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INTRODUCTION 
 
Cellular senescence is a stress response mechanism 
induced by different types of insults such as telomere 
attrition, DNA damage, and oncogenic mutations, 
among others [1]. First described in cultured human 
diploid fibroblasts after successive rounds of division 
[2], its main hallmarks are irreversible growth arrest, 
alterations of cell size and morphology, increased 
lysosomal activity, expression of anti-proliferative 
proteins, resistance to apoptosis, activation of damage-
sensing signaling routes. Another important 
characteristic is the regulated secretion of interleukins 
(ILs), inflammatory factors, termed the senescence-
associated secretory phenotype (SASP) [3]. 
 
As there is ample evidence placing senescent cells as 
one of the causes of age-related dysfunctions, it has 
been considered to be one of the hallmarks of aging [4]. 

 

It was recently demonstrated that elimination of 
senescent cells by genetic or pharmacological 
approaches delays the onset of aging-related diseases, 
such as cancer, neurodegenerative disorders or cardio-
vascular diseases, among others, showing that the 
chronic presence of these cells is not essential [5–7]. 
Conversely, local injections of senescent cells drive 
aging-related diseases [8, 9]. This data, together with 
that obtained from tissues of patients with different 
diseases and ages, has established causality of senescent 
cells in some aging-related pathologies [10, 11]. 
 
Current therapies targeting senescent cells are focused 
on: i) specific killing of these cells by senolytics; ii) 
specific inhibition of the secretory phenotype (anti-
SASP strategy); and iii) improving clearance of 
senescent cells by the immune system [12]. In addition, 
currently available senescence-inducing therapies for 
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ABSTRACT 
 
Cellular senescence is a hallmark of aging, whose onset is linked to a series of both cell and non-cell autonomous 
processes, leading to several consequences for the organism. To date, several senescence routes have been 
identified, which play a fundamental role in development, tumor suppression and aging, among other processes. 
The positive and/or negative effects of senescent cells are directly related to the time that they remain in the 
organism. Short-term (acute) senescent cells are associated with positive effects; once they have executed their 
actions, immune cells are recruited to remove them. In contrast, long-term (chronic) senescent cells are 
associated with disease; they secrete pro-inflammatory and pro-tumorigenic factors in a state known as 
senescence-associated secretory phenotype (SASP). In recent years, cellular senescence has become the center of 
attention for the treatment of aging-related diseases. Current therapies are focused on elimination of senescent 
cell functions in three main ways: i) use of senolytics; ii) inhibition of SASP; and iii) improvement of immune 
system functions against senescent cells (immunosurveillance). In addition, some anti-cancer therapies are based 
on the induction of senescence in tumor cells. However, these senescent-like cancer cells must be subsequently 
cleared to avoid a chronic pro-tumorigenic state. Here is a summary of different scenarios, depending on the 
therapy used, with a discussion of the pros and cons of each scenario. 
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cancer stop tumor growth while causing accumulation 
of senescent cells [13, 14], which subsequently become 
a problem for the organism [15]. 
 
This review will summarize the hypothetical scenarios 
that each anti-cell senescence approach (described 
above) could face, either alone or in combination, with 
a discussion of open questions that should be kept in 
mind when targeting senescent cells.  
 
Triggers of cell senescence 
 
The onset of senescence in healthy tissue occurs in 
response to different internal and external stimuli, such 
as telomere attrition, DNA damage (alkylating agents, 
radiation), oncogene activation, mitochondrial 
dysfunction, and spindle, epigenetic, endoplasmic 
reticulum (ER) and proteotoxic stress [16–19]. The  
type and duration of the stimulus dictates the final  
effect on the senescent cells [20]. These cells display  
a characteristic phenotype comprising specific 
cell/nuclear morphology (increased size, abnormal 
shape and nuclear envelope changes), apoptosis 
resistance, chromatin redistribution (senescence-
associated heterochromatin foci and senescence-
associated distension of satellites), epigenetic markers 
(e.g. H3K9Me3), lipofuscin accumulation, SASP, and 
overexpression of proteins such as p53, p16Ink4a, 
p21WAF1, Differentiated Embryo Chondrocyte-expressed 
gene 1 (DEC1) and senescence-associated β-Gal (SA-β-
Gal) [13, 21–24]. To date there is no universal marker 
for senescence, and identification of senescent cells is 
based on the combined detection of two or more 
phenotypic aspects mentioned above, such as SA-β-Gal, 
p16Ink4a or p21WAF1 [10]. 
 
One of the characteristic phenotypic hallmarks of cell 
senescence is the secretion of a plethora of factors that 
affect their environment (SASP), which also serves as 
a call for the immune system to recognize and 
eliminate the senescent cells [3, 25]. Among the SASP 
factors that seem responsible for attraction of immune 
cells are CSF (colony stimulating factor 1), CXCL-1 
(chemokine C-X-C motif ligand 1), MCP-1 (monocyte 
chemoattractant protein 1) and ICAM-1 (intercellular 
adhesion molecule 1) [25]. In this scenario of acute or 
short-term senescence, the tissue returns to normal 
after a regeneration process [17] (Figure 1, steps 1-4). 
The regeneration is a fundamental process to avoid 
tissue atrophy and dysfunction. In this scenario of 
replacement of senescent cells, we should keep in 
mind the different capacity of renewal of some  
tissues with respect to others, and the exhausted or 
damaged state of stem cells that can lead to 

functionally compromised differentiated cells or 
carcinogenesis [26]. 
Implication of cell senescence in disease 
 
Acute senescent cells play a direct role in tumor 
suppression, efficient wound healing, embryogenesis, 
placental formation, and tissue regeneration, among other 
processes [17]. At this point, both their onset and primary 
effect are positive for the organism [17, 20]. 
 
When senescence-inducing stimuli persist and decrease 
the ability of the immune system to recognize and 
eliminate senescent cells (by either immunosenescence 
or immunosuppression), these cells accumulate. The 
continual presence of senescent cells negatively affects 
their environment, inducing damage, instability or 
senescence in other cells through SASP [1, 27]. Over 
time, these “secondary” damaged cells can become 
either pro-tumorigenic or senescent, which increases the 
cellular instability of the tissue, leading to dysfunction 
and disease [27] (Figure 1, steps 5 and 6). In this sense, 
some SASP factors play a direct role in fibroblast 
activation and uncontrolled fibrotic scarring [28]. 
 
Chronic senescent cells (also termed “zombie” cells) 
have been associated with the onset of several diseases 
[1, 10, 13, 17]. In the last few years there have been 
extensive studies to elucidate the causative role of 
senescence in the onset of different pathologies [17]. 
These studies were mainly based on: i) detection of 
senescent cells in tissues/organs from patients or animal 
models; or ii) improvement in tissue/organ functions 
upon removal of senescent cells in mice, by either 
genetic or pharmacological interventions. This is a list 
of some age-related diseases where cellular senescence 
seems to play an important role: 
 
Cancer 
Aging is the main cause of cancer [29], and the 
presence of senescent cells in aged tissues or xenograft 
models correlates with the incidence of cancer [30, 
31]. Their specific removal led to a delay in tumor 
formation and reduced metastasis [6]. It is also 
important to note that both senolytics and senomorphics 
are currently being used in clinical trials for the 
treatment of numerous types of cancer, such as leukeia, 
lung cancer, melanoma and glioblastoma, among others 
[16]. 
 
Neurodegenerative disorders 
Senescent cell accumulation has been detected at sites of 
brain pathology [7, 32, 33]. The presence of senescent 
astrocytes correlates with the onset of pathologies such as 
Parkinson’s and Alzheimer’s disease [34]. Interestingly, 
Tau protein induces cellular senescence in neurons, and 
specific clearance of senescent astrocytes and microglia, 
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reduced Tau-containing neurofibrillary tangle, neuron loss 
and ventricular enlargement [7, 8]. Moreover, it has been 
proposed a role of senescent cells in multiple sclerosis 
[33]. 
 
Cardiovascular disease 
Senescent cells play a key role in atherosclerosis, and 
their specific removal reduced progression of the 
disease [35]. Moreover, senescent macrophages seem to 
contribute to coronary heart disease, and cell senescence 
in the aorta increases vascular stiffness [13]. 
 
Osteoarthritis 
This degenerative disease causes the joints to become 
painful and stiff, and accumulation of senescent cells 
correlates with its progression [36]. In mouse models, 
local injections of these cells induce an osteoarthritis-
like condition [9], whereas their clearance improves 
health by attenuating development of post-traumatic 
osteoarthritis [37].  
 
Type 2 diabetes 
Aging is the main cause of type 2 diabetes, and there is 
association between disease progression and detection 
of senescent markers. Senescent β-cells affect glucose 

homeostasis, although further work is needed to 
elucidate the exact role of senescence [20, 38, 39]. 
 
Kidney-related diseases 
Diseases such as glomerulosclerosis and nephropathies 
are associated with an increase of senescent cells [10]. 
Remarkably, when these cells were removed by genetic 
approaches, kidney functions improved [6]. 
 
Idiopathic pulmonary fibrosis (IPF) 
This chronic lung disease results in scarring, affecting 
primarily older adults. Tissues from IPF patients 
display some phenotypical characteristics of senescent 
cells, and when these cells were removed by 
senolytics, pulmonary functions improved [104]. 
 
Cachexia 
In this disease adipocyte differentiation is disrupted by 
senescent cells, causing weight loss, muscle wasting 
and loss of body fat, leading to metabolic dysfunction 
and loss of adaptive thermogenic capacity [10]. When 
senescent cells were removed, tissue homeostasis 
recovered [6, 75]. 

 

 
 

Figure 1. The onset of cellular senescence in normal tissue takes place in response to different stimuli (1). Some SASP factors are involved in 
immune cell recruitment, which act in the clearance of the senescent cells (2). Then, to restore the normal tissue, a regeneration process is 
necessary (3, 4). When a combination of persistent damage and immune system decay occurs, senescent cells accumulate, creating a pro-
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inflammatory and pro-tumorigenic environment and fibrotic tissue. Over time, this leads to disease, such as cancer progression, insulin 
resistance, osteoarthritis, atherosclerosis, and brain pathologies, among others (5, 6). 
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Cataracts 
Characterized by opacity of the lens of the eye [109], 
the lens capsules from patients suffering cataracts show 
accumulation of senescent human lens epithelial cells 
[105]. Removal of these cells by genetic approaches 
decreased the incidence of cataracts in old mice [6]. 
 
Liver diseases 
The presence of senescent cells correlates with the onset 
of liver fibrosis, cirrhosis and non-alcoholic fatty liver 
disease. Elimination of these cells reduced liver fat 
accumulation [10, 106]. 
 
