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INTRODUCTION 
 
SAG (Sensitive to Apoptosis Gene), also known as 
RNF7 (RING finger protein-7) or ROC2 (Regulator of 
cullins-2), was originally identified as a redox inducible 
antioxidant protein [1], but was later characterized as 
one of the RBX/ROC RING component of CRL/E3 
ubiquitin ligases [2]. Functioning as an antioxidant, 
SAG inhibits apoptosis induced by a variety of stimuli 
both in vitro and in vivo [1–5]. It is expressed 
ubiquitously in human tissues, especially tissues in 
which oxygen consumption is high, such as heart, 
skeletal muscle, and testis [6]. As a component of 
CRL/E3 ubiquitin ligase, on the other hand, SAG  

 

exhibits E3 ubiquitin ligase activity to promote the 
ubiquitylation and subsequent degradation of various 
cellular proteins, including p27, pro-caspase-3, HIF-1α, 
NOXA [7–10]. 
 
Because SAG/E3 targets several tumor suppressors for 
degradation, it is regarded as an oncoprotein [6]. 
Transgenic expression of SAG in mouse skin impairs 
tumor formation at early stages by targeting c-Jun/AP1 
for degradation, whereas it promoted tumor growth at 
later stages by targeting IκBα to activate NF-κB [11]. 
Moreover, SAG knockout suppresses KrasG12D-driven 
lung tumorigenesis, suggesting SAG is a Kras-co-
operating oncogene that promotes lung tumorigenesis 
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ABSTRACT 
 
SAG is an essential RING component of the Cullin-RING ligase (CRL) E3 ubiquitin ligase complex, which regulates 
diverse signaling pathways and biological processes, including cell apoptosis, embryonic development, 
angiogenesis, and tumorigenesis. In the present study, we revealed that SAG gene expression is upregulated in 
breast cancer cells and that SAG overexpression is associated with significant poorer survival in breast cancer, 
especially the luminal A subtype. We also detected highly correlated co-overexpression of SAG and COPB2 in 
breast cancers. Subsequent in vitro experiments demonstrated that SAG and COPB2 act cooperatively to 
stimulate breast cancer cell proliferation, migration and invasion. Our findings suggest that levels of SAG and 
COPB2 expression may be useful prognostic indicators in breast cancers and that SAG may be involved in 
COPB2-related signaling during breast cancer development. 
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[12]. Conversely, SAG is reportedly overexpressed in 
primary colon carcinomas and prostate cancers [13, 14], 
and an association between SAG overexpression and 
poor survival has been reported in lung cancers [12, 15]. 
It remains unclear, however, whether SAG expression is 
involved in breast tumorigenesis. 
 
The coatomer protein complex subunit (COPB2), also 
known as Beta-Cop, P102 or Coatomer Protein 
Complex Subunit Beta Prime, is a subunit of the 
cytoplasmic protein complex that makes up the coat 
of non-clathrin-coated vesicles and is crucial for 
vesicular trafficking and Golgi budding [16]. 
Recently, the critical role of COPB2 in the tumori-
genesis in several human cancers has attracted 
attention [17, 18]. For example, higher COPB2 
expression is associated with lymph node metastasis 
of breast cancer, while COPB2 knockdown inhibits 
breast cancer cell proliferation and metastasis [19]. 
However, the related signaling pathways via which 
COPB2 is controlled during tumorigenesis are rarely 
investigated.  
 
In the present study, we endeavored to pool public 
genomic data to assess the association between SAG 
expression and prognosis in breast cancer. Our findings 
show that SAG is associated with poorer survival in 
breast cancer, especially the luminal A subtype, and that 
there is highly correlated co-overexpression of SAG and 
COPB2 in breast cancers. 
 
