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INTRODUCTION 
 
Renal cell carcinoma is one of the most lethal cancer 
types in the urinary system, and its morbidity has been 
increasing year after year [1]. Clear cell renal cell 
carcinoma (ccRCC) is the most common subtype of 
renal cell carcinoma, accounting for approximately 70-
85% of cases [2]. Although therapeutic treatments for 
ccRCC have improved, the mortality rate is still high, 
especially for patients with advanced/metastatic ccRCC 
[3]. Hence, to improve the prognosis of ccRCC patients, 
it is important to identify biomarkers for the prognostic 
prediction and treatment of ccRCC.  
 
In recent years, immunotherapy has become an 
important method of enhancing the survival outcomes  

 

of ccRCC patients [4, 5]. Certain immune checkpoint 
molecules (for instance, programmed death 1 [PD-1]) 
are popular targets of immunotherapy, and immune 
checkpoint inhibitors have been reported to attenuate 
tumor growth mainly by reducing the immune escape of 
cancer cells [6, 7]. However, some patients are 
insensitive to immune checkpoint inhibitors. Therefore, 
it is important to identify high-performance biomarkers 
that predict patients’ sensitivity to immunotherapy so 
that individualized treatments for ccRCC can be 
implemented.  
 
Previous studies have suggested that immune-related 
genes (IRGs) are associated not only with the response 
to immunotherapy, but also with the prognosis of 
ccRCC patients [8, 9]. Chen et al. reported that HHLA2 
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ABSTRACT 
 
Clear cell renal cell carcinoma (ccRCC) is the most common pathological subtype of renal cell carcinoma, and 
immune-related genes (IRGs) are key contributors to its development. In this study, the gene expression profiles 
and clinical data of ccRCC patients were downloaded from The Cancer Genome Atlas database and the cBioPortal 
database, respectively. IRGs were obtained from the ImmPort database. We analyzed the expression of IRGs in 
ccRCC, and discovered 681 that were differentially expressed between ccRCC and normal kidney tissues. 
Univariate Cox regression analysis was used to identify prognostic differentially expressed IRGs (PDEIRGs). Using 
Lasso regression and multivariate Cox regression analyses, we detected seven optimal PDEIRGs (PLAU, ISG15, 
IRF9, ARG2, RNASE2, SEMA3G and UCN) and used them to construct a risk model to predict the prognosis of ccRCC 
patients. This model accurately stratified patients with different survival outcomes and precisely identified 
patients with different mutation burdens. Our findings suggest the seven PDEIRGs identified in this study are 
valuable prognostic predictors in ccRCC patients. These genes could be used to investigate the developmental 
mechanisms of ccRCC and to design individualized treatments for ccRCC patients. 
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was significantly overexpressed in ccRCC tissues and 
was associated with a poor prognosis [10]. Kammerer-
Jacquet et al. found that PD-L1 expression was higher 
in ccRCC tissues than in paired renal cortex tissues, and 
that the prognosis was worse in patients expressing  
PD-L1 than in those with undetectable PD-L1 
expression [11].  
 
Although several studies have investigated the 
association of IRGs with the prognosis of ccRCC 
patients, the majority of these studies focused on the 
function of a single gene. Few studies have employed 
expression profile datasets from high-throughput 
sequencing to examine the relationships of multiple 
immune genes with the prognosis of ccRCC. Therefore, 
in this study, we developed a reliable prognostic model of 
ccRCC using IRGs, and investigated the clinical utility of 
this model in ccRCC patients.  
 
RESULTS 
 
Expression of IRGs in ccRCC 
 
The mRNA levels of 2498 IRGs in ccRCC (n = 539) 
and normal kidney tissues (n = 72) in The Cancer 
Genome Atlas (TCGA) were examined, and these 
values were compared through the Wilcoxon signed-
rank test. This analysis revealed 681 differentially 
expressed IRGs (DEIRGs), including 565 genes that 
were upregulated and 116 genes that were down-
regulated in ccRCC tissues compared with normal 

kidney tissues (false-discovery rate [FDR] < 0.05, |log2 
fold-change [FC]| > 1) (Figure 1). 
 
