 1e˗5. A total 
of 362,971,704 enzymes were annotated by the KEGG 
database. Carbohydrate-active enzyme annotation was 
conducted using hmmscan (http://hmmer.janelia. 
org/search/hmmscan) against the CAZy database 
version 5.0 (http://www.cazy.org/) with an e-value 
cutoff of 1e˗5. A total of 60,024,802 enzymes were 
annotated by the CAZy database. 
 
Statistical analysis 
 
The α-diversity indexes were assessed according to 
species richness (Ace and Chao), species evenness 
(Shannon) and species diversity (Simpson). Beta 
diversity was assessed with package ‘vegan’ in R 
(version R-3.3.1), and generated on the basis of 
principal component analysis (PCA). Descriptive 
modelling and discriminative variable selection were 
evaluated by partial least squares-discriminant analysis 
(PLS-DA). PERMANOVA was performed to identify 
differences in β-diversity among three groups. The key 
bacterial taxa, and the CAZymes and KEGG categories 
responsible for discrimination among the groups, were 
identified using linear discriminant analysis effective 
size (LEfSe; http://huttenhower.sph.harvard.edu/galaxy/ 
root?tool_id=lefse_upload) [37]. Only LDA values >2.0 
at a P value <0.05 were considered significantly 
enriched. 
 
Statistical analyses were conducted using the software 
SPSS, R package, and plots were generated from R 
and GraphPad Prism version 8.0. The strategy of 
multiple cooperation was one-against-all when 
performing LEfSe. One-way ANOVA or the Kruskal–
Wallis H test were performed to assess the alpha 
diversity and abundance of some species among the 
three age groups, and the two-tailed Student’s t-test or 
Wilcoxon rank-sum test were performed to determine 
differences between each set of two groups. The 
correlation between microbial abundance and age was 
tested by Pearson correlation analyses and adjusted by 
partial correlation analysis to exclude the confounders 
for controlling the false discovery rate (FDR). 
Adjustments were performed with SPSS (version 
22.0). 
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SUPPLEMENTARY MATERIALS  

Supplementary Figures 
 
 
 
 
 

 
 

Supplementary Figure 1. Gut microbial characteristics of monkeys at the α- diversity analysis. Comparing the microbial 
composition of three groups based on α-diversity analysis. (A–D) In these four indexes (Shannon, Invsimpson, Chao and Ace), there is no 
significant difference among the three groups (Young, n=5; Adult, n=6; Old, n=5). 
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Supplementary Figure 2. The OTU and microbial functions differentially represented among three groups. OUT (A), KEGG 
enzymes (B) and CAZymes (C) differentially represented among the three age groups identified by Linear discriminant analysis (LDA) Effect 
Size (LEfSe) (LDA>2.0,p<0.05). 
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Supplementary Figure 3. The change trend of differential microbes at the family level related to age. The correlationship was 
tested by Pearson correlation analyses and adjusted by partial correlation analysis for excluding the confounders for controlling the False 
Discovery Rate (FDR). 
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Supplementary Figure 4. Microbial functions in CAZymes among three groups. Representation of CAZymes in metagenomic data 
sets related to multiple classes of polysaccharides are plotted by their respective distributions. 
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Supplementary Table 
 
 
Supplementary Table 1. The detail characteristics of the recruited monkeys. 

Characteristics Young Adult Old p-value 
Sample size 5 6 5 - 
Age ( year ) 3.2 ± 0.83 8.3 ± 2.94 18.2 ± 1.30 < 0.001 
Age range 2~4 5~13 17~20 - 
Sex(M/F) Female Female Female - 
Weight (kg) 3.12 ± 0.85 3.99 ± 0.23 4.34 ± 0.67 0.023 

p-value obtained from One-way analysis of variance(ANOVA). Characteristics are represented by mean ± SD. 
   
 


