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INTRODUCTION 
 
Cardiovascular disease (CVD) is still the leading cause 
of death worldwide due to its high morbidity and morta- 

 
lity; it not only reduces human life span but also places 
a heavy burden to the national health care system 
according to the latest authoritative statistics [1]. 
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ABSTRACT 
 
Atherosclerosis-related cardiovascular disease is still the predominant cause of death worldwide. Araloside C (AsC), 
a natural saponin, exerts extensive anti-inflammatory properties. In this study, we explored the protective effects 
and mechanism of AsC on macrophage polarization in atherosclerosis in vivo and in vitro. Using a high-fat diet 
(HFD)-fed ApoE-/- mouse model and RAW264.7 macrophages exposed to ox-LDL, AsC was evaluated for its effects 
on polarization and autophagy. AsC significantly reduced the plaque area in atherosclerotic mice and lipid 
accumulation in ox-LDL-treated macrophages, promoted M2 phenotype macrophage polarization, increased the 
number of autophagosomes and modulated the expression of autophagy-related proteins. Moreover, the 
autophagy inhibitor 3-methyladenine and BECN1 siRNA obviously abolished the antiatherosclerotic and M2 
macrophage polarization effects of AsC. Mechanistically, AsC targeted Sirt1and increased its expression, and this 
increase in expression was associated with increased autophagy and M2 phenotype polarization. In contrast, the 
effects of AsC were markedly blocked by EX527 and Sirt1 siRNA. Altogether, AsC attenuates foam cell formation 
and lessens atherosclerosis by modulating macrophage polarization via Sirt1-mediated autophagy. 
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Atherosclerosis, a major inducer of CVD, is a chronic 
inflammatory disease arising from an imbalance in lipid 
metabolism and a maladaptive immune response driven 
by the accumulation of cholesterol-laden macrophages 
in the arterial wall [2]. During atherosclerotic lesion 
formation, macrophage polarization, which leads to 
diverse phenotypes, is a critical process that depends on 
various stimuli [3]. Notably, it has been concluded that 
the anti-inflammatory M2 macrophage phenotype exerts 
atheroprotective effects, although anti-inflammatory 
CD163+ macrophages also promote angiogenesis and 
vascular permeability [4]. Oxidized low-density lipo-
protein (ox-LDL), which contributes directly to 
macrophage polarization, induces foam cell formation, 
ultimately promoting plaque formation [5]. Previous 
opinions on atherosclerosis therapy have mainly 
focused on lipid-lowering, antithrombotic, antioxidative 
and anti-inflammatory strategies, and have ignored 
macrophage polarization [6]. Thus, the pharmacological 
targeting of macrophage polarization represents a 
promising therapeutic strategy for atherosclerosis. 
 
Increasing literature has reported the significant role of 
autophagy, a lysosome-mediated conserved cellular path-
way that controls protein and organelle degradation in 
human health and disease [7]. As expected, autophagy is an 
emerging therapeutic target for atherosclerosis that has been 
summarized recently [8, 9]. According to the recent literature, 
macrophage autophagy induction prevents atherosclerosis 
[10], whereas impaired macrophage autophagy increases 
atherosclerotic plaque formation [11]. Silent information 
regulator 1 (Sirt1), a member of the sirtuin class of 
proteins, is widely studied and shows atheroprotective 
effects in macrophages [12], endothelial cells [13], and 
vascular smooth muscle cells [14]. Thus, screening for 
potent selective Sirt1 activators has been the focus of 
research in the antiatherosclerosis drug development field, 
and more research into the mechanism by which Sirt1 
activation affects atherosclerosis is imperative. 
 