Identification of prognostic DEIRGs 
 
To identify possible prognostic DEIRGs (PDEIRGs), we 
performed a univariate Cox regression analysis of the 
expression of each DEIRG in the entire TCGA cohort. In 
total, 263 DEIRGs were found to be significantly 
associated with the overall survival (OS) of ccRCC 
patients (p < 0.05) (Figure 2).   
 
Construction of a transcription factor regulatory 
network 
 
To determine the possible mechanisms behind the 
dysregulation of PDEIRG expression in ccRCC, we 
analyzed the correlation between cancer transcription 
factor (TF) and PDEIRG expression. First, we examined 
the mRNA levels of TFs in ccRCC (n = 539) and normal 
kidney tissues (n = 72), and identified 60 TFs (FDR < 
0.05, |log2 FC| > 1) that were significantly differentially 
expressed between the two tissue types (Figure 3A and 
3B). Next, we analyzed the correlations between the 
mRNA levels of the 60 TFs and the PDEIRGs, using a 
correlation coefficient > 0.4 and a p-value < 0.05 as the 
cut-off values. Among the 60 TFs, 38 were prominently 
associated with the aberrant expression of PDEIRGs (p < 
0.05). To better explain the regulatory relationships, we 
constructed a TF-based regulatory network, as displayed 
in Figure 3C. 

 

 

 
Figure 1. Expression of IRGs in the two sample groups. (A) Heat map of IRGs; the green to red spectrum indicates low to high gene 
expression. (B) Volcano plot of IRGs; the green dots represent downregulated IRGs, the red dots represent upregulated IRGs and the black 
dots represent IRGs that were not significantly differentially expressed. 



www.aging-us.com 11476 AGING 

 

 
Figure 2. Identification of PDEIRGs through univariate Cox regression analysis. The red dots represent DEIRGs with hazard ratios > 
1 (p < 0.05), the green dots represent DEIRGs with hazard ratios < 1 (p < 0.05) and the black dots represent DEIRGs that were not associated 
with prognosis (p > 0.05). 
 

 
 

Figure 3. TF-based regulatory network. (A) Heat map of differentially expressed TFs; the green to red spectrum indicates low to high TF 
expression. (B) Volcano plot of TFs; the green dots represent downregulated TFs, the red dots represent upregulated TFs and the black dots 
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represent TFs that were not significantly differentially expressed. (C) Regulatory network of TFs and PDEIRGs; the green nodes represent 
PDEIRGs with hazard ratios < 1 (p < 0.05), the red nodes represent PDEIRGs with hazard ratios > 1 (p < 0.05), the blue nodes represent TFs 
that correlated with the PDEIRGs in terms of their mRNA levels (correlation coefficient > 0.4 and p < 0.05), the green lines indicate negative 
regulatory relationships and the red lines indicate positive regulatory relationships. 
 

Training cohort to identify prognostic genes for 
inclusion in the risk model 
 
Considering the impact of the PDEIRGs on the OS of 
patients, we further screened the PDEIRGs to construct 
a Cox regression hazards model. For this analysis, we 
used 266 of the 530 patients as a training cohort. First, 
to avoid overfitting the model, we used Lasso 
regression to delete PDEIRGs that correlated highly 
with one another. We thus obtained 12 candidate 
PDEIRGs (Figure 4A and 4B), and further analyzed 
them via multivariate Cox proportional hazards 
regression analysis (with forward selection and 
backward selection). Ultimately, we obtained seven 
optimal PDEIRGs (risk genes) for inclusion in the 
prognostic risk model: PLAU, ISG15, IRF9, ARG2, 
RNASE2, SEMA3G and UCN. Among these genes, 
PLAU, ISG15, IRF9, ARG2, RNASE2 and UCN were 
identified as high-risk genes (predicting a poor 
prognosis), while SEMA3G was identified as a low-risk 
gene (serving as a protective factor) in terms of the OS 
of patients (Figure 5). 

