
www.aging-us.com 718 AGING 

INTRODUCTION 
 
Parkinson’s disease (PD) is the second most common 
neurodegenerative disorder after Alzheimer’s disease, 
and affects approximately 7 million people—mostly 
elderly—worldwide [1]. PD is characterized by motor 
symptoms, massive and selective loss of dopaminergic 
neurons in the substantia nigra (SN), and a decrease in 
striatal dopamine concentration [2] and is caused by 
genetic and non-genetic factors [3, 4]. Dopamine 
replacement therapy with the dopamine precursor. 

Levodopa (L-DOPA) is the most effective symptomatic 
treatment for PD. Although L-DOPA can significantly 
improve PD symptoms, long-term use typically leads to 
the gradual development of hyperkinetic involuntary 
movements known as L-DOPA-induced dyskinesia 
(LID), which manifests as nonrhythmic, nondirected 
involuntary movements that are unpredictable in onset 
and severity. LID is observed in nearly 90% of PD 
patients within approximately 10 years of initiating L-
DOPA therapy [5]. To date, the molecular basis for LID 
are not fully understood; clarifying the molecular 
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ABSTRACT 
 
Levodopa-induced dyskinesia (LID) is a common complication of chronic dopamine replacement therapy in the 
treatment of Parkinson’s disease (PD). Long noncoding RNAs regulate gene expression and participate in many 
biological processes. However, the role of long noncoding RNAs in LID is not well understood. In the present 
study, we examined the lncRNA transcriptome profile of a rat model of PD and LID by RNA sequence and got a 
subset of lncRNAs, which were gradually decreased during the development of PD and LID. We further 
identified a previously uncharacterized long noncoding RNA, NONRATT023402.2, and its target genes 
glutathione S-transferase omega (Gsto)2 and prostaglandin E receptor (Ptger)3. All of them were decreased in 
the PD and LID rats as shown by quantitative real-time PCR, fluorescence in situ hybridization and western 
blotting. Pearson’s correlation analysis showed that their expression was positively correlated with the 
dyskinesia score of LID rats. In vitro experiments by small interfering RNA confirmed that slicing 
NONRATT023402 inhibited Gsto2 and Ptger3 and promoted the inflammatory response. These results 
demonstrate that NONRATT023402.2 may have inhibitive effects on the development of PD and LID. 
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mechanisms is essential to identifying new therapeutic 
targets for its treatment [6, 7]. 
 
Long noncoding (lnc)RNAs are a type of ncRNA longer 
than 200 nucleotides [8] that regulate gene expression at 
the transcriptional, posttranscriptional, and epigenetic 
levels [9, 10]. LncRNAs containing micro (mi)RNA 
response elements can act as competing endogenous 
(ce)RNAs with mRNAs for shared target miRNAs [11]. 
LncRNAs play important roles in central nervous system 
development, neuronal function and maintenance, and 
neurodegenerative diseases including PD, and many 
studies employing high-throughput methods have 
demonstrated the dysregulation of lncRNAs in the brain 
[12, 13] and peripheral blood [14] of PD patients and in 
rodent [15] and cell [16, 17] models of PD. In fact, 
several special lncRNAs such as HAGLR opposite 
strand lncRNA [18], nuclear enriched abundant 
transcript 1 [19], antisense to Uchl1 [20], MAPT 
antisense RNA 1 [21], and metastasis-associated lung 
adenocarcinoma transcript 1 [22] have been implicated 
in the pathogenesis of PD. 
 
Few studies to have have investigated the function of 
lncRNAs in LID pathogenesis. To address this point, in 
the present study we investigated the lncRNA profile of 
LID in a rat model. 
 
RESULTS 
 
Validation of the rat models of PD and LID 
 
Rats were evaluated for a Parkinson-like phenotype  
3 weeks after lesioning and animals with marked motor 
coordination deficits were selected for experiments 
(Figure 1A). All of the PD model rats showed more than 
seven contralateral turns per minute in the apomorphine-
induced turning test 3 weeks after 6-Hydroxydopamine 
(6-OHDA) injection. Dyskinesia was quantified using a 
validated rating scale for abnormal involuntary 
movements (AIMs) [23]. Rats showing a high degree of 
LID with the average AIMs score more than 4 after 
chronic L-DOPA administration for 3 weeks were 
assigned to the LID group, whereas those with no 
apparent dyskinesia and the average AIMs score no 
more than 4 constituted the non-LID (NLID) group 
(Figure 1A and 1B). PD and non-PD rats treated with 
saline did not develop dyskinesia. 
 
Immunohistochemical detection of tyrosine hydroxylase 
(TH), a marker of dopaminergic neurons [24], showed 
that striatal 6-OHDA injections resulted in a dramatic 
loss of dopaminergic neuron in the SN and dopaminergic 
neuron degeneration in the striatum of PD, LID, and 
NLID rats on the side ipsilateral to the injection site 
(Figure 1C). Western blot analysis of TH levels 

confirmed the results of TH immunohistochemistry:  
the protein level of TH in the striatum of PD, LID,  
and NLID rats was reduced relative to that in the  
sham-treated control group (Figure 1D). However,  
there was a slight increase in TH levels in the  
striatum of LID and NLID rats that were administered  
L-DOPA for 3 weeks compared with PD rats (Figure 1D), 
suggesting that L-DOPA prevents the loss of 
dopaminergic neurons. 
 