Metabolic syndrome 
A collection of metabolic disorders such as increased 
blood pressure, high blood sugar, excess body fat 
(around the waist) and abnormal cholesterol levels. 
Endothelial cell senescence is involved in systemic 
metabolic dysfunction and glucose intolerance [13, 
107].  
 
Erectile dysfunction  
The presence of senescent cells is directly related to 
endothelial dysfunction. SASP factors seem mediate 
this effect, and importantly, removal of senescent cells 
led to improvement of erectile function in mice [40]. 

Altogether, this data highlights the importance of 
targeting these cells in order to delay or cure different 
diseases. 
 
STRATEGIES TO SUPPRESS SENESCENT 
CELLS 
 
Senolytics 
 
An option to eliminate the negative effects of chronic 
senescent cells is to kill them specifically, using 
compounds called senolytics (Figure 2), which target 
pathways activated in senescent cells [16]. The list of 
these senolytic tool compounds is extensive and 
continuously growing. In Table 1 are shown the 
noteworthy ones. Chronic/periodic administration of 
senolytics kills senescent cells that are generated in the 
tissues, and the immune system is responsible for 
clearing apoptotic bodies for subsequent regeneration 
with new cells (Figure 2, steps 1-3).  Senolytics target 
key proteins mainly involved in apoptosis, such as Bcl-
2, Bcl-XL, p53, p21, PI3K, AKT, FOXO4 and p53. See 
Table 1 for references. 
 
Although senolytics are supposed to be specific for 
senescent cells, there are always unwanted damage/side 

 

 
 

Figure 2. Treatment with senolytics to specifically kill senescent cells (1). Over time, these apoptotic bodies will be cleared by the immune 
system (2). Finally, a regenerative process will lead to normal tissue functions (3). Normal cells could be affected by either the lack of 
specificity of the senolytics or chronic treatment, leading to tissue dysfunction (4). 
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Table 1. List of senolytics and their targets. 

Senolytic Target/function References 
 Apoptosis  
Dasatinib (D) Inhibitor EFNB*-dependent suppression of apoptosis [51] 
Quercetin (Q) PI3K/AKT, BCL-2, p53, p21, Serpine [51] 
ABT 737 BCL-W and BCL-XL inhibitor [52] 
ABT 263 (Navitoclax; UBX0101) BCL-2, BCL-XL and BCL-W inhibitors [37, 53, 54] 
A1331852, A1155463 BCL-XL [55] 
Fisetin PI3K/AKT and ROS [55] 
FOXO4-related peptide (DRI) Inhibitor of FOXO4-p53 interaction [44] 
Delivery options**   
Gal-encapsulated cytotoxics SA-β-Gal [42] 

*AKT; protein kinase B. BCL; B-cell lymphoma. EFNB; ephrin ligand B. FOXO; forkhead box proteins O. PI3K; 
phosphatidylinositol 3-kinase. ROS; reactive oxygen species. 
**It helps improve senolysis by directed targeting. 
 

effects since the administration is not directed [41] 
(Figure 2, step 4). In this regard, a new strategy has 
been recently described to specifically target senescent 
cells in mice, using nanocapsules containing toxins (or 
senolytics) [42]. The outer layer of these nanocapsules 
are composed of substrates for enzymes that are 
overexpressed in senescent cells. In this way, the toxin 
(senolytic) will only be released inside senescent cells, 
killing them [42]. Thus, these nanocapsules are a 
vehicle to specifically deliver any type of senolytic into 
senescent cells in mice. The specificity of the delivery is 
important in non-targeted senolytics (natural product 
derivatives with less defined biological activities), such 
as quercetin and fisetin. 
 
Though there have been numerous reports showing the 
benefits of senolytics, it is important to highlight the 
recently described effects of dasatinib + quercetin (D + Q) 
treatment on lifespan in old animals [43]. Transplant of 
senescent cells into healthy mice caused physical 
dysfunction, which was reversed by oral administration of 
D + Q [43]. Also, clearance of senescent neurons 
improved neurological functions in transgenic mice 
mimicking Tau aggregation-dependent neurodegenerative 
disease [8]. It is also important to note that the treatment 
with the peptide FOXO4-DRI restored renal functions in 
both old (normal) mice and mice with accelerated aging 
[44]. As indicated above, some senolytics are currently 
being used in clinical trials for treating different diseases 
[16]. In this sense it is important to mention that MDM2 
inhibitors, targeting p53, are also in clinical phases as  
anti-cancer therapies [45]. 
 
Remaining questions 
There is reasonable doubt about the fate of the dead 
senescent cells, especially when the immune system of 

the patient is depressed (by either immunosenescence or 
immunosuppression). The accumulation of these 
apoptotic bodies may have undesired side effects (i.e. 
further release pro-inflammatory factors in an already-
damaged tissue) [10]. Also, as indicated before, the 
possible side effects of periodic/chronic treatments 
should not be ignored. In fact, toxic effects after systemic 
administration of BCL family inhibitors have been 
described in patients, such as thrombocytopenia and 
neutropenia [41]. It would be desirable that treatments 
with senolytics are as sporadic as possible, without 
affecting efficacy. Lastly, and as indicated above, the 
regeneration process is an important issue to be analyzed 
in the tissues where senescence clearance has taken 
place. 
 
SASP inhibitors (or senomorphics) 
 
Another strategy to inhibit the functions of senescent cells 
is through the specific silencing of SASP [16, 46], the 
complex mixture of soluble factors such as cytokines, 
chemokines, growth factors, proteases and angiogenic 
factors that mediates the paracrine and autocrine functions 
of senescent cells [3, 25] (Figure 3). The qualitative and 
quantitative composition of this secretome is different 
depending on the cell type and the senescence-inducing 
stimulus, and becomes fully active a few days after the 
persistent stimulus [3, 47, 48]. Senomorphics inhibit 
SASP functions by targeting pathways such as p38 
mitogen-activated protein kinase (MAPK), NF-κB, IL-1α, 
mTOR and PI3K/AKT (Table 2), which act at the level of 
transcription, translation or mRNA stabilization [21]. 
Alternatively, inhibition may be achieved by specific 
neutralizing antibodies against individual SASP factors 
(protein function inhibition), as is the case for IL-1α, IL-8 
and IL-6.  
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As IL-1α plays a direct role in SASP regulation, 
targeting either the receptor (IL-1αR) or the ligand (IL-
1α) leads to decreased global SASP expression, with 
special emphasis on oncogene-induced senescence 
(OIS) [49, 50]. 
 
Importantly, the MABp1 antibody (neutralizing anti-
human IL-1α monoclonal) has proven efficient in 
clinical trials against type 2 diabetes, sarcopenia and 
inflammation [56–58], diseases in which senescent cells 
play an important causative role [10].  
 
IL-8 is a member of the CXC motif chemokine 
upregulated in SASP, and is associated with some types 
of cancer [50]. ABX-IL-8 is a humanized monoclonal 
antibody against IL-8 that acts as an antagonist, 
impairing IL-8 signaling. Treatment with ABX-IL-8 
attenuates the growth of some cancer xenografts  
models [59]. 
 
IL-6 is a pleiotropic cytokine also upregulated in SASP 
that is involved in tumor proliferation, invasion and 
immunosuppression. Specific inhibition of IL-6 by a 
neutralizing monoclonal antibody (Mab-IL-6.8) 
completely abolished JAK/STAT signaling [50, 77] and 
relieved symptoms of arthritis in a primate model 
(Olokizumab) [78]. Arthritis has also been causally 
associated with the presence of senescent cells [37]. 

Finally, SASP-silenced/attenuated senescent cells should 
be recognized by the immune system for subsequent 
clearance and regeneration (Figure 3, steps 2 and 3). 
 
Remaining questions 
One doubt about this strategy is how SASP-
silenced/attenuated senescent cells would be cleared. 
Given that some SASP factors are involved in the 
recruitment of immune cells, SASP inhibition could 
make senescent cells effectively “invisible” to the 
immune system, therefore remaining chronically within 
the tissue. In fact, two senomorphics (apigenin and 
kaempferol) showed inhibition in cultured cells of SASP 
components involved in immune cell recruitment, such as 
CXCL-1 and CSF [65]. What would the influence of 
SASP-silenced senescent cells be in the tissue? Perhaps 
instead of being dysfunctional, the tissue would be non-
functional. 
 
Likewise, as senomorphics require chronic/continuous 
treatment, a major problem of these types of SASP 
inhibitors is the lack of specificity for senescent cells. 
Perhaps inhibition of individual SASP components by 
neutralizing antibodies (as described above) would 
minimize the potential side effects. As indicated for 
senolytics, it would be desirable if over time, the 
treatments with senomorphics were as sporadic as 
possible without affecting efficacy. 

 

 
 

Figure 3. Treatment with senomorphics to inhibit SASP factors in senescent cells (1). Over time, these cells will be removed by immune cells 
(2). Finally, a regenerative process will lead to normal tissue functions (3). In aged or immunosuppressed individuals, this strategy would lead 
to an accumulation of SASP-silenced/attenuated senescent cells (4). 
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Table 2. List of senomorphics and their targets. 

SASP inhibitor Target/function* References 
SB 203580 p38 MAPK** inhibitor ([60] Reviewed by [12]) 
UR-135756, BIRB 796 p38 MAPK inhibitor [61] 

Resveratrol NF-ƙB inhibitor (IĸB-kinase inhibitor), AMPK and 
SIRT1 activator, others [62–64] 

Apigenin, Wogonin, Kaempferol NF-ƙB inhibitors (IĸB-zeta) [65] 

Metformin 
Inhibition of IKK/NF-ƙB, mitochondrial electron 

tranport, mitochondrial GPDH, and KDM6A/UTX, 
AMPK activator, others 

[66–70] 

Cortisol/corticosterone IL-1α/NF-ƙB pathway inhibitors [71] 
NDGA ROS (free radical scavenger) [72] 

Rapamycin mTOR inhibitor, membrane-bound IL-1A translation 
inhibition, prelamin A, 53BP1 [73]  [74] [110] 

Ruxolitinib Inhibition of JAK1/2 and ROCK [75, 76] 

*For many of the SASP inhibitors listed there have been described several targets. 
**53BP1; p53 binding protein 1. AMPK; AMP-activated protein kinase. IKK; IĸB kinase. JAK; Janus kinase. KDM6A/UTX; lysine 
demethylase 6A. MAPK; mitogen-activated protein kinase. mTOR; mammalian target of rapamycin. NDGA; 
nordihydroguaiaretic acid. NF-ƙB; nuclear factor kappa light chain enhancer of activated B cells. ROS; reactive oxygen species.  
 