 
Construction of the prognostic risk model in the 
training cohort 
 
To investigate the significance of the risk genes in 
predicting the prognosis of ccRCC patients, we used the 
mRNA levels and estimated regression coefficients of 

the risk genes to calculate a risk score for each patient. 
The computational formula was as follows: 
 
Training cohort risk score = (0.0142 × expression of 
PLAU) + (0.0068 × expression of ISG15) + (0.1467 × 
expression of IRF9) + (0.0078 × expression of ARG2) + 
(0.0369 × expression of RNASE2) + (-0.0743 × 
expression of SEMA3G) + (0.1268 × expression of 
UCN).  
 
According to the median risk score, the patients in the 
training cohort were sorted into a high-risk group (n = 
133) and a low-risk group (n = 133). To determine the 
prognostic difference between the high-risk and low-risk 
groups, we created a Kaplan-Meier curve based on the 
log-rank test. The prognosis was worse in the high-risk 
group than in the low-risk group (p < 0.05) (Figure 6A). 
The OS rates at three years and five years for the high-
risk group in the training cohort were 63.1% and 41.4%, 
respectively, while the corresponding rates for the low-
risk group were 90.8% and 87.1%, respectively. We then 
used time-dependent receiver operating characteristic 
(ROC) curves to examine the predictive accuracy of the 
model for OS at three years and five years. The area 
under the ROC (AUC) values for the prognostic model 
were 0.760 at three years and 0.789 at five years (Figure 
6B). We then ranked the risk scores of the patients in the 
training cohort and analyzed their distribution (Figure 
6C). The survival status of each patient in the training 
cohort is marked on the dot plot in Figure 6D. 

 

 
 

Figure 4. Further analysis of the PDEIRGs in the training cohort. (A and B) PDEIRGs selected through Lasso regression. 
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Figure 5. Risk genes in the prognostic risk model. 
 

 
 

Figure 6. Prognostic analysis of the training cohort. (A) Kaplan-Meier curve analysis of the high-risk and low-risk groups. (B) Time-
dependent ROC curve analysis of the prognostic model. (C) Risk score distribution of patients in the prognostic model. (D) Survival status 
scatter plots for patients in the prognostic model. (E) Expression patterns of risk genes in the prognostic model. 
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A heat map was generated to depict the expression 
patterns of the risk genes in the two prognostic  
groups (Figure 6E). In patients with high risk scores in 
the training cohort, the six high-risk genes (PLAU, 
ISG15, IRF9, ARG2, RNASE2 and UCN) were 
upregulated, while the protective gene (SEMA3G)  
was downregulated. In patients with low risk scores, 
these risk genes displayed the opposite expression 
pattern. 
 
Verification of the performance of the prognostic 
model 
 
To verify the accuracy of the prognostic risk model, we 
used it to analyze the testing cohort (the remaining 264 
patients from the 530 total) and the entire TCGA cohort. 
First, we used the seven risk genes (PLAU, ISG15, 
IRF9, ARG2, RNASE2, SEMA3G and UCN) to calculate 

the risk score of each patient in the testing cohort and 
the entire TCGA cohort. The patients in each cohort 
were then classified into two groups based on the 
median risk score of the training cohort. In the testing 
cohort, 148 patients were categorized as high-risk and 
116 were categorized as low-risk. In the entire TCGA 
cohort, 290 patients were classified as high-risk and 240 
were classified as low-risk.  
 