Previous studies have shown that immediate-early genes 
(IEGs) such as c-Fos, FosB, and ΔFosB, are hallmarks 
of LID [7, 25], while extracellular signal-regulated 
kinase (ERK)1/2 signaling has been shown to be 
hyperactivated in LID models and patients [26, 27]. In 
this study, we confirmed that the rat model of LID was 
successfully established by assessing the expression of 
c-Fos and ERK1/2 in the striatum of LID rats.  
As expected, c-Fos protein (Figure 1D) and mRNA 
(Figure 1E) levels were decreased in PD rats compared 
with sham controls, but were increased in LID and 
NLID groups relative to PD model rats. The same trend 
was observed for phosphorylated (p-) ERK1/2 (Figure 
1D), consistent with previous studies [28, 29]. These 
results indicate that PD and LID models were 
successfully established. 
 
lncRNA expression profiles of PD and LID rats 
 
The lncRNAs and mRNAs that were differently 
expressed in PD and LID rats were screened by high-
throughput RNA sequencing to determine the global 
lncRNA and mRNA landscape following 6-OHDA 
lesioning and L-DOPA administration. We summarized 
mRNA and lncRNA expression with 26 model profiles. 
Among the 26 expression profiles, six for mRNAs 
(Figure 2A) and three for lncRNAs (Figure 2B) showed 
significant P values (P < 0.05). Of these, Profile 3 
contained 135 mRNAs (Table 1) and 79 lncRNAs 
(Table 2) that were decreased in PD rats compared to 
sham controls and further decreased in LID rats 
compared to NLID rats, indicating that these mRNAs 
and lncRNAs in profile 3 were closely related to PD and 
LID pathogenesis. Gene co-expression networks 
(Supplementary Figure 1A) and ceRNA networks 
(Figure 2C) were constructed to cluster the 79 lncRNAs 
and 135 coding mRNAs of profile 3, to determine the 
regulatory relationship between lncRNAs and mRNAs. 
Gene Ontology (GO) enrichment analysis of the 
potential target protein-coding genes of lncRNAs in 
profile 3 revealed biological processes that were 
enriched in oxidoreductase activity (GO terms: 
Oxidoreductase activity acting on CH-OH group of 
donors, Oxidoreductase activity acting on CH-OH 
group of donors, NAD or NADP as acceptor,  
and Oxidoreductase activity acting on NADPH), 
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Figure 1. Validation of the rat model of PD and LID. (A) Experimental timeline showing 6-OHDA lesioning, L-DOPA administration, 
behavioral testing, and animal grouping. (B) Time course of the manifestation of AIMs scored every 3 days over a period of 21 days after the 
final L-DOPA administration (n = 15). (C) Representative photomicrographs of TH immunohistochemical staining in coronal brain sections of 
the striatum and SN of rats subjected to 6-OHDA injection into the right striatum (PD) with (LID) or without (NLID) L-DOPA administration. 
Magnified images correspond to labeled boxes in the upper panels (n = 3). (D) Quantification of TH expression in the striatum and SN and of 
c-FOS, p-ERK, and ERK expression in the striatum of PD and LID rats and their corresponding control groups (n = 3–5). The signal intensity of 
protein bands was normalized to that of GAPDH. (E) qRT-PCR detection of c-Fos expression in the striatum of PD and LID rats and their 
corresponding controls. Data are shown as mean ± SEM (n = 6). **P < 0.01, ***P < 0.001 vs. sham group; #P < 0.05, ##P < 0.01, ###P < 0.001 
vs. PD group. 
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Figure 2. LncRNA and mRNA expression signatures of PD and LID rats. (A, B) Dynamic expression analyses of differentially expressed 
coding (A) and non-coding (B) genes. Differential expression patterns were determined based on 26 model profiles; each box represents a 
model expression profile, with the model profile number and P value shown in the box. Expression profiles with significant differences  
(P < 0.05) are indicated in red or green. (C, D) Profile 3 of mRNAs (C) and lncRNAs (D) in dotted boxes are shown in detail to the right. The 
horizontal axis shows the four groups (Sham, PD, NLID, and LID) and the vertical axis shows gene expression level. Each curve represents a 
single gene. (E) ceRNA network of lncRNAs with mRNAs in profile 3. LncRNAs, mRNAs, and miRNAs are represented by red squares, green 
circles, and blue triangles, respectively. 
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Table 1. mRNAs in profile 3 of the gene expression analysis. 

Profile 3 
AABR07005593.1 Ccdc184 Hist3h3 Mms22l Slc17a7 
AABR07013843.1 Ccdc33 Hrct1 Myb Slc28a3 
AABR07016578.1 Ccdc74a Hs3st5 Mypn Slc29a1 
AABR07016845.1 Cd164l2 Hsd17b3 Nr2e3 Slc6a12 
AABR07018064.1 Cep55 Il2rb Otx1 Smoc2 
AABR07027811.4 Cfap44 Ildr2 Oxtr Spag8 
AABR07048271.1 Cldn15 Itgb4 Pcbd1 Spata18 
AC096809.1 Cpne4 Kcnh2 Pcdh12 Spats1 
AC097129.1 Cxcr5 Kcnk12 Pla2g2c Spred3 
AC123253.2 Dlec1 Kcnk4 Plagl1 Sprn 
Adamts18 Dlx2 Kcp Plch1 Srrm4 
Adgb Dnai1 Kif2c Plekha7 Synpo2l 
Adra2a E2f1 Klhdc7a Prlhr T2 
Akr1b8 Etv5 Lhb Prss56 Tcte1 
Anxa8 Fam64a LOC100361018 Ptger3 Tgm2 
Apcdd1l Fbxo47 LOC499781 Rab38 Tmem37 
Arl5c Ggnbp1 LOC502684 Reep6 Tox2 
Armc3 Glis1 LOC684762 RGD1562029 Trpv2 
Atp2a3 Gsto2 LOC686662 Rgs6 Tsnaxip1 
Bard1 Hcrt LOC688553 Rnf182 Tspo 
Barhl1 Hes1 Lrfn1 Rspo3 Ttc16 
Batf Hes7 Lrp2 Rxfp2 Ttll6 
Bdnf Hist1h2ac Lrrc36 Scd4 Vsx1 
Bub1b Hist1h2ac Map3k19 Sec14l4 Vwa3b 
Capsl Hist1h2ao Mfsd4 Sfrp2 Vwa5b1 
Cbln2 Hist1h2bl MGC116202 Shc3 Xkr7 
Ccdc108 Hist1h2bo Mmp14 Sidt1 Zic5 

 

inflammatory response (GO terms: Regulation of 
interleukin-1 production, Positive regulation of tumor 
necrosis factor production, Chemokine receptor binding, 
Leukocyte-mediated cytotoxicity), neurotransmission 
(GO terms: Regulation of neurotransmitter secretion), 
and apoptosis (GO terms: Intrinsic apoptotic signaling 
pathway in response to endoplasmic reticulum stress and 
Activation of cysteine-type endopeptidase activity 
involved in apoptotic process), suggesting that the 
dysregulated lncRNAs are involved in these biological 
process (Supplementary Figure 1B). 
 