Improving immune system function 
 
A third strategy to target senescent cells is to strengthen 
the immune system for efficient recognition and 
elimination of these cells, a process termed immuno-
surveillance (Figure 4, steps 1-3). The role of the 
immune system in the elimination of senescent cells is 
fundamental, and a decline in immune function is 
associated with an increase in the number of senescent 
cells and finally, disease (Figure 4, step 4) [12, 20, 79, 
80]. 
 
In this regard, there are two strategies: i) improving the 
specific anti-senescent cell functions; and ii) general 
enhancement of immune functions (to avoid senescence 
of immune cells involved in recognition of senescent 
cells). 
 
Anti-senescent cell functions have been described in NK 
cells, macrophages and CD4+ T cells [20, 81]. Since these 
functions take place through membrane receptors, one 
option is to increase the binding affinity of the involved 
receptors. In this sense, the use of chimeric antigen 
receptor (CAR) T cells to target specific senescent-related 
molecules would be an attractive approach. This strategy 
is currently showing extraordinary results as anti-cancer 
therapy [82]. Alternatively, specifically increasing the 
surface expression of these receptors in senescent cells 
could be attempted. NK cells recognize the CD58/ICAM1 
receptor present in senescent cells [83]. In the case of 
macrophages this recognition is not clear, and may occur 
through modified membrane receptors in senescent cells 

(glycans, lipids or vimentin), recognized by receptors 
present in macrophages such as CD36, IgM, SIRPα, and 
leptins. For T cells this process would be mainly mediated 
by TCRs [84]. 
 
Another possibility is to reduce the number of senescent 
immune cells, perhaps by depletion using specific 
antibodies recognizing surface markers of senescence, 
and in this way “rejuvenate” the immune system [84]. 
In this sense the recent identification of a targetable 
senescent cell surface marker supports this strategy 
[85]. 
 
NK and T cell functions decrease in older individuals. 
The constitutive activation of the nutrient-sensing 
component adenosine 5´-monophosphate-activated 
protein kinase (AMPK) seems to play a central role in 
this process [86]. Thus, an alternative approach to 
increase functions of these immune cells is to target 
AMPK functions, as the p38 MAPK inhibitor does [87]. 
Another approach would be to inhibit the killer cell 
lectin-like receptor G1 (KLRG1, or CD57 in humans), 
which increases on NK and T cells of older individuals. 
Activation of KLRG1 in NK cells is associated with 
activation of AMPK (via protein stabilization), which in 
turn would inhibit cell functions. In the case of CD8+ T 
cells, this mechanism may involve other inhibitory 
receptors, such as programmed death 1 (PD-1) and 
cytotoxic T lymphocyte antigen 4 (CTLA-4) [86].  
 
The down-regulation of the CD28 receptor is a hallmark 
of human CD8+ T cell senescence. Interestingly these 
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senescent T cells have been found not only in old 
individuals (aging process), but also associated to 
diseases such as cancer and arthrosis [83], which are 
aging-related diseases where senescent cells seem to 
play a causative role, as discussed above.  
 
This fact reinforces the idea of a pivotal role of immune 
cells by delaying the onset of diseases related to the 
accumulation of chronic senescent cells. In this regard, a 
recent article shows that mice lacking the main cytotoxic 
functions of NK and T cells (perforin pathway), 
accelerates both senescent cell burden and aging [80]. 
 
Some current anti-cancer therapies are based on 
immunotherapy, that stimulates the immune system to 
recognize and kill disease-associated cells based on 
differences in the expression of antigens between 
pathogenic and normal cells [88]. Immunotherapy is 
currently used not only for different types of cancer, but 
also for infectious diseases, Alzheimer’s disease, and 
even some types of addictions [89, 90]. Senescent cells 
display a characteristic phenotype, which make them 
suitable targets for this strategy. Cell and antibody 
mediated responses are possible approaches, however, 
the specificity of senescent antigens would be the 
bottleneck to avoid undesirable side effects [108]. 

Remaining questions 
Improving immune system functions to target senescent 
cells could be difficult in scenarios such as immuno-
senescence (in older individuals or patients suffering 
from premature aging of the immune system [91]) or 
immunosuppression (i.e. patients treated with 
corticosteroids or radiation, in cases of organ transplant, 
autoimmune disease or cancer). CAR-based strategies 
and immune system “rejuvenation” would be 
personalized treatments, and thus very time consuming 
and expensive. These strategies would rely on specific 
(universal) senescence receptors, and a limiting factor 
when detecting cell senescence is the lack of universal 
markers [13]. Although novel technologies are making 
detection of senescent cells in tissues more reliable [92, 
93], the use of a combination of different biomarkers is 
still necessary for confirmation. Thus, personalized 
treatment targeting at least 2 senescence markers would 
increase the challenge and difficulty of the process. 
 
Moreover, the described connection between NK and T 
cell activation and nutrient-sensing machinery suggests 
that dietary interventions could be a promising approach 
to maintain a healthy immune system in older 
individuals, and thus the ability to efficiently clear 
senescent cells. The up-regulation of CD28 (by forced 

 

 
 

Figure 4. Improving immune system functions to efficiently remove senescent cells (1). A robust immune system targets senescent cells, 
leading to their removal (2). Then a regenerative process will maintain normal tissue functions (3). In situations where the immune system 
decays (e.g. immunosenescence or immunodepression), there will be an accumulation of senescent cells, increasing instability in the 
tissue/organ (4). 
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expression of either the receptor itself or other receptor 
related to T cell activation) could be another attractive 
approach to delay the senescence process in CD8+ T 
cells. Last, but not least, it is important to keep in mind 
that a general stimulation of the components of the 
immune system might also induce autoimmune diseases 
or may also promote some hematopoietic malignancies 
[94, 95]. 
 
Targeting senescent cancer cells 
 
A way to stop cancer progression is to induce 
senescence in tumor cells (TIS; therapy-induced 
senescence), through treatments targeting key pathways 
activated in highly proliferative cells. These treatments 
include DNA damage inducers (e.g. mitoxantrone, 
doxorubicin, γ-radiation), and inhibitors of Aurora 
kinase A (i.e. MLN8054, alisertib) and CDK4/6 
(abemaciclib, palbociclib, ribociclib), among others [14, 
96–98]. While stopping tumor growth, TIS becomes a 
problem for the organism in the long-term, as cancer 
survivors have a higher incidence of age-related 
diseases linked to senescence, including cardiovascular 
disease, neurodegeneration, sarcopenia and secondary 
neoplasia [19]. Cancer cells that escape from TIS (or 

“senescence-like” cancer cells) display some features, 
such as polyploidy, stemness and aggressiveness. It has 
been calculated that only 1 in 106 of senescent cancer 
cells escape from TIS. Although it seems to be a rare 
event, it occurs [99, 100]. 
 
At this point, it is conceivable to imagine a tissue that is 
already damaged, not only by tumor cells but also a mix 
of pre-tumorigenic and senescent cells, together with 
fibrosis and SASP (Figure 5). The newly senescent cells 
(from the tumor; TIS) would increase the level of SASP 
in the tissue, leading to: i) growth of new tumors (or 
sprouts of the former); ii) senescence induction in 
neighboring cells; as well as iii) an increase in fibrotic 
tissue. This scenario would lead to an exacerbation of 
the pathology that was described in the starting point 
(step 3). 
 
One solution to this situation would be to combine TIS 
(effective therapy to stop the growth of the tumor that is 
already present) with one or more of the three anti-
senescent strategies presented above (senolytics, 
senomorphics and improved immune function) (Figure 
5). Then clearance and tissue renewal processes will be 
necessary to restore tissue functions (Figure 5, step 4). 

 

 
 

Figure 5. Inducing senescence in tumor cells will lead to an accumulation of senescence burden (1). The pro-inflammatory and pro-
tumorigenic environment (more SASP factors) leads to exacerbation of the pathology (e.g. cancer relapse, fibrosis, inflammation) (2, 3). By 
targeting senescent cells with a combination of the approaches currently used, a better final scenario is possible (4).  Fibrotic scarring may be 
treated by other means, or cured over time. 
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Table 3. Comparison of the therapies presented in this review. 

Therapy Pros Cons 
Senolytics High specificity 

- Targeted drugs 
Sporadic treatments 

- Depending on compound efficacy 
 

Low specificity 
- Non-targeted compounds 

Side effects 
- BCL family inhibitors 

Increase in apoptotic bodies 
Chronic treatments 

- Depending on compound efficacy 
Senomorphics High specificity 

- Targeting individual SASP 
components 

Sporadic treatments 
- Depending on compound efficacy 

Low specificity 
- Targeting central pathways 

Chronic treatments 
- Depending on compound efficacy 

Lack of senescent cell clearance?  
Side effects 

Improving immune 
system 

High specificity 
- Personalized treatments 
- Immunotherapy 

Sporadic treatments 
Dietary interventions 

Time consuming and expensive 
- Personalized treatments 

Low specificity 
- General activation 

Side effects 
- Autoimmunity? 
- Hematopoietic malignancies? 

Chronic treatments 
Patients affected by immunosuppression and/or 
immunosenescence 

TIS High specificity 
- Specific targets 

Sporadic treatments 
Stops tumor growth 
Possibility to combine with other therapies 

Low specificity 
- General damage (chemo-radiotherapies) 

Side effects 
- New tumors 
- Fibrosis 

Chronic treatments 
Increasing senescence burden 

 

Remaining questions 
Importantly these therapies would rely on the state of the 
patient´s immune system, and many patients have been 
affected by treatments they have received previously 
(immunosuppression), or by age (immunosenescence). In 
this sense, it is likely that in some cases it would only be 
necessary to inhibit SASP and not specifically induce 
death of the senescent cells, to avoid depending on the 
immune system for removal of apoptotic bodies. 
 
And what about fibrosis? Fibrotic scarring can resolve 
over time, being replaced by new tissue. However, if 
this process is not completed (e.g. older people), the 
normal function of key organs can be compromised. 
Thus, alternative therapies should be kept in mind to 
treat senescence-associated fibrosis [101].  
 
CONCLUDING REMARKS 
 
Targeting senescent cells has become an alternative 
therapy for treating different aging-related diseases. 
This therapy can be approached on three levels: i) 

specific killing of these cells; ii) inhibition of their 
secretory phenotype, therefore making them less 
efficient; and iii) improving our immune system for 
elimination of senescent cells. 
 
The use of senolytics and senomorphics are showing 
promising results, although is still too early to draw 
conclusions. It is necessary to improve the specificity of 
these compounds, as well as optimize the treatment (i.e. 
dosage) to avoid unwanted effects. In this sense, progress 
has been made on the specific delivery of drugs into 
senescent cells by using nanocapsules. This elegant 
approach may overcome the problem of specificity of 
senolytic tool compounds when administrated in a chronic 
manner [42]. Importantly, senolytics and senomorphics 
are found in natural compounds, showing new 
(nutraceutical) approaches to treat aging-related diseases, 
although in a non-targeted way [102]. 
 