Next, Kaplan-Meier survival analysis was used to 
determine the prognostic differences between the high-
risk and low-risk groups. The Kaplan-Meier survival 
curves differed significantly between the two risk groups 
in both the testing cohort and the entire TCGA cohort (p 
< 0.05) (Figure 7A and 7B); throughout the follow-up 
time, the survival rate was higher in low-risk patients 
than in high-risk patients. In the testing cohort, the 
survival rates at three and five years in the high-risk 

 

 
 

Figure 7. Prognostic analyses of the testing cohort and the entire TCGA cohort. (A) Kaplan-Meier curve analysis of high-risk and 
low-risk patients in the testing cohort. (B) Kaplan-Meier curve analysis of high-risk and low-risk patients in the entire TCGA cohort. (C) Time-
dependent ROC curve analysis of the testing cohort. (D) Time-dependent ROC curve analysis of the entire TCGA cohort. 
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group were 66.2% and 51.7%, respectively, while the 
corresponding rates in the low-risk group were 89.0% 
and 81.0%, respectively. In the entire TCGA cohort, the 
survival rates at three and five years in the high-risk 
group were 66.3% and 50.8%, respectively, while the 
corresponding rates in the low-risk group were 89.2% 
and 80.6%, respectively. ROC analyses were performed 
for the testing cohort and the entire TCGA cohort at three 
and five years. In the testing cohort, the AUCs at three 
and five years were 0.715 and 0.692, respectively. In the 
entire TCGA cohort, the AUCs at three and five years 
were 0.740 and 0.745, respectively (Figure 7C and 7D). 
 
The risk score distribution, survival status and risk gene 
expression in the testing cohort and the entire TCGA 
cohort are displayed in Figure 8A–8F. Similar to the 
results in the training cohort, protective gene levels 
were higher and risk gene levels were lower in the low-
risk group than in the high-risk group. These results 
indicated that our prognostic risk model is capable of 
precisely predicting the prognosis of ccRCC patients. 
 
Independent prognostic value of the risk model in 
the entire TCGA cohort 
 
Next, we performed univariate and multivariate Cox 
regression analyses to assess whether the risk score 

generated by our model was independent from other 
clinical parameters (age, gender, histological grade 
and pathological stage) as a prognostic factor for 
ccRCC. The univariate analysis indicated that the 
variables of age, histological grade, pathological stage 
and risk score were associated with the prognosis of 
ccRCC patients. The multivariate analysis revealed 
that the risk score was independently associated with 
OS in the entire TCGA cohort (p < 0.05) (Table 1). 
These results demonstrated that the prognostic  
risk model can be used independently to predict  
the prognosis of ccRCC patients. However, the  
three clinical variables (age, histological grade and 
pathological stage) were also found to be significant 
prognostic factors in the multivariate analysis  
(p < 0.05).  
 
We then assessed whether the risk score from our model 
was more accurate than the other clinical parameters 
(age, histological grade and pathological stage) in 
predicting OS at three and five years. Indeed, the risk 
score was more accurate than the other clinical 
parameters: the AUCs at three years for age, 
histological grade and pathological stage were 0.568, 
0.676 and 0.689, respectively (Figure 9A), and the 
corresponding values at five years were 0.587, 0.642 
and 0.643, respectively (Figure 9B). 

 

 
 

Figure 8. Prognostic analyses of high-risk and low-risk patients in the testing cohort and the entire TCGA cohort. (A) Risk score 
distribution of patients in the testing cohort. (B) Survival status scatter plots of patients in the testing cohort. (C) Expression patterns of risk 
genes in the testing cohort. (D) Risk score distribution of patients in the entire TCGA cohort. (E) Survival status scatter plots of patients in the 
entire TCGA cohort. (F) Expression patterns of risk genes in the entire TCGA cohort. 
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Table 1. Univariate and multivariate Cox regression analyses of the entire TCGA cohort. 

Variables 
Univariate analysis Multivariate analysis 

HR (95% CI) p-value HR (95% CI) p-value 
 Overall survival 
Risk score (from risk model) 1.21 (1.16-1.26) 1.10E-18 1.14 (1.08-1.20) 4.23E-07 
Age 1.02 (1.01-1.04) 2.16E-05 1.03 (1.01-1.04) 5.89E-06 
Gender 0.96 (0.70-1.31) 0.797   
Histological grade 2.27 (1.85-2.78) 3.00E-15 1.42 (1.13-1.79) 0.002 
Pathological stage 1.87 (1.64-2.13) 1.10E-20 1.62 (1.39-1.89) 3.38E-10 

HR, hazard ratio; CI, confidence interval 
 

To better predict the prognosis of ccRCC patients at three 
and five years post-surgery, we constructed a new 
nomogram from the variables associated with OS (age, 
histological grade, pathological stage and risk score) 
(Figure 10A). ROC curve analysis was used to evaluate 
the accuracy of the nomogram. The nomogram could 
accurately predict OS at three and five years post-
surgery, with AUCs of 0.814 and 0.775, respectively 
(Figure 10B).  
 