RESULTS 
 
SAG expression is increased in breast cancers  
 
Using bc-GenEx-Miner 4.3, we first analyzed the SAG 
expression profile across different breast cancer 
subtypes. As expected, SAG expression was sig-
nificantly higher in breast cancer tissues than in normal 
breast-like tissues (Figure 1A). In addition, subgroup 
analysis revealed that SAG expression was associated 
with estrogen receptor (ER) and human epidermal 
growth factor 2 (HER2) expression status, but not with 
progesterone receptor (PR), triple-negative, or lymph 
node status (Figure 1B–1F). Because SAG is regarded 
as an oncoprotein and significantly associated with poor 
prognosis for several human cancers, we also used bc-
GenExMiner to investigate whether SAG over-
expression was associated with survival of breast cancer 
patients. The Kaplan-Meier curves showed that higher 
SAG expression correlated with poorer survival in 
breast cancer (Figure 1G). Moreover, another online 
public survival analysis tool (KM-plot) [20] confirmed 
that there was a trend in which elevated SAG 
expression was related to a poorer prognosis, though it 
did not reach statistical significance (Figure 1H). 

Elevated SAG expression is associated with poor 
prognosis for lumina A breast cancers  
 
To assess the relationship between SAG expression and 
prognosis in different breast cancer subtypes, Kaplan-
Meier survival analyses were performed with four 
breast cancer subtypes using bc-GenExMiner 4.3. The 
results showed that high SAG expression was 
associated with poorer survival in patients with the 
luminal A subtype, but not the luminal B, HER2-
overexpressing or basal-like subtype (Figure 2A–2C). 
These results were also confirmed using KM-plot, 
which indicated that SAG overexpression was 
associated with poorer survival only in lumina A type 
breast cancers (Figure 2D–2F). 
 
SAG may be involved in COPB2-related signaling 
pathways 
 
Given the apparent involvement of SAG in malignant 
behavior of breast cancer, we next investigated the 
signaling pathways in which SAG may be involved. 
Using the cBioPortal for Cancer Genomics with breast 
cancer data from The Cancer Genome Atlas (TCGA) 
database, 10 candidate genes were identified that 
positively correlated with SAG expression (Figure 3A). 
Among them, COBP2 is reportedly overexpressed in 
several human sarcomas and neoplastic tissues [21]. 
COPB2 also reportedly promotes lung cancer cell 
proliferation and tumorigenesis by upregulating YAP1 
expression [18], and silencing COBP2 significantly 
inhibits cell proliferation and induces apoptosis in 
cholangiocellular carcinomas [22]. To further clarify the 
relationship between SAG and COPB2, we used the 
CBioPortal to examine the RNAseq data in a breast 
cancer cohort and showed that SAG is co-upregulated 
with COPB2 (Figure 3B.). The heat map generated 
using the UCSC Xena browser confirmed that SAG is 
highly co-upregulated with COPB2 in breast cancers 
(Figure 3C). Moreover, this relationship between SAG 
and COPB2 was most significant in luminal B breast 
cancers (Figure 3D–3G).  
 
COPB2 and SAG are both upregulated in breast 
cancer cells 
 
To confirm whether there is a positive correlation 
between SAG and COPB2 expression. We used the 
Human Protein Atlas (https://www.proteinatlas.org) to 
assess the relative levels of SAG and COPB2 
expression in a large number of cell lines from different 
types of human cancers. The results showed that the 
level of SAG expression correlated positively with the 
level of COPB2 expression in several human cancer cell 
lines (Figure 4A, 4B). We then used RT-qPCR to 
measure the relative levels of SAG and COPB2 
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expression in three breast cancer cell lines (MCF-7, 
SKBR-3 and T47d) and in a normal breast cell line 
(MCF-10A). We found that gene expression of both 
SAG and COPB2 was higher in all three breast cancer 
cell lines than in normal breast tissue cells (Figure 4C, 
4D). In SKBR-3 and T47d cells, we were able to knock 
down expression of both SAG and COPB2 using 
targeted siRNAs (Figure 4E and 4F). 