The “transformation” of normal cells into senescent 
ones is accomplished by a multitude of internal and 
external stressors in different physiological situations. 
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Cancer cells can become senescent as well after 
different therapies, though the new tumor-induced 
senescent cells (TIS) generated are harmful in the long 
term. In this scenario, the three options presented here 
to either eliminate or “silence” the senescent cells are 
important to combat TIS. The combination of these pro- 
and anti-senescence approaches (TIS + senolytics 
and/or senomorphics and/or improved immune system), 
will play an important role in the cure of some types of 
cancer [98].  
 
In future clinical trials focused on eliminating senescent 
cells, it will be important to determine when to initiate 
the treatments (age of the patients), the schedule 
(continuous, periodic and/or sporadic), as well as the 
specific markers to determine the efficacy of the therapy 
(see Table 3 for comparison of the therapies presented 
in this review). Clinical trials should be supported by 
robust preclinical results obtained in proper animal 
models. 
 
Senescent cells are the cause of several age-related 
diseases, which account for a high percentage of all 
causes of death worldwide and an expansion of 
morbidity. Likewise, it is estimated that by the year 
2045, the number of people older than 60 will surpass, 
for the first time in history, the number of people under 
the age of 15 [103]. Thus, the approaches presented in 
this review highlight the urgent need for new therapies 
to delay or cure age/senescence-related diseases. 
 
ACKNOWLEDGMENTS 
 
I am grateful to Adrián V. and Victoria Colombo for 
their productive discussions and support. The 
professional editing service NB Revisions was used for 
technical editing of the manuscript prior to submission. 
 
CONFLICTS OF INTEREST 
 
The author declares that he is co-founder of SenCell 
Therapeutics. 
 
FUNDING 
 
Consejo Superior de Investigaciones Científicas (CSIC). 
 
REFERENCES 
 
1.  He S, Sharpless NE. Senescence in Health and Disease. 

Cell. 2017; 169:1000–11.  
 https://doi.org/10.1016/j.cell.2017.05.015 

PMID:28575665  

2.  Hayflick L, Moorhead PS. The serial cultivation of 
human diploid cell strains. Exp Cell Res. 1961; 

25:585–621.  
 https://doi.org/10.1016/0014-4827(61)90192-6 

PMID:13905658  

3. Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, 
Goldstein J, Nelson PS, Desprez PY, Campisi J. 
Senescence-associated secretory phenotypes reveal 
cell-nonautonomous functions of oncogenic RAS and 
the p53 tumor suppressor. PLoS Biol. 2008; 6:2853–68.  

 https://doi.org/10.1371/journal.pbio.0060301 
PMID:19053174  

4.  López-Otín C, Blasco MA, Partridge L, Serrano M, 
Kroemer G. The hallmarks of aging. Cell. 2013; 
153:1194–217.  

 https://doi.org/10.1016/j.cell.2013.05.039 
PMID:23746838  

5. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs 
BG, van de Sluis B, Kirkland JL, van Deursen JM. 
Clearance of p16Ink4a-positive senescent cells delays 
ageing-associated disorders. Nature. 2011; 479:232–
36.  

 https://doi.org/10.1038/nature10600 PMID:22048312  

6. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, 
Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, 
Pezeshki A, Khazaie K, Miller JD, van Deursen JM. 
Naturally occurring p16(Ink4a)-positive cells shorten 
healthy lifespan. Nature. 2016; 530:184–89.  

 https://doi.org/10.1038/nature16932  
PMID:26840489  

7.  Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen 
JM, Baker DJ. Clearance of senescent glial cells 
prevents tau-dependent pathology and cognitive 
decline. Nature. 2018; 562:578–82. 

 https://doi.org/10.1038/s41586-018-0543-y 
PMID:30232451 

8.  Musi N, Valentine JM, Sickora KR, Baeuerle E, 
Thompson CS, Shen Q, Orr ME. Tau protein 
aggregation is associated with cellular senescence in 
the brain. Aging Cell. 2018; 17:e12840.  

 https://doi.org/10.1111/acel.12840  
PMID:30126037 

9. Xu M, Bradley EW, Weivoda MM, Hwang SM, 
Pirtskhalava T, Decklever T, Curran GL, Ogrodnik M, 
Jurk D, Johnson KO, Lowe V, Tchkonia T, Westendorf JJ, 
Kirkland JL. Transplanted Senescent Cells Induce an 
Osteoarthritis-Like Condition in Mice. J Gerontol A Biol 
Sci Med Sci. 2017; 72:780–85.  

 https://doi.org/10.1093/gerona/glw154 
PMID:27516624  

10.  McHugh D, Gil J. Senescence and aging: Causes, 
consequences, and therapeutic avenues. J Cell Biol. 
2018; 217:65–77.  

 https://doi.org/10.1083/jcb.201708092 
PMID:29114066  

https://doi.org/10.1016/j.cell.2017.05.015
https://www.ncbi.nlm.nih.gov/pubmed/28575665
https://doi.org/10.1016/0014-4827%2861%2990192-6
https://www.ncbi.nlm.nih.gov/pubmed/13905658
https://doi.org/10.1371/journal.pbio.0060301
https://www.ncbi.nlm.nih.gov/pubmed/19053174
https://doi.org/10.1016/j.cell.2013.05.039
https://www.ncbi.nlm.nih.gov/pubmed/23746838
https://doi.org/10.1038/nature10600
https://www.ncbi.nlm.nih.gov/pubmed/22048312
https://doi.org/10.1038/nature16932
https://www.ncbi.nlm.nih.gov/pubmed/26840489
https://doi.org/10.1038/s41586-018-0543-y
https://www.ncbi.nlm.nih.gov/pubmed/30232451
https://doi.org/10.1111/acel.12840
https://www.ncbi.nlm.nih.gov/pubmed/30126037
https://doi.org/10.1093/gerona/glw154
https://www.ncbi.nlm.nih.gov/pubmed/27516624
https://doi.org/10.1083/jcb.201708092
https://www.ncbi.nlm.nih.gov/pubmed/29114066


www.aging-us.com 12856 AGING 

11. Waaijer ME, Parish WE, Strongitharm BH, van Heemst 
D, Slagboom PE, de Craen AJ, Sedivy JM, Westendorp 
RG, Gunn DA, Maier AB. The number of p16INK4a 
positive cells in human skin reflects biological age. 
Aging Cell. 2012; 11:722–25.  

 https://doi.org/10.1111/j.1474-9726.2012.00837.x 
PMID:22612594  

12.  Velarde MC, Demaria M. Targeting Senescent Cells: 
Possible Implications for Delaying Skin Aging: A Mini-
Review. Gerontology. 2016; 62:513–18.  

 https://doi.org/10.1159/000444877 PMID:27031122  

13.  Myrianthopoulos V, Evangelou K, Vasileiou PVS, Cooks 
T, Vassilakopoulos TP, Pangalis GA, Kouloukoussa M, 
Kittas C, Georgakilas AG, Gorgoulis VG. Senescence and 
senotherapeutics: a new field in cancer therapy. 
Pharmacol Ther. 2019; 193:31–49.  

 https://doi.org/10.1016/j.pharmthera.2018.08.006 
PMID:30121319 

14.  Ewald JA, Desotelle JA, Wilding G, Jarrard DF. Therapy-
induced senescence in cancer. J Natl Cancer Inst. 2010; 
102:1536–46.  

 https://doi.org/10.1093/jnci/djq364  
PMID:20858887  

15.  Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular 
senescence in aging and age-related disease: from 
mechanisms to therapy. Nat Med. 2015; 21:1424–35.  

 https://doi.org/10.1038/nm.4000  
PMID:26646499  

16.  Sun Y, Coppé JP, Lam EW. Cellular Senescence: The 
Sought or the Unwanted? Trends Mol Med. 2018; 
24:871–85.  

 https://doi.org/10.1016/j.molmed.2018.08.002 
PMID:30153969  

17.  Muñoz-Espín D, Serrano M. Cellular senescence: from 
physiology to pathology. Nat Rev Mol Cell Biol. 2014; 
15:482–96.  

 https://doi.org/10.1038/nrm3823 PMID:24954210  

18.  Kirkland JL, Tchkonia T. Cellular Senescence: A 
Translational Perspective. EBioMedicine. 2017; 
21:21–28.  

 https://doi.org/10.1016/j.ebiom.2017.04.013 
PMID:28416161  

19.  Childs BG, Gluscevic M, Baker DJ, Laberge RM, 
Marquess D, Dananberg J, van Deursen JM. Senescent 
cells: an emerging target for diseases of ageing. Nat 
Rev Drug Discov. 2017; 16:718–35.  

 https://doi.org/10.1038/nrd.2017.116  
PMID:28729727  

20. von Kobbe C. Cellular senescence: a view throughout 
organismal life. Cell Mol Life Sci. 2018; 75:3553–67.  

 https://doi.org/10.1007/s00018-018-2879-8 
PMID:30030594  

21.  Hernandez-Segura A, Nehme J, Demaria M. Hallmarks 
of Cellular Senescence. Trends Cell Biol. 2018; 28:436–
53.  

 https://doi.org/10.1016/j.tcb.2018.02.001 
PMID:29477613  

22.  Salama R, Sadaie M, Hoare M, Narita M. Cellular 
senescence and its effector programs. Genes Dev. 
2014; 28:99–114.  

 https://doi.org/10.1101/gad.235184.113 
PMID:24449267  

23.  Swanson EC, Manning B, Zhang H, Lawrence JB. Higher-
order unfolding of satellite heterochromatin is a 
consistent and early event in cell senescence. J Cell 
Biol. 2013; 203:929–42.  

 https://doi.org/10.1083/jcb.201306073 
PMID:24344186  

24.  Qian Y, Zhang J, Yan B, Chen X. DEC1, a basic helix-
loop-helix transcription factor and a novel target gene 
of the p53 family, mediates p53-dependent premature 
senescence. J Biol Chem. 2008; 283:2896–905.  

 https://doi.org/10.1074/jbc.m708624200 
PMID:18025081 

25.  Coppé JP, Desprez PY, Krtolica A, Campisi J. The 
senescence-associated secretory phenotype: the dark 
side of tumor suppression. Annu Rev Pathol. 2010; 
5:99–118.  