Clinical utility of the prognostic risk model 
 
To examine the ability of our model to predict the 
progression of ccRCC, we analyzed the relationships 

between the risk factors from our model (the risk score 
and risk genes) and the clinical variables (age, gender, 
histological grade and pathological stage) in the entire 
TCGA cohort. As the values of certain factors increased 
(PLAU, RNASE2 and UCN levels and the risk score), 
the histological grade of ccRCC patients increased (all p 
< 0.05) (Figure 11A–11D), and as the values of other 
factors increased (PLAU, ISG15, IRF9, RNASE2 and 
UCN levels and the risk score), the pathological stage of 
ccRCC patients increased (all p < 0.05) (Figure 11E–
11J). The expression of UCN was higher in patients > 
60 years old than in those ≤ 60 years old (p < 0.05) 
(Figure 11K). In contrast, as SEMA3G expression 
increased, the values of two clinical variables 

 

 
 

Figure 9. Time-dependent ROC curve analyses of different variables in the entire TCGA cohort at three and five years. (A) AUC 
at three years. (B) AUC at five years. 



www.aging-us.com 11482 AGING 

(histological grade and pathological stage) decreased 
(both p < 0.05) (Figure 11L and 11M) (Table 2). These 
results demonstrated that the dysregulation of immune-
related risk gene expression is associated with the 
development of ccRCC. 

To determine whether our model could reflect the status 
of the tumor immune microenvironment in patients, we 
analyzed the correlation between the risk score and 
immune cell infiltration in the entire TCGA cohort. As 
the risk score increased, the content of immune cells 

 

 
 

Figure 10. Nomogram and ROC curves for the prediction of prognosis at three and five years in the entire TCGA cohort.  
(A) Nomogram for OS. (B) ROC curves for OS. 
 

 
 

Figure 11. Relationships of the variables in the model with the clinical characteristics of patients in the entire TCGA cohort. 
(A) PLAU expression and histological grade. (B) RNASE2 expression and histological grade. (C) UCN expression and histological grade. (D) 
Risk score and histological grade. (E) PLAU expression and pathological stage. (F) ISG15 expression and pathological stage. (G) IRF9 
expression and pathological stage. (H) RNASE2 expression and pathological stage. (I) UCN expression and pathological stage. (J) Risk score 
and pathological stage. (K) UCN expression and age. (L) SEMA3G expression and histological grade. (M) SEMA3G expression and 
pathological stage. 
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Table 2. Relationships between model variables and clinical variables in the entire TCGA cohort. 

Variables 
Age (>60/≤60) Gender (male/female)  Histological grade (I&II/III&IV)  Pathological stage (I&II/III&IV) 

t (p) t (p)  t (p)  t (p) 
PLAU -0.066 (0.948) 0.119 (0.905)  -3.543 (4.38E-04)  -2.925 (0.004) 
ISG15 -1.271 (0.204) -0.556 (0.578)  -1.775 (0.077)  -3.102 (0.002) 
IRF9 0.345 (0.730) 1.657 (0.098)  -1.437 (0.151)  -3.06 (0.002) 
ARG2 -0.546 (0.585) 0.932 (0.352)  -1.907 (0.057)  -1.176 (0.241) 
RNASE2 -0.726 (0.468) -1.482 (0.139)  -4.567 (6.661E-06)  -3.65 (3.188E-04) 
SEMA3G 1.514 (0.131) 1.838 (0.067)  6.734 (4.912E-11)  7.447 (4.098E-13) 
UCN -1.973 (0.049) 0.312 (0.755)  -3.631 (3.136E-04)  -3.995 (8.179E-05) 
Risk score -1.636 (0.102) -0.271 (0.786)  -5.946 (6.849E-09)  -5.521 (8.964E-08) 

t: t value from Student’s t test; p: p-value from Student’s t test. 
 