SAG and COPB2 act cooperatively to enhance 
breast cancer cell proliferation  
 
Because both SAG and COPB2 exert pro-proliferative 
effects in several human cancers [10, 12, 19, 23], we 
wanted to determinate how SAG and COPB2 knockdown 
influenced breast cancer cell proliferation, and whether 
SAG and COPB2 acted cooperatively to affect cell 

 

 
 

Figure 1. SAG is upregulated in breast cancer and associated with a poorer prognosis. (A) Box plots showing SAG mRNA expression 
in the indicated breast cancer subtypes. (B–F) Box plots showing SAG mRNA expression in breast cancers characterized based on ER, PR, 
HER2, triple-negative, and nodal status. The Kaplan-Meier curves for SAG expression in breast cancer were constructed using UCSC bc-
GenExMiner 4.3 (G) or KM-plot (H). 
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Figure 2. High expression of SAG mRNA correlated with poor outcomes in luminal A breast cancer. Kaplan-Meier survival 
analysis performed using bc-GenExMiner 4.3 shows the relationship between SAG expression and survival in luminal A (A), luminal B (B), 
HER2-expressing (C) and basal-like (D) breast cancers. These data were re-analyzed and confirmed using KM-plot (E–H). 

 

 
 

Figure 3. SAG may be involved in COPB2-related signaling. (A) Top 10 genes positively correlated to SAG expression in breast cancer. 
(B) Correlation between SAG and COPB2 analyzed using cBioPortal for Cancer Genomics. (C) Heat map of the correlation between SAG and 
COPB2. Co-expression of SAG and COPB2 in luminal A (D), luminal B (E), HER2-expressing (F) and basal-like (G) breast cancers analyzed using 
bc-GenExMiner 4.3. 
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proliferation. As expected, knocking down SAG or 
COPB2 inhibited breast cancer cell proliferation (Figure 
5). Conversely, ectopic overexpression of SAG in SKBR-
3 or T47d breast cancer cells enhanced the cells’ 
proliferative potential. Notably, COPB2 knockdown in 
SAG- overexpressing cells completely reversed the 
enhanced cell growth induced by SAG overexpression. 
These results suggest that COPB2-related signaling is 
involved in SAG’s pro-proliferative effect. 

SAG-COBP2 regulates breast cancer cell migration 
and invasion 
 
To further evaluate the oncogenic effects of SAG and 
COPB2 in breast cancer cells, we performed a set of 
transwell migration and invasion assays. We found that 
SAG or COPB2 knockdown significantly inhibited breast 
cancer cell migration and invasion as compared to the 
control group (Figure 6A–6C), while ectopic over- 

 

 
 

Figure 4. Levels of SAG and COPB2 expression in breast cancer cell lines. (A) SAG expression in human cancer cells from a cohort in 
TCGA database. (B) COPB2 expression in human cancer cells from a cohort in TCGA database. (C–D) RT-qPCR analysis of the relative levels of 
SAG expression in SKBR3 (C) and T47D (D) cells. Levels of SAG and COPB2 mRNA were significantly decreased following transfection with the 
indicated siRNAs in SKBR3 (E) and T47D (F) cells. (*P < 0.05). 
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expression of SAG slightly enhanced breast cancer cell 
migration and invasion. Most importantly, COPB2 
knockdown in SAG-overexpressing cells suppressed the 
enhanced migration and invasion induced by SAG (Figure 
6A–6C). 
 