Expression pattern of lncRNA NONRATT023402.2 
and potential target genes 
 
Ten lncRNAs in profile 3 were selected for validation 
according to the results of the gene co-expression 
network (Supplementary Figure 1A), ceRNA network 
(Figure 2C), and lncRNA target prediction. Their 
expressions in the striatum were analyzed by 
quantitative real-time (qRT-) PCR. Eight of the ten 
lncRNAs showed the same general expression trends as 

in profile 3, with the lncRNA NONRATT023402.2 
being the most decreased (Figure 3A). The ceRNA 
network analysis showed that NONRATT023402.2 had 
multiple target genes (Supplementary Table 1), and a 
homology analysis showed that NONRATT023402.2 
was highly conserved across human, mouse, and rats 
(Supplementary Table 2). We therefore focused on 
NONRATT023402.2 in subsequent experiments. The 
expression of lncRNA NONRATT023402.2 was 
decreased in PD rats compared to the sham group, and 
was further decreased in LID rats compared to NLID 
rats, but the differences in expression level between  
PD and NLID rats was not statistically significant 
(Figure 3B). A correlation analysis showed that 
NONRATT023402.2 level in the striatum was 
negatively correlated with the AIM score of LID rats 
(Figure 3B), indicating that the downregulation of 
NONRATT023402.2 in the striatum is associated with 
the development of PD and LID. Given that the SN and 
the primary motor cortex (M1) [30] as well as the 
contralateral striatum are also implicated in these 
disorders, NONRATT023402.2 expression in these areas 



www.aging-us.com 723 AGING 

Table 2. LncRNAs in profile 3 of the gene expression analysis. 

Profile 3 
NONRATT000216.2 NONRATT009993.2 NONRATT024024.2 
NONRATT001131.2 NONRATT011596.2 NONRATT024046.2 
NONRATT001180.2 NONRATT012417.2 NONRATT024214.2 
NONRATT001358.2 NONRATT012674.2 NONRATT024557.2 
NONRATT001421.2 NONRATT012936.2 NONRATT024630.2 
NONRATT002729.2 NONRATT013263.2 NONRATT025429.2 
NONRATT003319.2 NONRATT014106.2 NONRATT025956.2 
NONRATT004126.2 NONRATT014204.2 NONRATT026386.2 
NONRATT004376.2 NONRATT014224.2 NONRATT026498.2 
NONRATT004419.2 NONRATT014766.2 NONRATT026518.2 
NONRATT004747.2 NONRATT014929.2 NONRATT027617.2 
NONRATT005391.2 NONRATT015102.2 NONRATT027997.2 
NONRATT005891.2 NONRATT017193.2 NONRATT028621.2 
NONRATT005964.2 NONRATT017209.2 NONRATT029228.2 
NONRATT006053.2 NONRATT017794.2 NONRATT030267.2 
NONRATT006238.2 NONRATT017951.2 ENSRNOT00000087777 
NONRATT006431.2 NONRATT018250.2 MSTRG.15278.3 
NONRATT007085.2 NONRATT018531.2 MSTRG.16299.3 
NONRATT007290.2 NONRATT018736.2 MSTRG.17073.1 
NONRATT007459.2 NONRATT019793.2 MSTRG.23728.9 
NONRATT007516.2 NONRATT020448.2 MSTRG.23943.1 
NONRATT007517.2 NONRATT020991.2 MSTRG.26499.20 
NONRATT007641.2 NONRATT021380.2 MSTRG.38968.2 
NONRATT007657.2 NONRATT021598.2 MSTRG.39805.1 
NONRATT009240.2 NONRATT022815.2 MSTRG.40651.2 
NONRATT009407.2 NONRATT023402.2  
NONRATT009800.2 NONRATT023886.2  

 

was also evaluated by qRT-PCR. The levels in the SN 
and M1 areas were similar to that in the ipsilateral 
striatum, but the opposite trend was observed in the 
contralateral striatum (Figure 3C). Fluorescence in  
situ hybridization (FISH) analysis showed that 
NONRATT023402.2 was mainly localized in the 
cytoplasm of neurons (Figure 3D). 
 
The ceRNA analysis identified 37 potential target 
protein-coding genes of NONRATT023402 
(Supplementary Table 1). Five of these including 
glutathione S-transferase omega (Gsto)2, prostaglandin 
E receptor (Ptger)3, potassium voltage-gated channel 
subfamily H member 2 (Kcnh2), Map3k19, and solute 
carrier 28 family 28 member (Slc28) a3 were selected 
for qRT-PCR validation. Gsto2 and Ptger3 levels were 
altered in PD and LID rats (Figure 4A and 
Supplementary Figure 2)—i.e., they were decreased in 
PD rats after 6-OHDA administration and further 
reduced in LID rats, but these trends were reversed in 
NLID rats after L-DOPA administration (Figure 4A). 

The correlation analysis showed that both genes were 
negatively correlated with NONRATT023402.2 (Figure 
4B) and with the AIM score of LID rats (Figure 4C). 
The protein levels of GSTO2 and PTGER3 were also 
quantitated by western blotting, which yielded results 
that were consistent with the mRNA expression (Figure 
4D). These results indicate that downregulation of 
NONRATT023402.2 may contribute to the occurrence 
of PD and LID through positive regulation of Gsto2 and 
Ptger3. 
 