(CD8+ T cells, neutrophils, macrophages and dendritic 
cells) in ccRCC tissues also increased (p < 0.05) (Figure 
12A–12F). 
 
Previous studies have indicated that the tumor mutation 
burden is significantly associated with the clinical 

effectiveness of immunotherapy [12]. To assess whether 
our model could stratify patients with different sensitivities 
to immunotherapy, we compared the mutation counts of 
the high-risk and low-risk groups in the entire TCGA 
cohort. The mutation count was greater in the high-risk 
group than in the low-risk group (p < 0.05) (Figure 13). 

 

 
 

Figure 12. Analysis of the correlation between the risk score and immune cell infiltration in the entire TCGA cohort. (A) B cells. 
(B) CD4+ T cells. (C) CD8+ T cells. (D) Dendritic cells. (E) Macrophages. (F) Neutrophils. 
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DISCUSSION 
 
The activation of the immune system is a decisive factor 
during cancer initiation and progression [13, 14], as 
immune cells can kill cancer cells by up- or down-
regulating IRGs at certain immune checkpoints [15, 16]. 
However, some cancer cells can elude this destruction by 
mimicking the IRG expression patterns of healthy cells 
[17, 18]; this process is called immune escape. Hence, 
IRG expression may be an important predictor of the 
progression and prognosis of ccRCC. In this work, we 
identified IRGs associated with prognosis, and used them 
to construct a dependable model to predict OS in ccRCC 
patients. 
 
First, we analyzed the expression of 2498 IRGs in 
ccRCC, and obtained 681 DEIRGs, including 565 
upregulated and 116 downregulated genes. We then 
performed a univariate Cox regression analysis to 
examine the relationship of these 681 DEIRGs with the 
prognosis of ccRCC patients, and found that the 
expression of 263 DEIRGs correlated with OS. These 
results revealed that IRGs are vital contributors to the 
prognosis of ccRCC patients. To explore the potential 
molecular mechanisms behind the aberrant expression of 
these PDEIRGs, we constructed a TF regulatory network, 
and found that 38 TFs were associated with the 
expression of the PDEIRGs. These results illustrated that 
TFs determined the impact of the PDEIRGs on patients’ 
OS. This TF regulatory network will provide the 
foundation for future studies on the developmental 
mechanisms of ccRCC.  

Next, we examined the value of these PDEIRGs for the 
prognostic stratification of patients. We identified seven 
PDEIRGs of interest (PLAU, ISG15, IRF9, ARG2, 
RNASE2, SEMA3G and UCN) through a combination of 
Lasso regression and Cox regression analyses, and used 
them to construct a Cox regression hazards model. We 
then further analyzed the reliability and stability of the 
model and validated it. Our results indicated that the 
model could accurately discriminate between patients 
with different survival outcomes. Univariate and multi-
variate Cox regression analyses demonstrated that our 
model could independently predict the prognosis of 
ccRCC patients. A nomogram analysis indicated that 
combining the model with other clinical characteristics 
(age, histological grade and pathological stage) increased 
its accuracy in predicting ccRCC prognosis. Thus, our 
model can be used to identify ccRCC patients at high risk 
for death, enabling early interventions to improve the 
prognosis of patients in clinical work. 
 
We also analyzed the relationships of the factors in our 
model with certain clinical variables (age, gender, 
histological grade and pathological stage). We found that 
various factors in the model (such as PLAU, ISG15, 
IRF9, RNASE2 and UCN expression) correlated 
positively with the progression of ccRCC. Thus, our 
model exhibited high clinical applicability in predicting 
the development of ccRCC. 
 