 https://doi.org/10.1146/annurev-pathol-121808-
102144 PMID:20078217  

26.  He S, Nakada D, Morrison SJ. Mechanisms of stem cell 
self-renewal. Annu Rev Cell Dev Biol. 2009; 25:377–406.  

 https://doi.org/10.1146/annurev.cellbio.042308.11324
8 PMID:19575646  

27.  da Silva PFL, Ogrodnik M, Kucheryavenko O, Glibert J, 
Miwa S, Cameron K, Ishaq A, Saretzki G, Nagaraja-
Grellscheid S, Nelson G, von Zglinicki T. The bystander 
effect contributes to the accumulation of senescent 
cells in vivo. Aging Cell. 2019; 18:e12848.  

 https://doi.org/10.1111/acel.12848 PMID:30462359 

28.  Schafer MJ, Haak AJ, Tschumperlin DJ, LeBrasseur NK. 
Targeting Senescent Cells in Fibrosis: Pathology, 
Paradox, and Practical Considerations. Curr Rheumatol 
Rep. 2018; 20:3.  

 https://doi.org/10.1007/s11926-018-0712-x 
PMID:29374361  

29.  DePinho RA. The age of cancer. Nature. 2000; 
408:248–54.  

 https://doi.org/10.1038/35041694 PMID:11089982  

30.  de Magalhães JP. How ageing processes influence 
cancer. Nat Rev Cancer. 2013; 13:357–65.  

 https://doi.org/10.1038/nrc3497 PMID:23612461  

31.  Liu D, Hornsby PJ. Senescent human fibroblasts 
increase the early growth of xenograft tumors via 

https://doi.org/10.1111/j.1474-9726.2012.00837.x
https://www.ncbi.nlm.nih.gov/pubmed/22612594
https://doi.org/10.1159/000444877
https://www.ncbi.nlm.nih.gov/pubmed/27031122
https://doi.org/10.1016/j.pharmthera.2018.08.006
https://www.ncbi.nlm.nih.gov/pubmed/30121319
https://doi.org/10.1093/jnci/djq364
https://www.ncbi.nlm.nih.gov/pubmed/20858887
https://doi.org/10.1038/nm.4000
https://www.ncbi.nlm.nih.gov/pubmed/26646499
https://doi.org/10.1016/j.molmed.2018.08.002
https://www.ncbi.nlm.nih.gov/pubmed/30153969
https://doi.org/10.1038/nrm3823
https://www.ncbi.nlm.nih.gov/pubmed/24954210
https://doi.org/10.1016/j.ebiom.2017.04.013
https://www.ncbi.nlm.nih.gov/pubmed/28416161
https://doi.org/10.1038/nrd.2017.116
https://www.ncbi.nlm.nih.gov/pubmed/28729727
https://doi.org/10.1007/s00018-018-2879-8
https://www.ncbi.nlm.nih.gov/pubmed/30030594
https://doi.org/10.1016/j.tcb.2018.02.001
https://www.ncbi.nlm.nih.gov/pubmed/29477613
https://doi.org/10.1101/gad.235184.113
https://www.ncbi.nlm.nih.gov/pubmed/24449267
https://doi.org/10.1083/jcb.201306073
https://www.ncbi.nlm.nih.gov/pubmed/24344186
https://doi.org/10.1074/jbc.m708624200
https://www.ncbi.nlm.nih.gov/pubmed/18025081
https://doi.org/10.1146/annurev-pathol-121808-102144
https://doi.org/10.1146/annurev-pathol-121808-102144
https://www.ncbi.nlm.nih.gov/pubmed/20078217
https://doi.org/10.1146/annurev.cellbio.042308.113248
https://doi.org/10.1146/annurev.cellbio.042308.113248
https://www.ncbi.nlm.nih.gov/pubmed/19575646
https://doi.org/10.1111/acel.12848
https://www.ncbi.nlm.nih.gov/pubmed/30462359
https://doi.org/10.1007/s11926-018-0712-x
https://www.ncbi.nlm.nih.gov/pubmed/29374361
https://doi.org/10.1038/35041694
https://www.ncbi.nlm.nih.gov/pubmed/11089982
https://doi.org/10.1038/nrc3497
https://www.ncbi.nlm.nih.gov/pubmed/23612461


www.aging-us.com 12857 AGING 

matrix metalloproteinase secretion. Cancer Res. 
2007; 67:3117–26.  

 https://doi.org/10.1158/0008-5472.CAN-06-3452 
PMID:17409418  

32.  Golde TE, Miller VM. Proteinopathy-induced neuronal 
senescence: a hypothesis for brain failure in 
Alzheimer’s and other neurodegenerative diseases. 
Alzheimers Res Ther. 2009; 1:5.  

 https://doi.org/10.1186/alzrt5 PMID:19822029  

33.  Kritsilis M, V Rizou S, Koutsoudaki PN, Evangelou K, 
Gorgoulis VG, Papadopoulos D. Ageing, Cellular 
Senescence and Neurodegenerative Disease. Int J Mol 
Sci. 2018; 19:E2937.  

 https://doi.org/10.3390/ijms19102937 
PMID:30261683  

34.  Chinta SJ, Woods G, Rane A, Demaria M, Campisi J, 
Andersen JK. Cellular senescence and the aging brain. 
Exp Gerontol. 2015; 68:3–7.  

 https://doi.org/10.1016/j.exger.2014.09.018 
PMID:25281806  

35.  Childs BG, Baker DJ, Wijshake T, Conover CA, Campisi J, 
van Deursen JM. Senescent intimal foam cells are 
deleterious at all stages of atherosclerosis. Science. 
2016; 354:472–77.  

 https://doi.org/10.1126/science.aaf6659 
PMID:27789842  

36.  Price JS, Waters JG, Darrah C, Pennington C, Edwards 
DR, Donell ST, Clark IM. The role of chondrocyte 
senescence in osteoarthritis. Aging Cell. 2002; 1:57–65.  

 https://doi.org/10.1046/j.1474-9728.2002.00008.x 
PMID:12882354  

37.  Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, 
Vasserot AP, Chung JW, Kim DH, Poon Y, David N, 
Baker DJ, van Deursen JM, Campisi J, Elisseeff JH. Local 
clearance of senescent cells attenuates the 
development of post-traumatic osteoarthritis and 
creates a pro-regenerative environment. Nat Med. 
2017; 23:775–81.  

 https://doi.org/10.1038/nm.4324  
PMID:28436958  

38.  Helman A, Klochendler A, Azazmeh N, Gabai Y, Horwitz 
E, Anzi S, Swisa A, Condiotti R, Granit RZ, Nevo Y, Fixler 
Y, Shreibman D, Zamir A, et al. p16(Ink4a)-induced 
senescence of pancreatic beta cells enhances insulin 
secretion. Nat Med. 2016; 22:412–20.  

 https://doi.org/10.1038/nm.4054 PMID:26950362  

39. Aguayo-Mazzucato C, van Haaren M, Mruk M, Lee TB 
Jr, Crawford C, Hollister-Lock J, Sullivan BA, Johnson 
JW, Ebrahimi A, Dreyfuss JM, Van Deursen J, Weir GC, 
Bonner-Weir S. β Cell Aging Markers Have 
Heterogeneous Distribution and Are Induced by Insulin 
Resistance. Cell Metab. 2017; 25:898–910.e5.  

 https://doi.org/10.1016/j.cmet.2017.03.015 
PMID:28380379  

40.  Nishimatsu H, Suzuki E, Saito Y, Niimi A, Nomiya A, 
Fukuhara H, Kume H, Homma Y. Senescent Cells Impair 
Erectile Function through Induction of Endothelial 
Dysfunction and Nerve Injury in Mice. PLoS One. 2015; 
10:e0124129.  

 https://doi.org/10.1371/journal.pone.0124129 
PMID:25894557  

41.  Rudin CM, Hann CL, Garon EB, Ribeiro de Oliveira 
M, Bonomi PD, Camidge DR, Chu Q, Giaccone G, 
Khaira D, Ramalingam SS, Ranson MR, Dive C, 
McKeegan EM, et al. Phase II study of single-agent 
navitoclax (ABT-263) and biomarker correlates in 
patients with relapsed small cell lung cancer. Clin 
Cancer Res. 2012; 18:3163–69.  

 https://doi.org/10.1158/1078-0432.CCR-11-3090 
PMID:22496272  

42.  Muñoz-Espín D, Rovira M, Galiana I, Giménez C, 
Lozano-Torres B, Paez-Ribes M, Llanos S, Chaib S, 
Muñoz-Martín M, Ucero AC, Garaulet G, Mulero F, 
Dann SG, et al. A versatile drug delivery system 
targeting senescent cells. EMBO Mol Med. 2018; 
10:e9355.  

 https://doi.org/10.15252/emmm.201809355 
PMID:30012580  

43. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, 
Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, 
Fraser DG, Onken JL, Johnson KO, Verzosa GC, et al. 
Senolytics improve physical function and increase 
lifespan in old age. Nat Med. 2018; 24:1246–56.  

 https://doi.org/10.1038/s41591-018-0092-9 
PMID:29988130 

44. Baar MP, Brandt RM, Putavet DA, Klein JD, Derks KW, 
Bourgeois BR, Stryeck S, Rijksen Y, van Willigenburg H, 
Feijtel DA, van der Pluijm I, Essers J, van Cappellen WA, 
et al. Targeted Apoptosis of Senescent Cells Restores 
Tissue Homeostasis in Response to Chemotoxicity and 
Aging. Cell. 2017; 169:132–147.e16.  

 https://doi.org/10.1016/j.cell.2017.02.031 
PMID:28340339  

45. Wiley CD, Schaum N, Alimirah F, Lopez-Dominguez JA, 
Orjalo AV, Scott G, Desprez PY, Benz C, Davalos AR, 
Campisi J. Small-molecule MDM2 antagonists 
attenuate the senescence-associated secretory 
phenotype. Sci Rep. 2018; 8:2410.  

 https://doi.org/10.1038/s41598-018-20000-4 
PMID:29402901 

46.  Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. 
Cellular senescence and the senescent secretory 
phenotype: therapeutic opportunities. J Clin Invest. 
2013; 123:966–72.  