Clinically, although lipid-lowering statins and anti-
inflammatory canakinumab have been used for athero-
sclerosis treatment, they also have inevitable side effects 
[15–17] and do not meet clinical needs. In recent decades, 
strategies involving natural products have focused on cell 
autophagy for atherosclerosis prophylaxis and treatment, 
and many natural compounds have been indicated to 
exhibit excellent antiatherosclerotic properties [18]. 
Araloside C (AsC, Figure 1), a bioactive triterpenoid, is the 
major active constituent of Aralia elata (Miq.) Seem, 
which has been widely used in traditional Chinese 
medicine [19]. Recently, our group reported that AsC 
alleviated hypoxia/reoxygenation-induced cardiomyocyte 
apoptosis in vitro [20] and ex vivo [21] studies. Moreover, 
we found that total saponins of Aralia elata (Miq.) 
(TASAES) protected against endothelial cell injury and 

atherosclerosis in ApoE-/- mice [22, 23]. According to the 
emerging reports of the cardioprotective effects of AsC 
and the endothelial protective effects of TASAES, we 
believe that the antiatherosclerotic effects of AsC and its 
possible molecular mechanism need to be elucidated. 
 
Based on our previous research, this study is the first to 
investigate the antiatherosclerotic effects and 
underlying mechanism of AsC on ox-LDL-induced 
foam cell formation. Additionally, we speculate that 
AsC attenuates foam cell formation and lessens 
atherosclerosis by modulating macrophage polarization 
via Sirt1-mediated autophagy. 
 
RESULTS 
 
AsC  attenuated  atherosclerosis in HFD-induced 
ApoE-/- mice and reduced foam cell formation in 
vitro 
 
To test whether AsC exerts an antiatherosclerotic effect, 
we first measured the weight, blood lipid levels and 
atherosclerotic area at the aortic root of high-fat diet 
(HFD)-treated ApoE-/- mice according to our previous 
method [24]. Unexpectedly, no significant differences in 
weight, blood lipid levels (Figure 2B and 2C), fat and lean 
proportion, or necrotic core (Supplementary Figure 1) 
were observed upon AsC treatment. Moreover, as shown 
in Figure 2D and 2E, the mice in the AsC group developed 
significantly smaller plaque areas in the aortic root than 
those in the model group after 4 weeks of treatment. We 
further examined the effects of AsC on serum lipid 
profiles. These data suggest that the antiatherosclerotic 
effect of AsC was not dependent on lipid level regulation. 
 
Macrophage-derived foam cells play an important role 
in atherosclerosis formation. Next, we analyzed the 
effects of AsC on ox-LDL-induced foam cells in vitro, 
and the results showed that AsC remarkably decreased 
foam cell formation (Figure 2F and 2G). Meanwhile, 
compared with ox-LDL group, it ameliorated Cd36 
expression (Figure 2H, Supplementary Figure 2), which 
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Figure 1. The chemical structure of Araloside C (AsC).  

 
 

Figure 2. AsC attenuated atherosclerosis in HFD-fed ApoE-/- mice and reduced foam cell formation in vitro. All mice were fed a 
HFD in the presence or absence of AsC (20 mg·kg-1·day-1, i.g.) for 4 weeks. In the in vitro assay, RAW264.7 cells were pretreated with AsC (20 
μM) for 12 h, and then exposed to ox-LDL for another 24 h. (A) Experimental protocol of the in vivo study. (B) Body weight. (C) Blood lipid 
levels. (D) Representative images of oil red O staining of the aortic root. (E) Quantification of the plaque area by oil red O staining. (F) 
Representative images of oil red O staining in ox-LDL-treated RAW264.7 cells. (G) Quantification of oil red O staining, as detected by a 
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microplate reader. (H) Cd36 expression level in ox-LDL-treated RAW264.7 cells, as determined by flow cytometry. The data are presented as 
the means ± SDs (n = 5). ##P < 0.01 vs. the control group, **P < 0.01 vs. the model group; N.S. means no significance. 
strengthened our conclusion. Collectively, these 
findings confirm that AsC had antiatherosclerotic 
effects and reduced foam cell formation. 
 