DISCUSSION 
 
SAG reportedly functions as a redox-inducible antioxidant 
protein and as a RING component of CRL controlling the 
turnover of numerous substrates involved in cell pro-
liferation, apoptosis, and tumorigenesis [1, 2]. In lung 
cancer, it is known that SAG acts as an onco-cooperating 
gene required for tumorigenesis induced by a mutant Kras 
[12], that it is significantly overexpressed in lung cancer 
tissues, and that its expression correlates with poor patient 
prognosis [15]. Knocking down SAG inhibits lung cancer 
cell proliferation, in vitro and in vivo, and contributes to 
the recovery of radiation sensitivity in radiation-resistant 
cancer cells [10]. By contrast, to our knowledge there 
have been no studies examining SAG’s actions in breast 
cancer. In the present study, however, we showed that 

levels of SAG mRNA are significantly higher in breast 
cancer tissues than in normal breast-like tissues and that 
increased SAG expression is associated with the ER and 
HER2 expression status of breast cancer. In addition, we 
provide evidence that SAG exerts a pro-proliferative 
effect in breast cancer cells and that its overexpression is 
associated with unfavorable prognosis in breast cancer. 
 
We also observed that COPB2 is highly upregulated along 
with SAG in breast cancers. COPB2 is a subunit of the 
Golgi coatomer complex, which acts as a mediator for 
transport of proteins from the endoplasmic reticulum to 
the Golgi apparatus during protein biosynthesis [16]. 
COPB2 expression levels are upregulated in several 
human cancers and are associated with their prognosis 
[19, 23, 24]. Furthermore, COPB2 knockdown leads to 
inhibition of cell proliferation, cell cycle arrest, and 
induction of apoptosis [19, 23, 24]. Notably, one recent 
qRT-PCR analysis revealed that COPB2 mRNA levels 
were significantly higher in breast cancer tissues than in 
normal tissues, suggesting COPB2 is a potential tumor 
oncogene in breast cancer [19]. Here, we confirmed 

 

 
 

Figure 5. SAG and COPB2 knockdown inhibits breast cancer cell proliferation. (A, B) CCK-8 assays measuring breast cancer cell 
proliferation following SAG or COPB2 knockdown. (C, D) CCK-8 assays measuring breast cancer cell proliferation following transfection of 
Flag-SAG with and without siRNA targeting COPB2. (*P < 0.05). 
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upregulation of COPB2 in three breast cancer cell lines, 
but not in normal breast epithelial cells. In lung cancer 
cells, COPB2 inhibits apoptosis and promotes cell 
proliferation and tumorigenesis through up-regulation of 
YAP1 expression [18], while COPB2 knockdown in 
gastric cancer cells suppresses cell proliferation and 
promotes apoptosis by repressing the RTK signaling 
cascade [23]. In the present study, we found that COPB2 is 
upregulated along with SAG in breast cancers and that 
both are highly expressed in breast cancer cell lines. 

Moreover, COPB2 knockdown abolished SAG-induced 
breast cancer cell proliferation and invasion, which 
strongly suggests COPB2 signaling is involved in the 
mechanism underlying the oncogenic effect of SAG.   
 
Taken together, our findings indicate that expression of 
SAG and COPB2 may be a useful prognostic indicator in 
breast cancer. Moreover, SAG may be involved in a 
COPB2-related signaling pathway that plays an oncogenic 
role in breast cancer. 

 

 
 
Figure 6. Downregulation of SAG or COPB2 inhibited breast cancer cell migration and invasion. (A) Representative images of 
migrated cells following transfection with the indicated genes. (B) Columns representing the relative number of migrated cells in the different 
groups. (C) Columns representing the relative number of invading cells in the different groups. (*P < 0.05). 
  



www.aging-us.com 909 AGING 

MATERIALS AND METHODS  
 
Bioinformatic analysis of gene expression in breast 
cancer  
 
The mRNA expression of genes in various breast 
cancer subtypes was assessed using an online platform 
for gene expressive and prognostic analyses (Breast 
Cancer Gene-Expression Miner Version 5.0), which 
includes published annotated genomic data from 5609 
breast cancer patients [25, 26]. The mRNA expression 
of genes in various human cancer cell lines  
was analyzed using the Human Protein Atlas 
(https://www.proteinatlas.org). 
 