 https://doi.org/10.1172/JCI64098 PMID:23454759  

https://doi.org/10.1158/0008-5472.CAN-06-3452
https://www.ncbi.nlm.nih.gov/pubmed/17409418
https://doi.org/10.1186/alzrt5
https://www.ncbi.nlm.nih.gov/pubmed/19822029
https://doi.org/10.3390/ijms19102937
https://www.ncbi.nlm.nih.gov/pubmed/30261683
https://doi.org/10.1016/j.exger.2014.09.018
https://www.ncbi.nlm.nih.gov/pubmed/25281806
https://doi.org/10.1126/science.aaf6659
https://www.ncbi.nlm.nih.gov/pubmed/27789842
https://doi.org/10.1046/j.1474-9728.2002.00008.x
https://www.ncbi.nlm.nih.gov/pubmed/12882354
https://doi.org/10.1038/nm.4324
https://www.ncbi.nlm.nih.gov/pubmed/28436958
https://doi.org/10.1038/nm.4054
https://www.ncbi.nlm.nih.gov/pubmed/26950362
https://doi.org/10.1016/j.cmet.2017.03.015
https://www.ncbi.nlm.nih.gov/pubmed/28380379
https://doi.org/10.1371/journal.pone.0124129
https://www.ncbi.nlm.nih.gov/pubmed/25894557
https://doi.org/10.1158/1078-0432.CCR-11-3090
https://www.ncbi.nlm.nih.gov/pubmed/22496272
https://doi.org/10.15252/emmm.201809355
https://www.ncbi.nlm.nih.gov/pubmed/30012580
https://doi.org/10.1038/s41591-018-0092-9
https://www.ncbi.nlm.nih.gov/pubmed/29988130
https://doi.org/10.1016/j.cell.2017.02.031
https://www.ncbi.nlm.nih.gov/pubmed/28340339
https://doi.org/10.1038/s41598-018-20000-4
https://www.ncbi.nlm.nih.gov/pubmed/29402901
https://doi.org/10.1172/JCI64098
https://www.ncbi.nlm.nih.gov/pubmed/23454759


www.aging-us.com 12858 AGING 

47.  Ito Y, Hoare M, Narita M. Spatial and Temporal Control 
of Senescence. Trends Cell Biol. 2017; 27:820–32.  

 https://doi.org/10.1016/j.tcb.2017.07.004 
PMID:28822679  

48.  Ovadya Y, Krizhanovsky V. Senescent cells: SASPected 
drivers of age-related pathologies. Biogerontology. 
2014; 15:627–42.  

 https://doi.org/10.1007/s10522-014-9529-9 
PMID:25217383  

49.  Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J. 
Cell surface-bound IL-1alpha is an upstream regulator 
of the senescence-associated IL-6/IL-8 cytokine 
network. Proc Natl Acad Sci USA. 2009; 106:17031–36.  

 https://doi.org/10.1073/pnas.0905299106 
PMID:19805069  

50. Di Mitri D, Alimonti A. Non-Cell-Autonomous Regulation 
of Cellular Senescence in Cancer. Trends Cell Biol. 
2016; 26:215–26.  

 https://doi.org/10.1016/j.tcb.2015.10.005 
PMID:26564316  

51. Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, 
Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg 
M, O’Hara SP, LaRusso NF, Miller JD, et al. The Achilles’ 
heel of senescent cells: from transcriptome to senolytic 
drugs. Aging Cell. 2015; 14:644–58.  

 https://doi.org/10.1111/acel.12344  
PMID:25754370  

52. Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, 
Cohen S, Vadai E, Dassa L, Shahar E, Condiotti R, Ben-
Porath I, Krizhanovsky V. Directed elimination of 
senescent cells by inhibition of BCL-W and BCL-XL. Nat 
Commun. 2016; 7:11190.  

 https://doi.org/10.1038/ncomms11190 
PMID:27048913  

53.  Chang J, Wang Y, Shao L, Laberge RM, Demaria M, 
Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng 
W, Luo Y, Wang X, Aykin-Burns N, et al. Clearance of 
senescent cells by ABT263 rejuvenates aged 
hematopoietic stem cells in mice. Nat Med. 2016; 
22:78–83.  

 https://doi.org/10.1038/nm.4010 PMID:26657143  

54. Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, 
Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson 
KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, 
Kirkland JL. Identification of a novel senolytic agent, 
navitoclax, targeting the Bcl-2 family of anti-apoptotic 
factors. Aging Cell. 2016; 15:428–35.  

 https://doi.org/10.1111/acel.12445 PMID:26711051  

55. Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, 
Wentworth M, Fuhrmann-Stroissnigg H, Niedernhofer 
LJ, Robbins PD, Tchkonia T, Kirkland JL. New agents 
that target senescent cells: the flavone, fisetin, and the 

BCL-XL inhibitors, A1331852 and A1155463. Aging 
(Albany NY). 2017; 9:955–63.  

 https://doi.org/10.18632/aging.101202 
PMID:28273655  

56. Dinarello CA, Simon A, van der Meer JW. Treating 
inflammation by blocking interleukin-1 in a broad 
spectrum of diseases. Nat Rev Drug Discov. 2012; 
11:633–52.   

 https://doi.org/10.1038/nrd3800 PMID:22850787  

57.  Timper K, Seelig E, Tsakiris DA, Donath MY. Safety, 
pharmacokinetics, and preliminary efficacy of a specific 
anti-IL-1alpha therapeutic antibody (MABp1) in 
patients with type 2 diabetes mellitus. J Diabetes 
Complications. 2015; 29:955–60.  

 https://doi.org/10.1016/j.jdiacomp.2015.05.019 
PMID:26139558  

58.  O’Sullivan Coyne G, Burotto M. MABp1 for the 
treatment of colorectal cancer. Expert Opin Biol Ther. 
2017; 17:1155–61.  

 https://doi.org/10.1080/14712598.2017.1347631 
PMID:28691536  

59. Waugh DJ, Wilson C. The interleukin-8 pathway in 
cancer. Clin Cancer Res. 2008; 14:6735–41.  

 https://doi.org/10.1158/1078-0432.CCR-07-4843 
PMID:18980965  

60.  Goldstein DM, Kuglstatter A, Lou Y, Soth MJ. Selective 
p38alpha inhibitors clinically evaluated for the 
treatment of chronic inflammatory disorders. J Med 
Chem. 2010; 53:2345–53.  

 https://doi.org/10.1021/jm9012906  
PMID:19950901  

61. Alimbetov D, Davis T, Brook AJ, Cox LS, Faragher RG, 
Nurgozhin T, Zhumadilov Z, Kipling D. Suppression of 
the senescence-associated secretory phenotype (SASP) 
in human fibroblasts using small molecule inhibitors of 
p38 MAP kinase and MK2. Biogerontology. 2016; 
17:305–15. 

 https://doi.org/10.1007/s10522-015-9610-z 
PMID:26400758  

62.  Pitozzi V, Mocali A, Laurenzana A, Giannoni E, Cifola I, 
Battaglia C, Chiarugi P, Dolara P, Giovannelli L. Chronic 
resveratrol treatment ameliorates cell adhesion and 
mitigates the inflammatory phenotype in senescent 
human fibroblasts. J Gerontol A Biol Sci Med Sci. 2013; 
68:371–81.  

 https://doi.org/10.1093/gerona/gls183 
PMID:22933405  

63.  Holmes-McNary M, Baldwin AS Jr. Chemopreventive 
properties of trans-resveratrol are associated with 
inhibition of activation of the IkappaB kinase. Cancer 
Res. 2000; 60:3477–83.  

 PMID:10910059  

https://doi.org/10.1016/j.tcb.2017.07.004
https://www.ncbi.nlm.nih.gov/pubmed/28822679
https://doi.org/10.1007/s10522-014-9529-9
https://www.ncbi.nlm.nih.gov/pubmed/25217383
https://doi.org/10.1073/pnas.0905299106
https://www.ncbi.nlm.nih.gov/pubmed/19805069
https://doi.org/10.1016/j.tcb.2015.10.005
https://www.ncbi.nlm.nih.gov/pubmed/26564316
https://doi.org/10.1111/acel.12344
https://www.ncbi.nlm.nih.gov/pubmed/25754370
https://doi.org/10.1038/ncomms11190
https://www.ncbi.nlm.nih.gov/pubmed/27048913
https://doi.org/10.1038/nm.4010
https://www.ncbi.nlm.nih.gov/pubmed/26657143
https://doi.org/10.1111/acel.12445
https://www.ncbi.nlm.nih.gov/pubmed/26711051
https://doi.org/10.18632/aging.101202
https://www.ncbi.nlm.nih.gov/pubmed/28273655
https://doi.org/10.1038/nrd3800
https://www.ncbi.nlm.nih.gov/pubmed/22850787
https://doi.org/10.1016/j.jdiacomp.2015.05.019
https://www.ncbi.nlm.nih.gov/pubmed/26139558
https://doi.org/10.1080/14712598.2017.1347631
https://www.ncbi.nlm.nih.gov/pubmed/28691536
https://doi.org/10.1158/1078-0432.CCR-07-4843
https://www.ncbi.nlm.nih.gov/pubmed/18980965
https://doi.org/10.1021/jm9012906
https://www.ncbi.nlm.nih.gov/pubmed/19950901
https://doi.org/10.1007/s10522-015-9610-z
https://www.ncbi.nlm.nih.gov/pubmed/26400758
https://doi.org/10.1093/gerona/gls183
https://www.ncbi.nlm.nih.gov/pubmed/22933405
https://www.ncbi.nlm.nih.gov/pubmed/10910059


www.aging-us.com 12859 AGING 

64.  Kulkarni SS, Cantó C. The molecular targets of 
resveratrol. Biochim Biophys Acta. 2015; 1852:1114–23.  

 https://doi.org/10.1016/j.bbadis.2014.10.005 
PMID:25315298  

65.  Lim H, Park H, Kim HP. Effects of flavonoids on 
senescence-associated secretory phenotype formation 
from bleomycin-induced senescence in BJ fibroblasts. 
Biochem Pharmacol. 2015; 96:337–48.  

 https://doi.org/10.1016/j.bcp.2015.06.013 
PMID:26093063  

66.  Moiseeva O, Deschênes-Simard X, St-Germain E, 
Igelmann S, Huot G, Cadar AE, Bourdeau V, Pollak MN, 
Ferbeyre G. Metformin inhibits the senescence-
associated secretory phenotype by interfering with 
IKK/NF-κB activation. Aging Cell. 2013; 12:489–98.  

 https://doi.org/10.1111/acel.12075 PMID:23521863  

67.  Soberanes S, Misharin AV, Jairaman A, Morales-
Nebreda L, McQuattie-Pimentel AC, Cho T, Hamanaka 
RB, Meliton AY, Reyfman PA, Walter JM, Chen CI, Chi 
M, Chiu S, et al. Metformin Targets Mitochondrial 
Electron Transport to Reduce Air-Pollution-Induced 
Thrombosis. Cell Metab. 2019; 29:335–347.e5.  

 https://doi.org/10.1016/j.cmet.2018.09.019 
PMID:30318339 

68.  Cuyàs E, Verdura S, Llorach-Pares L, Fernández-Arroyo 
S, Luciano-Mateo F, Cabré N, Stursa J, Werner L, 
Martin-Castillo B, Viollet B, Neuzil J, Joven J, Nonell-
Canals A, et al. Metformin directly targets the 
H3K27me3 demethylase KDM6A/UTX. Aging Cell. 
2018; 17:e12772.  