AsC polarized macrophages to an M2-like 
phenotype 
 
Mounting evidence points to a key role of macrophage 
polarization in plaque progression and vulnerability [5]. 
We thus detected the expression of macrophage 
polarization markers in the aortic root in control and AsC-
treated mice. Immunostaining analysis showed that the 
expression of Cd86 was significantly decreased in the AsC 
group, whereas the expression of Arg1 was significantly 
increased (Figure 3A and 3B). A similar tendency was 
observed in the ox-LDL-induced macrophage model by 
flow cytometry analysis (Figure 3C, Supplementary Figure 
3). Arginase activity is also a macrophage polarization 
marker, as indicated in Figure 3D. AsC treatment 
obviously increased arginase activity. Moreover, we also 
detected the mRNA and protein expression levels of M1 
and M2 macrophage markers. As shown in Figure 3E–3G, 
AsC significantly downregulated Nos2, Il1b, and Cd86 
expression, and upregulated Arg1 and Mrc1 expression, 
which was consistent with a previous study [25]. These 
results indicate that AsC pretreatment was able to polarize 
macrophages to an M2-like phenotype. 
 
AsC induced macrophage autophagy 
 
Ongoing laboratory studies have demonstrated that 
autophagy is a therapeutic target for atherosclerosis [8]. 
To determine whether AsC regulates autophagy, we 
first investigated autophagosomes by TEM, the most 
valid method for both qualitative and quantitative 
analysis of autophagy [26]. The results showed that 
AsC pretreatment increased the number of auto-
phagosomes in ox-LDL-treated macrophages, but that 
the number of autophagosomes decreased when the 
cells were pretreated with the autophagy inhibitor 3-MA 
(Figure 4A and 4B). Cyto-ID® and flow cytometric 
assays demonstrated that AsC treatment increased 
autophagic vacuoles and flux (Figure 4C), further 
confirming AsC-induced autophagy in ox-LDL-
stimulated macrophages. Next, we determined the level 
of LC3II, one of the gold standard markers of auto-
phagosome formation [27]. Our data indicated that AsC 
dramatically elevated LC3II expression levels, 
suggesting that autophagic flux was increased, and these 
levels were also blocked by 3-MA (Figure 4D and 4E). 
To further confirm the role of AsC in the modulation of 
autophagic flux, we measured the expression levels of 
autophagy-related proteins. As shown in Figure 4F and 
4G, AsC significantly increased the ratio of LC3II/ 

LC3I, which is considered an accurate indicator of 
autophagy, upregulated BECN1 and ATG5 expression 
levels, and reduced the P62 expression level. Similar 
results were confirmed in aortic lysates (Figure 4H and 
4I). Taken together, these findings strongly indicate that 
pretreatment with AsC enhanced ox-LDL-induced 
macrophage autophagy level. 
 
Autophagy inhibition blocked AsC-mediated 
antiatherosclerotic  effects  and  macrophage 
polarization 
 
Based on our above research results, we next 
investigated the effects of AsC-mediated autophagy on 
atherosclerosis and macrophage polarization. First, our 
in vivo data showed that the reduction in plaque area by 
AsC was significantly reversed by the autophagy 
inhibition (Figure 5A and 5D). Similarly, the increase in 
Arg1 expression by AsC was significantly inhibited by 
BECN1 knockdown (Figure 5B and 5E). Moreover, the 
inhibitory effect of AsC on ox-LDL-induced foam cell 
formation was also abrogated by 3-MA in RAW264.7 
cells (Figure 5C and 5F). In addition, AsC-mediated 
macrophage polarization was also abolished by BECN1 
siRNA in vitro (Figure 5G and 5H). Together, these 
data suggest that AsC mitigated atherosclerosis and 
promoted macrophage polarization through the 
promotion of macrophage autophagy. 
 
AsC promoted Sirt1 expression in macrophages 
 
Next, we explored the mechanism of AsC-mediated 
autophagy in macrophages. Sirt1 is a well-known 
autophagy regulator [28]; therefore, we determined  
the Sirt1 expression level in macrophages in the  
aortic root and ox-LDL-activated macrophages. Immu-
nofluorescence colocalization assays indicated that 
compared with vehicle, AsC notably increased Sirt1 
expression in atherosclerotic macrophages (Figure 6A 
and 6B). Moreover, our results showed that Sirt1 levels 
increased in response to AsC pretreatment in a dose- 
and time-dependent manner (Figure 6C and 6D). 
 