To determine the cellular localization of GSTO2 and 
PTGER3 proteins, we performed double 
immunofluorescence labeling of rat brain sections. 
GSTO2 was expressed in neurons and to a greater extent 
in astrocytes (Figure 5). Consistent with the results of 
qRT-PCR and western blot analyses, GSTO2 protein 
levels in both neurons and astrocytes were reduced after 
6-OHDA lesioning and L-DOPA administration (Figure 
5A). Immunofluorescence analysis revealed that GSTO2 
was also expressed in astrocytes in the corpus 
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Figure 3. Expression profiles of the lncRNA NONRATT023402.2. (A) Validation of RNA sequencing results by qRT-PCR-based 
quantification of 10 lncRNAs from profile 3 (n = 3). (B) (Up) NONRATT023402.2 expression in the striatum of PD and LID rats and their 
corresponding control groups detected by qRT-PCR (n = 6–11). (Down) Pearson’s correlation coefficient between NONRATT023402.2 
expression in the striatum of LID rats and AIM score (n = 11). (C) qRT-PCR analysis of NONRATT023402.2 levels in the SN, M1, and 
contralateral striatum of PD and LID rats and their corresponding controls (n = 6–11). (D) FISH labeling of NONRATT023402.2 in the striatum 
of rats. Arrows and asterisks indicate neurons and astrocytes, respectively. Data represent mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001. 
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Figure 4. Expression profiles of the potential target genes of lncRNA NONRATT023402.2. (A) Gsto2 and Ptger3 expression 
determined by qRT-PCR in the striatum of PD and LID rats and their corresponding controls (n = 6–11). (B) Correlation between 
NONRATT023402.2 and Gsto2 or Ptger3 expression levels in the striatum of PD and LID rats and their corresponding controls (n = 11).  
(C) Correlation between Gsto2 or Ptger3 expression in the striatum of LID rats and AIM score (n = 11). (D). GSTO2 and PTGER3 protein levels 
in the striatum of PD and LID rats and their corresponding controls (n = 3), as determined by western blotting. The intensity of protein bands 
was quantified by densitometry and normalized to that of GAPDH. Data represent mean ± SEM. **P < 0.01, ***P < 0.001. 
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Figure 5. Decreased expression of GSTO2 in neurons and astrocytes of the brain in PD and LID rats. (A, B) Double 
immunofluorescence labeling of GSTO2 and neuron or astrocyte markers in the striatum (A) and corpus callosum (cc) (B) of PD and LID rats 
and their corresponding controls (n = 3). A single cell is shown in the insets. Arrows and asterisks indicate neurons and astrocytes, 
respectively, expressing GSTO2. 
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callosum (cc) (Figure 5B). In contrast, PTGER3 was 
expressed only in neurons but showed the same 
decreasing trends, as determined by qRT-PCR and 
western blotting (Supplementary Figure 3). Thus, 
downregulation of NONRATT023402.2 contributes to 
the occurrence of PD and LID by regulating GSTO2 
expression in neurons and astrocytes in the brain. 
 
Slicing lncRNA NONRATT023402.2 inhibits Gsto2 
and Ptger3, and promotes inflammatory response in 
vitro 
 
To confirm the relationship between NONRATT 
023402.2 and its potential target genes Gsto2 and 
Ptger3, PC12 cells were transfected with a small 
interfering (si)RNA targeting NONRATT023402. The 
qRT-PCR analysis showed that the siRNA inhibited  
the expression of NONRATT023402.2 as well as the 
mRNA level of Gsto2 (Figure 6A and 6B) and protein 
levels of GSTO2 and PTGER3 (Figure 6C and 6D). We 
also examined the protein levels of the inflammatory 
factors IL-1β, IL-6, TNF-α and LID biomarkers. The 
results showed that NONRATT023402.2 knockdown 
promoted the expression of proinflammatory factors and 
inhibited the expression of c-FOS and the 
phosphorylation of ERK1/2, indicating that NONRATT 
023402.2 participates in the development of LID via 
Gsto2 and Ptger3 (Figure 6C and 6D). These results 
indicate that NONRATT023402.2 may participate the 
genesis of PD and LID through activating the expression 
of Gsto2 and Ptger3 genes and inhibiting the 
inflammatory response. 
 
DISCUSSION 
 
In this study we examined lncRNA expression profiles 
in well-established rodent PD and LID models to 
identify lncRNAs that were dysregulated in these two 
disorders. We found that several lncRNAs including 
NONRATT023402 were decreased with the progression 
of PD and LID. We also identified target genes of 
NONRATT023402, Gsto2 and Ptger3, that are 
presumably involved in the progression of PD and LID. 
In vitro studies using PC12 cells confirmed the 
regulatory relationship between NONRATT023402 and 
Gsto2 and Ptger3. 
 
6-OHDA is widely used to establish animal PD/LID 
models [31, 32], as it causes the degeneration of 
dopaminergic neurons in the ipsilateral striatum and SN, 
which is consistent with the pathologic changes observed 
in the brain of PD patients. The results of the western blot 
and immunohistochemical analyses also revealed 
significant pathologic changes in the striatum and SN, 
indicating the successful establishment of the PD and 
LID models. Three weeks of L-DOPA treatment resulted 

in AIM but prevented dopaminergic neuron degeneration, 
as evidenced by the high TH protein levels in LID and 
NLID rats. This is expected, as L-DOPA treatment was 
shown to have neuroprotective effects on dopaminergic 
neurons of in animal models of PD [28, 33–35]. 
 
IEGs are genes that are transiently and rapidly activated 
in response to a wide variety of stimuli, with about 40 
identified to date. IEGs such as c-Fos, FosB, and ΔFosB 
[36–38], were shown to be increased in the striatum of 
LID animals [7], which was positively correlated with 
dyskinesia severity in a primate model of PD [25]. ERK 
signaling, which acts upstream of IEGs, is activated in 
LID [39, 40]; ERK1/2 phosphorylation was positively 
correlated with increased ΔFosB level and with the 
degree of dyskinesia in mice [26], whereas ERK 
inhibition reduced LID incidence and severity [27]. In 
order to validate our LID model, in this study we  
not only determined the AIM score but also  
examined protein and mRNA levels of c-Fos and 
ERK1/2 and found that they were reactivated in LID  
rats compared to PD rats, consistent with previous 
reports [36–40]. 
 