 https://doi.org/10.1111/acel.12772  
PMID:29740925  

69.  Thakur S, Daley B, Gaskins K, Vasko VV, Boufraqech M, 
Patel D, Sourbier C, Reece J, Cheng SY, Kebebew E, 
Agarwal S, Klubo-Gwiezdzinska J. Metformin Targets 
Mitochondrial Glycerophosphate Dehydrogenase to 
Control Rate of Oxidative Phosphorylation and Growth 
of Thyroid Cancer In Vitro and In Vivo. Clin Cancer Res. 
2018; 24:4030–43.  

 https://doi.org/10.1158/1078-0432.CCR-17-3167 
PMID:29691295  

70.  Fryer LG, Parbu-Patel A, Carling D. The Anti-diabetic 
drugs rosiglitazone and metformin stimulate AMP-
activated protein kinase through distinct signaling 
pathways. J Biol Chem. 2002; 277:25226–32.  

 https://doi.org/10.1074/jbc.M202489200 
PMID:11994296  

71.  Laberge RM, Zhou L, Sarantos MR, Rodier F, Freund A, 
de Keizer PL, Liu S, Demaria M, Cong YS, Kapahi P, 
Desprez PY, Hughes RE, Campisi J. Glucocorticoids 
suppress selected components of the senescence-
associated secretory phenotype. Aging Cell. 2012; 
11:569–78.  

 https://doi.org/10.1111/j.1474-9726.2012.00818.x 
PMID:22404905  

72.  Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, 
Zhu Y, Brooks RW, Grassi D, Gregg SQ, Stripay JL, 
Dorronsoro A, Corbo L, Tang P, Bukata C, et al. 
Identification of HSP90 inhibitors as a novel class of 
senolytics. Nat Commun. 2017; 8:422.  

 https://doi.org/10.1038/s41467-017-00314-z 
PMID:28871086  

73.  Herranz N, Gallage S, Mellone M, Wuestefeld T, Klotz S, 
Hanley CJ, Raguz S, Acosta JC, Innes AJ, Banito A, 
Georgilis A, Montoya A, Wolter K, et al. mTOR 
regulates MAPKAPK2 translation to control the 
senescence-associated secretory phenotype. Nat Cell 
Biol. 2015; 17:1205–17. Erratum in: Nat. Cell. Biol. 
2015. 17, 1370  

 https://doi.org/10.1038/ncb3225 PMID:26280535 

74.  Lattanzi G, Ortolani M, Columbaro M, Prencipe S, 
Mattioli E, Lanzarini C, Maraldi NM, Cenni V, Garagnani 
P, Salvioli S, Storci G, Bonafè M, Capanni C, Franceschi 
C. Lamins are rapamycin targets that impact human 
longevity: a study in centenarians. J Cell Sci. 2014; 
127:147–57.  

 https://doi.org/10.1242/jcs.133983  
PMID:24155329  

75. Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, 
White TA, Sepe A, Johnson KO, Stout MB, Giorgadze N, 
Jensen MD, LeBrasseur NK, Tchkonia T, Kirkland JL. 
Targeting senescent cells enhances adipogenesis and 
metabolic function in old age. eLife. 2015; 4:e12997.  

 https://doi.org/10.7554/eLife.12997  
PMID:26687007 

76.  Rudolph J, Heine A, Quast T, Kolanus W, Trebicka J, 
Brossart P, Wolf D. The JAK inhibitor ruxolitinib impairs 
dendritic cell migration via off-target inhibition of 
ROCK. Leukemia. 2016; 30:2119–23.  

 https://doi.org/10.1038/leu.2016.155  
PMID:27220666  

77.  Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van 
Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS. 
Oncogene-induced senescence relayed by an 
interleukin-dependent inflammatory network. Cell. 
2008; 133:1019–31.  

 https://doi.org/10.1016/j.cell.2008.03.039 
PMID:18555778  

78.  Shaw S, Bourne T, Meier C, Carrington B, Gelinas R, 
Henry A, Popplewell A, Adams R, Baker T, Rapecki S, 
Marshall D, Moore A, Neale H, Lawson A. Discovery 
and characterization of olokizumab: a humanized 
antibody targeting interleukin-6 and neutralizing 
gp130-signaling. MAbs. 2014; 6:774–82.  

 https://doi.org/10.4161/mabs.28612  
PMID:24670876  

https://doi.org/10.1016/j.bbadis.2014.10.005
https://www.ncbi.nlm.nih.gov/pubmed/25315298
https://doi.org/10.1016/j.bcp.2015.06.013
https://www.ncbi.nlm.nih.gov/pubmed/26093063
https://doi.org/10.1111/acel.12075
https://www.ncbi.nlm.nih.gov/pubmed/23521863
https://doi.org/10.1016/j.cmet.2018.09.019
https://www.ncbi.nlm.nih.gov/pubmed/30318339
https://doi.org/10.1111/acel.12772
https://www.ncbi.nlm.nih.gov/pubmed/29740925
https://doi.org/10.1158/1078-0432.CCR-17-3167
https://www.ncbi.nlm.nih.gov/pubmed/29691295
https://doi.org/10.1074/jbc.M202489200
https://www.ncbi.nlm.nih.gov/pubmed/11994296
https://doi.org/10.1111/j.1474-9726.2012.00818.x
https://www.ncbi.nlm.nih.gov/pubmed/22404905
https://doi.org/10.1038/s41467-017-00314-z
https://www.ncbi.nlm.nih.gov/pubmed/28871086
https://doi.org/10.1038/ncb3225
https://www.ncbi.nlm.nih.gov/pubmed/26280535
https://doi.org/10.1242/jcs.133983
https://www.ncbi.nlm.nih.gov/pubmed/24155329
https://doi.org/10.7554/eLife.12997
https://www.ncbi.nlm.nih.gov/pubmed/26687007
https://doi.org/10.1038/leu.2016.155
https://www.ncbi.nlm.nih.gov/pubmed/27220666
https://doi.org/10.1016/j.cell.2008.03.039
https://www.ncbi.nlm.nih.gov/pubmed/18555778
https://doi.org/10.4161/mabs.28612
https://www.ncbi.nlm.nih.gov/pubmed/24670876


www.aging-us.com 12860 AGING 

79.  van Deursen JM. The role of senescent cells in ageing. 
Nature. 2014; 509:439–46.  

 https://doi.org/10.1038/nature13193  
PMID:24848057  

80.  Ovadya Y, Landsberger T, Leins H, Vadai E, Gal H, Biran 
A, Yosef R, Sagiv A, Agrawal A, Shapira A, Windheim J, 
Tsoory M, Schirmbeck R, et al. Impaired immune 
surveillance accelerates accumulation of senescent 
cells and aging. Nat Commun. 2018; 9:5435.  

 https://doi.org/10.1038/s41467-018-07825-3 
PMID:30575733 

81.  Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, 
Miething C, Yee H, Zender L, Lowe SW. Senescence of 
activated stellate cells limits liver fibrosis. Cell. 2008; 
134:657–67.  

 https://doi.org/10.1016/j.cell.2008.06.049 
PMID:18724938  

82. Yu S, Li A, Liu Q, Li T, Yuan X, Han X, Wu K. Chimeric 
antigen receptor T cells: a novel therapy for solid 
tumors. J Hematol Oncol. 2017; 10:78.  

 https://doi.org/10.1186/s13045-017-0444-9 
PMID:28356156  

83. Vicente R, Mausset-Bonnefont AL, Jorgensen C, Louis-
Plence P, Brondello JM. Cellular senescence impact on 
immune cell fate and function. Aging Cell. 2016; 
15:400–06.  

 https://doi.org/10.1111/acel.12455 PMID:26910559  

84.  Burton DG, Stolzing A. Cellular senescence: 
immunosurveillance and future immunotherapy. 
Ageing Res Rev. 2018; 43:17–25. 

 https://doi.org/10.1016/j.arr.2018.02.001 
PMID:29427795  

85.  Kim KM, Noh JH, Bodogai M, Martindale JL, Yang X, 
Indig FE, Basu SK, Ohnuma K, Morimoto C, Johnson PF, 
Biragyn A, Abdelmohsen K, Gorospe M. Identification 
of senescent cell surface targetable protein DPP4. 
Genes Dev. 2017; 31:1529–34.  

 https://doi.org/10.1101/gad.302570.117 
PMID:28877934  

86. Akbar AN. The convergence of senescence and 
nutrient sensing during lymphocyte ageing. Clin Exp 
Immunol. 2017; 187:4–5.  

 https://doi.org/10.1111/cei.12876 PMID:27690328  

87. Di Mitri D, Azevedo RI, Henson SM, Libri V, Riddell NE, 
Macaulay R, Kipling D, Soares MV, Battistini L, Akbar 
AN. Reversible senescence in human 
CD4+CD45RA+CD27- memory T cells. J Immunol. 2011; 
187:2093–100.  

 https://doi.org/10.4049/jimmunol.1100978 
PMID:21788446  

88.  Martin Caballero J, Garzón A, González-Cintado L, 
Kowalczyk W, Jimenez Torres I, Calderita G, Rodriguez 

M, Gondar V, Bernal JJ, Ardavín C, Andreu D, Zürcher T, 
von Kobbe C. Chimeric infectious bursal disease virus-
like particles as potent vaccines for eradication of 
established HPV-16 E7-dependent tumors. PLoS One. 
2012; 7:e52976.  

 https://doi.org/10.1371/journal.pone.0052976 
PMID:23300838  

89. Dyer MR, Renner WA, Bachmann MF. A second vaccine 
revolution for the new epidemics of the 21st century. 
Drug Discov Today. 2006; 11:1028–33.  

 https://doi.org/10.1016/j.drudis.2006.09.006 
PMID:17055413  

90.  Vetsika EK, Konsolakis G, Aggouraki D, Kotsakis A, 
Papadimitraki E, Christou S, Menez-Jamet J, 
Kosmatopoulos K, Georgoulias V, Mavroudis D. 
Immunological responses in cancer patients after 
vaccination with the therapeutic telomerase-specific 
vaccine Vx-001. Cancer Immunol Immunother. 2012; 
61:157–68.  

 https://doi.org/10.1007/s00262-011-1093-4 
PMID:21858533  

91.  Chou JP, Ramirez CM, Wu JE, Effros RB. Accelerated 
aging in HIV/AIDS: novel biomarkers of senescent 
human CD8+ T cells. PLoS One. 2013; 8:e64702.  