Survival analysis based on public data   
 
The relationship between SAG or COPB2 expression 
and survival in different breast cancer subtypes was 
analyzed using bc-GenExMiner 4.3 [25]. The survival 
relationships obtained were verified by re-analysis using 
the online Kaplan-Meier plotter database, which was 
established using gene microarray data and survival 
information downloaded from the Gene Expression 
Omnibus (GEO) [27].  
 
Bioinformatic analysis of SAG-related genes in 
breast cancer 
 
The top 10 SAG-related genes co-upregulated with SAG 
were identified using the cBioPortal for Cancer 
Genomics. In addition, the UCSC Xena browser 
(http://xena.ucsc.edu/) was used to produce expression 
heat maps for SAG and COPB2.  
 
Cell culture 
 
The MCF-10A normal breast cell line and MCF-1, SK-
BR-3, and T-47D breast cancer cell lines were 
purchased from Shanghai Cell Biology, Institute of the 
Chinese Academy of Sciences (Shanghai, People's 
Republic of China). MCF-1 and SK-BR-3 cells were 
cultured in Dulbecco's modified Eagle's medium 
(DMEM; Gibco, Grand Island, NY, USA) 
supplemented with 10% fetal bovine serum (FBS; 
Gibco, Grand Island, NY, USA) and 100 IU/ml 
penicillin, and 100 μg/ml streptomycin. T-47D cells 
were cultured in Roswell Park Memorial Institute-1640 
medium (Gibco, Grand Island, NY, USA) with 10% 
FBS (Gibco). MCF-10A cells were cultured in DMEM-
F12 (Gibco) supplemented with 100 μg/mL 
streptomycin, 100 U/mL penicillin, 20 ng/mL epidermal 
growth factor (EGF), 2 mmol/L L-glutamine and 10% 
FBS (Gibco). All cell lines were maintained in a 
standard cell culture incubator (Thermo, Waltham, MA, 
USA) at 37°C with 5% CO2. 

RNA inference and plasmid overexpression 
 
siRNAs targeting COPB2 and SAG were purchased from 
Shanghai Gene Pharma (Shanghai, China). The sequences 
were as follows: for COPB2, CCCAUUAUGUUAUGC 
AGAUTT; for SAG, CCTGTGGGTGAAACAGAAC 
AA. Following the manufacturer's instructions, the siRNA 
was transfected into cells using GeneMute transfection 
reagent. After 48 h, the transfected cells were harvested 
for subsequent RNA expression analysis. Flag-SAG 
plasmid was transfected as described previously [28]. 
 
CCK-8 assays 
 
Cells were transfected with the indicated target siRNAs or 
plasmids for 24 h, after which they were seeded into 96-
well plates to a density of about 1500 cells/well. After 24, 
48, 72 and 96 h, cell viability was assessed based on the 
absorbance of 450 nm using a CCK-8 assay kit. 
 
Cell invasion and migration assays 
 
The cells’ capacity for migration and invasion were 
assessed using transwell chambers according to the 
manufacturer's instructions (Corning Costar Corp., 
Cambridge, USA). Briefly, after transfecting cells with 
indicated siRNAs or plasmids for 48 h, about 3×104 
cells/well of cells were transferred into the upper 
chambers, while the lower chambers were filled with 600 
ml of medium containing with 20% FBS. After 24 h, the 
filters separating the upper and lower chambers were 
carefully removed, and the cells were fixed with 4% 
paraformaldehyde and stained with Giemsa and eosin. 
Cells that had migrated to the underside of the filters were 
counted under a light microscope.  
 
Statistical analysis 
 
Statistical analyses were done using the SPSS version 
23.0 (SPSS, Inc, Chicago, IL) and GraphPad Prism 
version 6.0 (GraphPad Software, Inc, La Jolla, CA) 
statistical software packages. Comparisons between 
groups were made using Student's t-test (two-tailed) or 
one-way analysis of variance with Dunnett’s method for 
multiple comparisons. Values of P<0.05 was considered 
statistically significant. 
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