Previous studies have demonstrated that immune 
infiltration is an important determinant of the therapeutic 
responsiveness and prognosis of ccRCC [19, 20]. 

 

 
 

Figure 13. Mutation burden of patients in the high-risk and low-risk groups of the entire TCGA cohort. 
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Şenbabaoğlu et al. found that reduced contents of 
certain immune cells (such as Th17 cells) were 
associated with the progression of ccRCC and a poor 
patient prognosis [21]. George et al. reported that the 
disease-free survival of patients with high CD8+ T-cell 
densities could be significantly prolonged through the 
use of sunitinib therapy [22]. Therefore, we also 
analyzed the relationship between the risk score from 
our model and immune cell infiltration, and found that 
the risk score correlated positively with the infiltration 
of certain immune cells (CD8+ T cells, neutrophils, 
macrophages and dendritic cells). These results also 
verified the reliability of the model in predicting the 
prognosis of ccRCC.  
 
Previous reports have indicated that the tumor mutation 
burden correlates positively with the occurrence of a 
neoantigen that can significantly enhance the effects of 
immunotherapy [12, 23, 24]. Thus, we examined 
whether our model reflected patients’ tumor mutation 
burden, and found that the mutation burden was higher 
in the high-risk group than in the low-risk group. These 
results suggested that the model can be used to 
distinguish patients with different sensitivities to 
immunotherapy, making individualized treatment 
strategies a possibility.   
 
The value of IRG models for predicting the prognosis of 
cancer patients has been described in previous studies. 
Song et al. used nine IRGs to develop a Cox regression 
model to predict the prognosis of patients with lung 
adenocarcinoma, and found that the model could 
accurately stratify patients with different survival 
outcomes. The authors also compared the tumor 
mutation burdens of patients in the high-risk and low-
risk groups, and found that the mutation burden was 
greater in the high-risk group [25]. Wang et al. 
constructed a prognostic risk model using 15 IRGs in 
renal papillary cell carcinoma, and found that the  
model could independently distinguish patients with 
different risks of death [26]. Lin et al. employed a Cox 
regression model of IRGs for the prognostic 
stratification of patients with papillary thyroid cancer, 
and found that the IRG model could discriminate 
patients with high and low risks of death [27]. Our work 
differed from these previous studies in several ways. 
Firstly, we focused on the IRG expression pattern in 
ccRCC. Secondly, we used multiple algorithms 
(including univariate Cox, multivariate Cox and Lasso 
regression) to identify IRGs for inclusion in our model, 
so our study was more reliable than the others. Thirdly, 
the IRGs in our model did not overlap with those in  
the previous models. Importantly, our model was  
better than the previous models at predicting immune  
cell infiltration, the mutation burden and the progression 
of ccRCC. 

Inevitably, our study also had some shortcomings. 
Firstly, we used data from public databases that were 
not validated in prospective clinical trials. Additionally, 
the mechanisms whereby the identified IRGs impact the 
development of ccRCC require further investigation 
with in vivo and in vitro experiments. 
 
In summary, we constructed a risk model using seven 
IRGs that precisely predicted the prognosis of patients 
with ccRCC. The risk score generated by this model can 
be used as an independent prognostic marker to 
distinguish patients with different survival outcomes. 
Additionally, the model can stratify patients with 
different mutation burdens and help to predict the 
sensitivity of patients to immunotherapy. However, 
further experiments are required to verify the findings 
of this study.  
 
MATERIALS AND METHODS 
 
Databases 
 
The 2498 IRGs were obtained from the ImmPort 
database (https://www.immport.org/home). The 539 
ccRCC patients’ data, including transcriptomic data, 
mutation data and clinical information, were 
downloaded from the TCGA portal (https://portal.gdc. 
cancer.gov/) and the cBio Cancer Genomics portal 
(https://www.cbioportal.org/) [28, 29]. All data were 
processed with R software (https://www.r-project.org/). 
We matched patients’ transcriptomic data and clinical 
information according to their ID numbers, and we 
removed patients if their ID numbers did not match. We 
thus obtained data from 530 patients with complete gene 
expression profiles and OS information (Table 3). 
Immune infiltrate data from the ccRCC patients was 
obtained from the Cistrome project (http://www.cistrome 
.org/) [30], which contains the abundances of six types 
of tumor-infiltrating immune cells (B cells, CD4+ T 
cells, CD8+ T cells, neutrophils, macrophages and 
dendritic cells). Data on TFs associated with cancer were 
also collected from the Cistrome project.  
 