 https://doi.org/10.1371/journal.pone.0064702 
PMID:23717651  

92.  Evangelou K, Lougiakis N, Rizou SV, Kotsinas A, Kletsas 
D, Muñoz-Espín D, Kastrinakis NG, Pouli N, Marakos P, 
Townsend P, Serrano M, Bartek J, Gorgoulis VG. Robust, 
universal biomarker assay to detect senescent cells in 
biological specimens. Aging Cell. 2017; 16:192–97.  

 https://doi.org/10.1111/acel.12545  
PMID:28165661  

93.  Galbiati A, Beauséjour C, d’Adda di Fagagna F. A novel 
single-cell method provides direct evidence of 
persistent DNA damage in senescent cells and aged 
mammalian tissues. Aging Cell. 2017; 16:422–27.  

 https://doi.org/10.1111/acel.12573  
PMID:28124509  

94.  Freitag J, Berod L, Kamradt T, Sparwasser T. 
Immunometabolism and autoimmunity. Immunol Cell 
Biol. 2016; 94:925–34.  

 https://doi.org/10.1038/icb.2016.77  
PMID:27562063  

95.  Sun H, Wei S, Yang L. Dysfunction of immune system in 
the development of large granular lymphocyte 
leukemia. Hematology. 2019; 24:139–47.  

 https://doi.org/10.1080/10245332.2018.1535294 
PMID:30334691  

96.  Gonzalez LC, Ghadaouia S, Martinez A, Rodier F. 
Premature aging/senescence in cancer cells facing 
therapy: good or bad? Biogerontology. 2016; 17:71–87.  

https://doi.org/10.1038/nature13193
https://www.ncbi.nlm.nih.gov/pubmed/24848057
https://doi.org/10.1038/s41467-018-07825-3
https://www.ncbi.nlm.nih.gov/pubmed/30575733
https://doi.org/10.1016/j.cell.2008.06.049
https://www.ncbi.nlm.nih.gov/pubmed/18724938
https://doi.org/10.1186/s13045-017-0444-9
https://www.ncbi.nlm.nih.gov/pubmed/28356156
https://doi.org/10.1111/acel.12455
https://www.ncbi.nlm.nih.gov/pubmed/26910559
https://doi.org/10.1016/j.arr.2018.02.001
https://www.ncbi.nlm.nih.gov/pubmed/29427795
https://doi.org/10.1101/gad.302570.117
https://www.ncbi.nlm.nih.gov/pubmed/28877934
https://doi.org/10.1111/cei.12876
https://www.ncbi.nlm.nih.gov/pubmed/27690328
https://doi.org/10.4049/jimmunol.1100978
https://www.ncbi.nlm.nih.gov/pubmed/21788446
https://doi.org/10.1371/journal.pone.0052976
https://www.ncbi.nlm.nih.gov/pubmed/23300838
https://doi.org/10.1016/j.drudis.2006.09.006
https://www.ncbi.nlm.nih.gov/pubmed/17055413
https://doi.org/10.1007/s00262-011-1093-4
https://www.ncbi.nlm.nih.gov/pubmed/21858533
https://doi.org/10.1371/journal.pone.0064702
https://www.ncbi.nlm.nih.gov/pubmed/23717651
https://doi.org/10.1111/acel.12545
https://www.ncbi.nlm.nih.gov/pubmed/28165661
https://doi.org/10.1111/acel.12573
https://www.ncbi.nlm.nih.gov/pubmed/28124509
https://doi.org/10.1038/icb.2016.77
https://www.ncbi.nlm.nih.gov/pubmed/27562063
https://doi.org/10.1080/10245332.2018.1535294
https://www.ncbi.nlm.nih.gov/pubmed/30334691


www.aging-us.com 12861 AGING 

 https://doi.org/10.1007/s10522-015-9593-9 
PMID:26330289  

97.  Ruscetti M, Leibold J, Bott MJ, Fennell M, Kulick A, 
Salgado NR, Chen CC, Ho YJ, Sanchez-Rivera FJ, 
Feucht J, Baslan T, Tian S, Chen HA, et al. NK cell-
mediated cytotoxicity contributes to tumor control 
by a cytostatic drug combination. Science. 2018; 
362:1416–22. 

 https://doi.org/10.1126/science.aas9090 
PMID:30573629 

98.  Sieben CJ, Sturmlechner I, van de Sluis B, van Deursen 
JM. Two-Step Senescence-Focused Cancer Therapies. 
Trends Cell Biol. 2018; 28:723–37.  

 https://doi.org/10.1016/j.tcb.2018.04.006 
PMID:29776716  

99.  Saleh T, Tyutyunyk-Massey L, Murray GF, Alotaibi MR, 
Kawale AS, Elsayed Z, Henderson SC, Yakovlev V, 
Elmore LW, Toor A, Harada H, Reed J, Landry JW, 
Gewirtz DA. Tumor cell escape from therapy-induced 
senescence. Biochem Pharmacol. 2019; 162:202-12. 

 https://doi.org/10.1016/j.bcp.2018.12.013 
PMID:30576620 

100.  Saleh T, Tyutyunyk-Massey L, Gewirtz DA. Tumor Cell 
Escape from Therapy-Induced Senescence as a Model 
of Disease Recurrence after Dormancy. Cancer Res. 
2019; 79:1044–46.  

  https://doi.org/10.1158/0008-5472.CAN-18-3437 
PMID:30803994  

101.  Hecker L, Logsdon NJ, Kurundkar D, Kurundkar A, 
Bernard K, Hock T, Meldrum E, Sanders YY, Thannickal 
VJ. Reversal of persistent fibrosis in aging by targeting 
Nox4-Nrf2 redox imbalance. Sci Transl Med. 2014; 
6:231ra47.  

  https://doi.org/10.1126/scitranslmed.3008182 
PMID:24718857  

102.  Gurău F, Baldoni S, Prattichizzo F, Espinosa E, Amenta 
F, Procopio AD, Albertini MC, Bonafè M, Olivieri F. 
Anti-senescence compounds: A potential 
nutraceutical approach to healthy aging. Ageing Res 
Rev. 2018; 46:14–31.  

  https://doi.org/10.1016/j.arr.2018.05.001 
PMID:29742452  

103.  Department of Economic and Social Affairs (DESA). 
World population ageing. New York: United Nations; 
2015. 

104.  Schafer MJ, White TA, Iijima K, Haak AJ, Ligresti G, 
Atkinson EJ, Oberg AL, Birch J, Salmonowicz H, Zhu Y, 
Mazula DL, Brooks RW, Fuhrmann-Stroissnigg H, et al. 
Cellular senescence mediates fibrotic pulmonary 
disease. Nat Commun. 2017; 8:14532.  

  https://doi.org/10.1038/ncomms14532 
PMID:28230051  

105.  Fu Q, Qin Z, Yu J, Yu Y, Tang Q, Lyu D, Zhang L, Chen Z, 
Yao K. Effects of senescent lens epithelial cells on the 
severity of age-related cortical cataract in humans: A 
case-control study. Medicine (Baltimore). 2016; 
95:e3869.  

  https://doi.org/10.1097/MD.0000000000003869 
PMID:27336873  

106.  Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson 
CL, Lahat A, Day CP, Burt A, Palmer A, Anstee QM, 
Grellscheid SN, Hoeijmakers JH, Barnhoorn S, et al. 
Cellular senescence drives age-dependent hepatic 
steatosis. Nat Commun. 2017; 8:15691.  

  https://doi.org/10.1038/ncomms15691 
PMID:28608850  

107.  Yokoyama M, Okada S, Nakagomi A, Moriya J, Shimizu 
I, Nojima A, Yoshida Y, Ichimiya H, Kamimura N, 
Kobayashi Y, Ohta S, Fruttiger M, Lozano G, Minamino 
T. Inhibition of endothelial p53 improves metabolic 
abnormalities related to dietary obesity. Cell Rep. 
2014; 7:1691–703.  

  https://doi.org/10.1016/j.celrep.2014.04.046 
PMID:24857662  

108.  Ovadya Y, Krizhanovsky V. Strategies targeting cellular 
senescence. J Clin Invest. 2018; 128:1247–54.  

  https://doi.org/10.1172/JCI95149  
PMID:29608140  

109.  Spector A. Oxidative stress-induced cataract: 
mechanism of action. FASEB J. 1995; 9:1173–82.  

  https://doi.org/10.1096/fasebj.9.12.7672510 
PMID:7672510  

110.  Laberge RM, Sun Y, Orjalo AV, Patil CK, Freund A, Zhou 
L, Curran SC, Davalos AR, Wilson-Edell KA, Liu S, 
Limbad C, Demaria M, Li P, Hubbard GB, Ikeno Y, 
Javors M, Desprez PY, Benz CC, Kapahi P, Nelson PS, 
Campisi J. MTOR regulates the pro-tumorigenic 
senescence-associated secretory phenotype by 
promoting IL1A translation. Nat Cell Biol. 2015; 
17:1049-61. https://doi.org/10.1038/ncb3195 

          PMID:26147250  

 

https://doi.org/10.1007/s10522-015-9593-9
https://www.ncbi.nlm.nih.gov/pubmed/26330289
https://doi.org/10.1126/science.aas9090
https://www.ncbi.nlm.nih.gov/pubmed/30573629
https://doi.org/10.1016/j.tcb.2018.04.006
https://www.ncbi.nlm.nih.gov/pubmed/29776716
https://doi.org/10.1016/j.bcp.2018.12.013
https://www.ncbi.nlm.nih.gov/pubmed/30576620
https://doi.org/10.1158/0008-5472.CAN-18-3437
https://www.ncbi.nlm.nih.gov/pubmed/30803994
https://doi.org/10.1126/scitranslmed.3008182
https://www.ncbi.nlm.nih.gov/pubmed/24718857
https://doi.org/10.1016/j.arr.2018.05.001
https://www.ncbi.nlm.nih.gov/pubmed/29742452
https://doi.org/10.1038/ncomms14532
https://www.ncbi.nlm.nih.gov/pubmed/28230051
https://doi.org/10.1097/MD.0000000000003869
https://www.ncbi.nlm.nih.gov/pubmed/27336873
https://doi.org/10.1038/ncomms15691
https://www.ncbi.nlm.nih.gov/pubmed/28608850
https://doi.org/10.1016/j.celrep.2014.04.046
https://www.ncbi.nlm.nih.gov/pubmed/24857662
https://doi.org/10.1172/JCI95149
https://www.ncbi.nlm.nih.gov/pubmed/29608140
https://doi.org/10.1096/fasebj.9.12.7672510
https://www.ncbi.nlm.nih.gov/pubmed/7672510
https://doi.org/10.1038/ncb3195