We compared the lncRNA and mRNA expression 
profiles of PD and LID rats and identified numerous 
dysregulated lncRNAs and mRNAs, demonstrating that 
both coding and noncoding genes are affected in these 
disorders [12–17]. A subset of lncRNAs and mRNAs 
showed the same trends during PD LID development—
ie, they were decreased under 6-OHDA-induced PD and 
further decreased under L-DOPA-induced LID, with no 
changes in expression observed in NLID and PD rats. 
The expression patterns these genes suggested an 
association with the development of PD and LID.  
We performed target gene prediction for lncRNAs in 
profile 3 revealed mRNAs with functions related  
to oxidoreductase activity, inflammatory response, 
neurotransmission, and apoptosis, which were previously 
shown to be abnormal in PD and LID [41, 42]. 
 
NONRATT023402.2 is a novel lncRNA located on 
chromosome 5 with a length of 1290 bp. While highly 
conserved genes tend to have important functions in the 
maintenance of normal biological function in organisms, 
lncRNAs lack evolutionary conservation unlike coding 
genes, miRNAs, and circRNAs [43, 44]. Our homology 
analysis showed that the lncRNA NONRATT023402.2 
is highly conserved across human, mouse, and rat, 
suggesting that is has an important effect in basic 
biological processes. LID involves many brain areas 
including the striatum, SN, and M1 [45]. We found here 
that NONRATT023402.2 expression was perturbed in 
various brain areas of PD/LID rats. However, the 
opposite trend was observed in the contralateral striatum, 
indicating a potential compensatory response. The 
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Figure 6. Slicing lncRNA NONRATT023402.2 inhibited Gsto2 and Ptger3, and promoted inflammatory response in vitro.  
(A, B) qRT-PCR detection of NONRATT023402.2 and Gsto2 levels in rat PC12 cells transfected with NONRATT023402.2 siRNA (n = 3).  
(C, D) Protein levels of GSTO2, PTGER3, c-FOS, p-EERK, ERK, IL-1β, IL-6 and TNF-α in PC12 cells transfected with NONRATT023402.2 siRNA  
(n = 3), as determined by western blotting. The signal intensity of protein bands was quantified by densitometry and normalized to that of 
GAPDH. (E) Schematic representation of the regulatory mechanism of NONRATT023402.2 in PD and LID. Downregulation of 
NONRATT023402.2 leads to the decline of GSTO2 and PTGER3, possibly through a ceRNA-type mechanism. The decrease in GSTO2 results 
in increased oxidative stress in neurons and astrocytes, whereas the decrease in PTGER3 promotes inflammation in neurons; these 
ultimately contribute to the development of PD/LID. Data represent mean ± SEM. *P < 0.05, **P < 0.01 vs. control group; #P < 0.05,  
##P < 0.01 vs. negative control (NC) group. 
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FISH analysis showed that NONRATT023402.2 was 
expressed in neurons throughout the brain, suggesting 
that it functions in the maintenance of these cells. 
Meanwhile, its localization in the cytoplasm indicated 
that it might act as a ceRNA manner. Although we did 
not carry out in vivo experiments to investigate the 
function of NONRATT023402.2, a preliminary 
correlation analysis showed a negative correlation 
between the expression of NONRATT023402.2 and its 
target genes and dyskinesia score, highlighting the 
importance of NONRATT023402.2 in LID. 
 
GSTO2 is an omega class glutathione S-transferase, 
which is a type of detoxifying enzyme in antioxidant 
systems that catalyzes the conjugation of reduced 
glutathione with various electrophiles and thereby 
eliminates both exogenous and endogenous toxic 
compounds [46, 47]. Gsto gene polymorphisms have 
been linked to PD risk and age at onset [48]. The protein 
encoded by Ptger3, EP3, is a G protein-coupled receptor 
and one of four known PGE2 receptors. EP3 has many 
biological functions associated with digestion, nervous 
system function, kidney reabsorption, and uterine 
contraction. Ptger3 is abundantly expressed in the skin 
and PGE2-PTGER3 signaling has an anti-inflammatory 
function in allergic inflammation of the skin [49]. 
Additionally, PTGER3 signaling was shown to have 
inflammatory, amyloidogenic, and synaptotoxic effects in 
a mouse model of Alzheimer disease [50]. Thus, GSTO2 
is associated with oxidative stress whereas PTGER3 is 
mainly involved in inflammation. In this study, the 
protein levels of GSTO2 in both neurons and astrocytes 
were decreased in PD and LID rats, whereas PTGER3 
was expressed only in neurons and was decreased in the 
PD and LID model. Our in vitro results confirmed that 
Gsto2 and Ptger3 are activated by NONRATT023402.2. 
The degeneration of dopaminergic neurons in PD is 
related to mitochondrial dysfunction, inflammation, and 
oxidative stress whereas inflammation is observed in LID 
[51]. Astrocytes confer neuroprotection through the 
release of trophic factors and antioxidant molecules [52]. 
Therefore, the biological functions of GSTO2 and 
PTGER3 in the development of PD and LID warrant 
further study. 
 
Based on our observations, we speculate that 
downregulation of the lncRNA NONRATT023402.2 in 
PD and LID leads to decreased GSTO2 and PTGER3 
expression, which could constitute a ceRNA network. 
The decreases in GSTO2 and PTGER3 levels may 
reduce oxidative stress in neurons and astrocytes and 
inflammation in neurons, respectively, leading to the 
development of PD/LID (Figure 6E). These findings 
provide insight into the molecular mechanisms of 
PD/LID as well as novel therapeutic targets for the 
treatment of these disorders. 

MATERIALS AND METHODS 
 
Animals 
 
Male Sprague-Dawley rats were obtained from Vital-
River Experimental Animal Technology Co. (Beijing, 
China) and were maintained in a temperature-controlled 
room on a 12:12-h light/dark cycle with free access to 
standard food and water. Animal experiments were 
carried out according to the Chinese Animal Welfare 
Act and Guidance for Animal Experimentation of 
Capital Medical University. The study protocol was 
approved by the Ethics Committee of Beijing 
Neurosurgical Institute, Capital Medical University 
(protocol no. AEEI-2018-200). 
 