Identification of DEIRGs 
 
The Wilcoxon signed-rank test was used to screen 
DEIRGs based on the following cut-off values: FDR < 
0.05 and |log2 FC| > 1. 
 
Experimental model construction 
 
The 530 patients were randomly divided into two 
cohorts: a training cohort (n = 266) and a testing cohort 
(n = 264) (Table 4). The training cohort was used to 
construct the Cox regression hazards model, and the 
testing cohort was used to test the performance of the 

https://www.immport.org/home
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.cbioportal.org/
https://www.r-project.org/
http://www.cistrome.org/
http://www.cistrome.org/
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Table 3. Clinical information from the 530 ccRCC patients.  

Clinical parameters Variable n (total = 530) Percentages (%) 
Age (years) ≤ 60 259 48.9% 
 > 60 271 51.1% 
Gender Female 186 35.1% 
 Male 344 64.9% 
Histological grade G1 14 2.6% 
 G2 227 42.8% 
 G3 206 38.9% 
 G4 75 14.2% 
 GX 5 1.0% 
 Unknown 3 0.5% 
Pathological stage Stage I 265 50.0% 
 Stage II 57 10.8% 
 Stage III 123 23.2% 
 Stage IV 82 15.5% 
 Unknown 3 0.5% 
Survival status Dead 173 32.6% 
 Alive 357 67.4% 
 

Table 4. Grouping of the ccRCC patients 

Clinical parameter Variable Training cohort Testing cohort Entire TCGA cohort 

Survival status 
Dead 89 (16.8%) 84 (15.8%) 173 (32.6%) 
Alive 177 (33.4%) 180 (34.0%) 357 (67.4%) 

 

model. Initially, univariate Cox analysis was used to 
identify possible PDEIRGs. Next, Lasso regression was 
used to select potential risk genes and eliminate genes 
that would overfit the model. Finally, we used Cox 
proportional hazards regression to construct a 
prognostic risk model. 
 
Risk score calculation 
 
To calculate the risk score for each patient, we used the 
regression coefficients from the multivariate Cox 
regression model to weight the expression values of the 
selected genes. The following computational formula 
was used for this analysis: 
 

n

1
Risk score (patient) coefficient (gene i) expression value of (gene i)

i=
= ∑

 
Here, ‘genei’ is the ith selected gene, and ‘coefficient 
(genei)’ is the estimated regression coefficient of genei 
from the Cox proportional hazards regression analysis. 
The risk model was used to measure the prognostic risk 
of each patient with ccRCC. The median risk score of 

the training cohort was used as the cut-off value to 
divide all the ccRCC patients into two groups: the high-
risk group and the low-risk group. A high risk score 
indicates a poor prognosis for ccRCC patients. 
 
Statistical analyses 
 
R software was used to perform all statistical analyses, 
and p < 0.05 was considered statistically significant. 
The rank correlation among the different variables was 
assessed with the Pearson correlation coefficient test. 
Differences between variables were assessed with 
independent t-tests. Kaplan-Meier curves and log-rank 
tests were used to analyze the survival data, and 
univariate Cox regression analysis was used to identify 
factors affecting the survival of patients diagnosed with 
ccRCC. Multivariate Cox regression analysis was used 
to identify independent prognostic factors. Time-
dependent ROC analysis was used to evaluate the 
accuracy of the prognostic prediction model. An AUC > 
0.60 was regarded as acceptable for predictions, and an 
AUC > 0.75 was deemed to have excellent predictive 
value [31, 32].  
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