6-OHDA lesioning, L-DOPA administration, and 
behavioral testing 
 
Rats were unilaterally lesioned by injection of 6-
OHDA (12 μg/2.4 μl; Sigma-Aldrich, St. Louis, MO, 
USA) into the medial forebrain bundle (3.6 mm 
posterior and 8.2 mm ventral to bregma and 1.8 mm 
lateral to the midline) using a Hamilton syringe after 
anesthetization with 2%–3% isoflurane through an 
animal anesthesia ventilator system (RWD Life 
Science Co., Shenzhen, China). The rate of injection 
was 0.5 μl/min and the syringe was left in place for an 
additional 5 min to allow diffusion of 6-OHDA before 
it was slowly retracted. Turning behavior was recorded 
3 weeks postlesion over a 90-min period after injection 
of apomorphine (0.5 mg/kg by subcutaneous 
injection), and rats showing more than seven full, 
ipsilateral turns per minute were selected for L-DOPA 
administration. 
 
Starting 3 days after the turning behavior test, rats 
received single daily intraperitoneal injections of methyl 
L-DOPA/benserazide (6 mg/kg; Sigma–Aldrich) for  
21 days. 6-OHDA-lesioned control rats received single 
daily injections of the same volume of saline. Abnormal 
AIMs were scored every 3 days (eight times in total) 
according to the dyskinesia scale and rating criteria [23] 
for 3 h following L-DOPA injection. Rats showing a 
high degree of LID with the average AIMs score more 
than 4 after chronic L-DOPA administration for 3 weeks 
were assigned to the LID group, whereas those with no 
apparent dyskinesia and the average AIMs score no 
more than 4 constituted the NLID group (Figure 1A). 
Rats were sacrificed 6 weeks after 6-OHDA injection 
for analyses. 
 
Cell culture and treatments 
 
Rat adrenal pheochromocytoma cells (PC12, well-
differentiated) were cultured at 37 °C and 5% CO2 in 
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Roswell Park Memorial Institute 1640 medium 
containing 10% fetal bovine serum (both from Gibco, 
Grand Island, NY, USA). For cell transfection, cells 
were seeded in a 6-well plate and treated with 2 ml of 
transfection mixture containing 12 μl riboFECT CP 
Reagent and 200 nM Smart Silencer siRNA or negative 
control siRNA (RiboBio, Guangzhou, China). Cells 
were collected 48 h after transfection for analysis. 
 
RNA extraction, library construction, and 
sequencing 
 
Total RNA was isolated from the right striatum of rats 
using a RNeasy mini kit (Qiagen, Hilden, Germany) 
according to the manufacturer’s instructions. Strand-
specific libraries were prepared using the TruSeq 
Stranded Total RNA Sample Preparation kit (Illumina, 
San Diego, CA, USA). Purified libraries were 
quantified with a Qubit 2.0 fluorometer (Life 
Technologies, Carlsbad, CA, USA), and an Agilent 
2100 bioanalyzer (Agilent Technologies, Santa Clara, 
CA, USA) was used to confirm the insert size and 
calculate the molar concentration. The cluster was 
generated by cBot with the library diluted to 10 pM and 
then sequenced on the Illumina HiSeq X-ten system. 
Library construction and sequencing were performed by 
Shanghai Biotechnology Corp. (Shanghai, China). 
 
Analysis of expression data 
 
Sequenced raw reads were preprocessed by filtering out 
rRNA reads, adapters, short fragments, and other low-
quality reads. HISAT2 [53] was used to map the clean 
reads to the human GRCh38 reference genome with two 
mismatches. After genome mapping, Stringtie [54, 55] 
was used with reference annotation to generate 
fragments per kilobase of transcript per million mapped 
reads (FPKM) values for known gene models. 
Differentially expressed genes were identified using 
edgeR [56]. The significance threshold (P value) in 
multiple tests was set as the false discovery rate (FDR). 
Fold change was also estimated based on the FPKM in 
each sample. Differentially expressed genes were 
selected using filtering criteria of FDR ≤ 0.05 and fold 
change ≥ 2. 
 
LncRNA identification and expression analysis 
 
Stringtie [54, 55] was used to assemble reads into 
transcripts. Novel transcripts were obtained by 
comparing all assembled transcript isoforms with 
known human protein-coding transcripts using 
gffcompare. Putative lncRNAs were identified as novel 
transcripts using the following filters: length ≥ 200 bp; 
number of exons ≥ 2; open reading frame ≤ 300 bp; no 
or weak protein-coding ability (coding potential 

calculator score < 0 [57], category normalized citation 
impact score < 0 [58], and no significant similarity with 
the Pfam database [59]). To generate a unique set of 
lncRNAs, gffcompare was used to integrate RNA 
sequencing derived lincRNAs with known lncRNAs 
previously annotated with NONCODE v.5. 
 
Analysis of gene expression dynamics 
 
The STEM algorithm for gene expression dynamics was 
used to profile gene expression series and determine the 
most probable set of clusters generating the observed 
series [60]. This method considers the dynamic nature 
of gene expression profiles during clustering and 
identifies the number of distinct clusters. According to 
the probability of changes in signal density of genes 
under different conditions, we identified a set of unique 
expression patterns for our models. The raw expression 
values were converted to log2 ratios. We defined unique 
profiles using a strategy for clustering gene expression 
data for short time series. The expression model profiles 
were related to the actual or expected number of genes 
assigned to each profile. 
 
GO analyses 
 
To determine the biological function of the identified 
genes, analysis of GO terms (http://www.geneontology 
.org) enrichment was performed using clusterProfiler, 
an R package tool for comparing biological themes 
across gene clusters. Fisher’s exact test and the P value 
were used for detection; the selection criteria for 
significant GO or pathway were P < 0.05. 
 
Gene network construction 
 
We constructed coding-noncoding gene co-expression 
networks with the differentially expressed lncRNAs and 
mRNAs. Those with a Pearson correlation coefficient ≥ 
0.99 were selected and used to construct a network in 
each of the groups using Cytoscape. The analyses were 
performed by Shanghai Biotechnology Corp. (Shanghai, 
China). 
 
The lncRNA-miRNA-mRNA ceRNA network was 
constructed based on the relationships between 
lncRNAs, miRNAs, and mRNAs. We selected the most 
highly correlated mRNA/lncRNA pairs by setting the 
correlation threshold to the 99th percentile of the 
corresponding overall correlation distribution. We used 
seed match analysis to restrict the above-selected 
triplets to those in which both the lncRNA and mRNA 
had at least one perfect 6mer seed match with the shared 
miRNA. The ceRNA network was constructed by 
integrating the results of statistical and seed match 
analyses. 

http://www.geneontology.org/
http://www.geneontology.org/
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LncRNA target prediction 
 
Different algorithms were used to identify the cis- and 
trans-regulatory target genes of dysregulated lncRNAs. 
The first algorithm was programmed for target  
genes in cis. LncRNAs and potential target genes  
were paired and visualized using the UCSC genome 
browser (http://genome.ucsc.edu/). Genes transcribed 
within a 10-kb fragment up- or downstream of 
potentially relevant lncRNAs were considered as cis 
targets. Another algorithm was based on mRNA 
sequence complementarity and RNA duplex energy 
prediction and predicted the effects of lncRNAs 
binding to complete mRNA molecules. BLAST 
software was used for the initial screening and 
RNAplex software was used to identify trans-acting 
targets [61]. 
 
qRT-PCR 
 
Total RNA was extracted using the Ultrapure RNA Kit 
(CWbio Co., Beijing, China) and reverse transcription 
was performed using the HiFi-MMLV cDNA First 
Strand Synthesis Kit (CWbio Co., Beijing, China) 
according to the manufacturer’s instructions. qRT-PCR 
was performed with UltraSYBR Mixture (CWbio Co., 
Beijing, China) in a 20-μl reaction composed of 10 μl 
UltraSYBR Mixture, 0.4 μl each primer (10 μM), 2 μl 
cDNA template, and 7.2 μl dH2O on an ABI Prism 7500 
instrument (Applied Biosystems, Foster City, CA, 
USA) under the following conditions: 95°C for 10 min, 
followed by 40 cycles of 95°C for 15 s and 60°C for 60 s. 
The forward and reverse primer sequences were as 
follows: NONRATT023402, 5′-GGCTATTCATACAA 
AGTGGCAGTT-3′ and 5′-CGCTGAGTCTCGTGAGT 
CTG-3′; Gsto2, 5′-AATCCGTCATTGCGTGTGAGT-
3′ and 5′-GCTACCAGACATTCCTTGCTTAAC-3′; 
Ptger3, 5′-TCACCACGGAGACGGCTAT-3′ and 5′-
GGCGAACGGCGATTAGGAA-3′; mitogen-activated 
protein kinase (MAPK)1, 5′-TGGAGCTGGACGACT 
TAC-3′ and 5′-GACACCGACATCTGAACG-3′; c-Fos, 
5′-GTCCGTCTCTAGTGCCAACTTTAT-3′ and 5′-GT 
CTTCACCACTCCCGCTCT-3′; and rat glyceraldehyde 
3-phosphate dehydrogenase (GAPDH), 5′-TGGAGTCT 
ACTGGCGTCTT-3′ and 5′-TGTCATATTTCTCGTGG 
TTCA-3′. Each sample was run in triplicate. PCR 
products were confirmed by melting curve analysis. 
Relative expression levels were normalized to that of 
GAPDH with the 2−ΔΔCt method. 
 
Western blotting 
 
Western blotting analysis was performed as previously 
described [62] using the following primary antibodies: 
rabbit polyclonal anti-TH (ab112, 1:200), rabbit 
polyclonal anti-glial fibrillary acidic protein (GFAP; 

ab7260, 1:1500), rabbit polyclonal anti-c-FOS (ab7963, 
1:500), rabbit polyclonal anti-IL-1β (ab9722, 1:500), 
mouse monoclonal anti-IL6 (ab9324, 1:500), and rabbit 
polyclonal anti-TNF-α (ab6671, 1:500) (all from Abcam, 
Cambridge, MA, USA); rabbit monoclonal anti-ERK1/2 
(#4695, 1:1000), rabbit monoclonal anti-p-ERK1/2 
(#4377, 1:500) (both from Cell Signaling Technology, 
Danvers, MA, USA); and rabbit polyclonal anti-Gsto2 
(14562-1-AP, 1:1000) and rabbit polyclonal anti-
PTGER3 (14357-1-AP, 1:500) (both from Proteintech, 
Rosemont, IL, USA). Rabbit monoclonal anti-GAPDH 
antibody (Abcam; ab181602, 1:3000) was used for the 
loading control. Protein band density was quantified 
using an Epson V330 Photo scanner (Seiko Epson, 
Nagano, Japan) and Quantity One software (Bio-Rad, 
Hercules, CA, USA). 
 
Immunofluorescence and immunohistochemical 
analyses 
 
Formalin-fixed, paraffin-embedded sections (4-μm 
thick) were dried, washed, permeabilized, blocked in 5% 
goat serum, and incubated overnight with antibodies 
against GSTO2 (14562-1-AP; 1:50) and PTGER3 
(14357-1-AP; 1:100) (both from (Proteintech); and 
GFAP (Ab53554; 1:500) and neuronal nuclei 
(Ab1024224; 1:300) (both from Abcam). 
Immunolabeled sections were washed and incubated 
with goat secondary antibodies conjugated with Alexa 
Fluor 594 or Alexa Fluor 488 (Merck Biosciences, 
Nottingham, UK). Sections were mounted with medium 
containing 4′,6-diamidino-2-phenylindole (DAPI) 
(Vector Laboratories, Burlingame, CA, USA). An 
antibody against TH (Abcam; ab112, 1:700) was used 
for immunohistochemical detection of TH. The sections 
were scanned and digitized using Pannoramic MIDI (3D 
HISTECH, Budapest, Hungary) and the images were 
analyzed using Pannoramic Viewer software (3D 
HISTECH). 
 
FISH 
 
Paraffin-embedded sections (4 μm thick) were 
deparaffinized, dehydrated, and treated with 1 M sodium 
thiocyanate. The sections were then digested in a pepsin 
solution, fixed in 4% formaldehyde, dehydrated by 
sequential immersion in 70%, 85%, and 100% ethanol, 
and air-dried. The sections were incubated with a 
digoxin (DIG)-labeled probe (5′-DIG-AGTAACGCT 
GAGTCTCGTGAGTCTGGTTCCAT-DIG-3′) to detect 
NONRATT023402.2, followed by incubation with a 
DyLight 594-conjugated IgG fraction (Abcam; ab96873) 
coupled with a monoclonal mouse anti-DIG antibody 
(Abcam; ab116590). Nuclei were counterstained with 
DAPI. The sections were scanned and analyzed as 
described above. 

http://genome.ucsc.edu/
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Statistical analysis 
 
Statistical analyses were performed using Prism 5 
software (GraphPad, La Jolla, CA, USA). Data were 
compared with the Student’s t test (two groups) or by 
one-way analysis of variance followed by an 
appropriate multiple comparisons test (more than two 
groups). Data are expressed as mean ± SEM. 
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SUPPLEMENTARY MATERIALS 
 
Supplementary Figures 
 

 
 

Supplementary Figure 1. Bioinformatics analysis of differentially expressed genes. (A) LncRNA and mRNA co-expression network 
consisting of lncRNAs and co-expressed protein-coding genes in profile 3. LncRNAs and protein-coding genes are represented by squares and 
circles, respectively. (B) GO pathway analysis of target genes of differentially expressed lncRNAs; both coding and noncoding RNAs were from 
profile 3. The top 30 GO pathways are listed. 
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Supplementary Figure 2. Expression of target genes of the lncRNA NONRATT023402.2. qRT-PCR analysis of the expression of 
Gsto2, Ptger3, Kcnh2, Map3k19, and Slc28a3 in the striatum of PD and LID rats and their corresponding controls. Data represent mean ± SEM 
(n = 3–11). **P < 0.01, ***P < 0.001. 
 

 
 

Supplementary Figure 3. PTGER3 protein expression is decreased in neurons in PD and LID rats. Double immunofluorescence 
labeling of GSTO2 and neuron or astrocyte markers in the striatum of PD and LID rats and their corresponding controls (n = 3). Single cells are 
shown in the inset. 
  



www.aging-us.com 738 AGING 

Supplementary Tables 
 
Supplementary Table 1. Candidate target genes of the lncRNA NONRATT023402.2 acting as a ceRNA. 

LncRNA miRNA mRNA 
NONRATT023402.2 rno-miR-667-5p Gsto2 
NONRATT023402.2 rno-miR-667-5p Ptger3 
NONRATT023402.2 rno-miR-667-5p Lrfn1 
NONRATT023402.2 rno-miR-667-5p Hrct1 
NONRATT023402.2 rno-miR-667-5p Dlx2 
NONRATT023402.2 rno-miR-667-5p Dlec1 
NONRATT023402.2 rno-miR-667-5p Sec14l4 
NONRATT023402.2 rno-miR-667-5p Lrrc36 
NONRATT023402.2 rno-miR-667-5p RGD1562029 
NONRATT023402.2 rno-miR-667-5p Prss56 
NONRATT023402.2 rno-miR-667-5p Synpo2l 
NONRATT023402.2 rno-miR-667-5p Itgb4 
NONRATT023402.2 rno-miR-667-5p Kcnh2 
NONRATT023402.2 rno-miR-667-5p Map3k19 
NONRATT023402.2 rno-miR-667-5p Dnai1 
NONRATT023402.2 rno-miR-667-5p Xkr7 
NONRATT023402.2 rno-miR-667-5p Tox2 
NONRATT023402.2 rno-miR-667-5p Sidt1 
NONRATT023402.2 rno-miR-667-5p AC097129.1 
NONRATT023402.2 rno-miR-667-5p Lrp2 
NONRATT023402.2 rno-miR-667-5p LOC502684 
NONRATT023402.2 rno-miR-667-5p Slc28a3 
NONRATT023402.2 rno-miR-1199-3p Itgb4 
NONRATT023402.2 rno-miR-1199-3p Prlhr 
NONRATT023402.2 rno-miR-1199-3p Bard1 
NONRATT023402.2 rno-miR-1199-5p Pcdh12 
NONRATT023402.2 rno-miR-3584-5p E2f1 
NONRATT023402.2 rno-miR-3584-5p LOC502684 
NONRATT023402.2 rno-miR-3584-5p Ccdc108 
NONRATT023402.2 rno-miR-3584-5p Plagl1 
NONRATT023402.2 rno-miR-3584-5p Lrp2 
NONRATT023402.2 rno-miR-3584-5p Bard1 
NONRATT023402.2 rno-miR-3584-5p Synpo2l 
NONRATT023402.2 rno-miR-3584-5p Pcdh12 
NONRATT023402.2 rno-miR-3584-5p Kif2c 
NONRATT023402.2 rno-miR-3584-5p Spats1 
NONRATT023402.2 rno-miR-3584-5p Mfsd4 
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Supplementary Table 2. Homology analysis of lncRNA NONRATT023402.2 among human and mouse. 

Species lncRNA lncRNA 
length (bp) E-value Score Alignment Identity 

Identity 
percent  

(%) 

Hsa 
NONHSAT151711.1 829 1.00E-157 302 722 587 81.30 
NONHSAT151710.1 632 1.00E-132 257 350 319 91.14 
NONHSAT151712.1 838 9.00E-99 196 271 246 90.77 

Mmu 
NONMMUT024326.2 624 0 476 628 579 92.20 
NONMMUT040296.2 623 5.00E-137 265 650 529 81.38 
NONMMUT048253.2 4840 4.00E-48 105 111 109 98.20 

 