Meanwhile, we explored the interaction between AsC 
and Sirt1 by CETSA and a DARTS assay. As shown in 
Figure 6E and 6F, compared with the control, treatment 
with AsC significantly inhibited Sirt1 degradation 
induced by temperature and pronase, which was in 
accordance with a previous study [29]. Next, we further 
examined the potential interaction between AsC and 
Sirt1 protein through molecular docking. As shown in 
Figure 6G, the N-terminus of Sirt1 forms an 
independently folded three α-helix bundle, and AsC 
binds to the helix-turn-helix motif. Meanwhile, it was 
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observed that AsC interacted extensively with several 
important amino acids in the N-terminus: it formed 

hydrogen bonds with THR 209, LEU 215, ASP 216, 
THR 219 and ILE 227, van der Waals interactions with 

 

 
 
Figure 3. AsC polarized macrophages to an M2-like phenotype. All mice were fed a HFD in the presence or absence of AsC (20 mg·kg-

1·day-1, i.g.) for 4 weeks. In the in vitro assay, RAW264.7 cells were pretreated with AsC (20 μM) for 12 h, and then exposed to ox-LDL for 
another 24 h. (A) Dual immunofluorescence staining for Arg1 (red) or Cd86 (red) and DAPI (blue) in lesions in the aortic root. (B) 
Quantification of the relative fluorescence intensity. (C) The Mrc1 expression level in ox-LDL-treated macrophages, as determined by flow 
cytometry. (D) Arginase activity was measured as described in the Methods section. (E) mRNA levels of Arg1, Mrc1, Nos2 and Il1b in 
macrophages, as quantified by real-time PCR. (F) Representative photographs of Mrc1, Cd86 and Arg1 expression in ox-LDL-treated 
macrophages, as evaluated by western blot analysis. (G) Statistical results of Mrc1, Cd86 and Arg1 expression levels compared with those in 
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the control group. The data are presented as the means ± SDs (n = 5). #P < 0.05, ##P < 0.01 vs. the control group, **P < 0.01 vs. the model 
group. 

 
 

Figure 4. AsC induced macrophage autophagy. RAW264.7 cells were pretreated with 3-MA (5 mM) for 2 h, treated with AsC 
(20 μM) for 12 h, and then exposed to ox-LDL for another 24 h. (A) Representative photographs of autophagosomes (red arrows) 
examined using a JEOL JEM1230 electron microscope. (B) Statistical results of autophagosomes. (C) Summarized data showing the 
percentage of cells that were positive for CytoID fluorescence, as detected by flow cytometry analysis. (D) Representative photographs of 
LC3II staining. (E) Statistical results of LC3II-positive cells. (F) Representative photographs of ATG5, BECN1, P62, LC3 and β-actin expression in 
ox-LDL-treated macrophages, as evaluated by western blot analysis. (G) Statistical results of ATG5, BECN1, P62, LC3II/LC3I expression levels 
compared with those in the control group. (H) Representative photographs of BECN1, P62, LC3 and β-actin expression in aortic lysates. (I) 
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Statistical results of BECN1, P62, LC3II/LC3I expression levels compared to those in the control group. The data are presented as the means ± 
SDs (n = 5). #P < 0.05, ##P < 0.01 vs. the control group, *P < 0.05, **P < 0.01 vs. the model group; $P < 0.05 vs. the ox-LDL and AsC group. 

 
 

Figure 5. Autophagy inhibition abolished AsC-mediated antiatherosclerotic effects and macrophage polarization. All mice 
were fed a HFD in the presence or absence of AsC (20 mg·kg-1·day-1, i.g.) for 4 weeks. In the in vitro assay, RAW264.7 cells were pretreated 
with 3-MA (5 mM) for 2 h, treated with AsC (20 μM) for 12 h, and then exposed to ox-LDL for another 24 h. (A) Representative images of oil 
red O staining of the aortic root. (B) Quantification of the total plaque area. (C) Dual immunofluorescence staining forArg1 (red) and DAPI 
(blue) in lesions in the aortic root. (D) Representative images of oil red O staining of ox-LDL-treated RAW264.7 cells. (E) The percentage of 
plaque area relative to lumen area. (F) Quantification of relative fluorescence intensity. (G) Quantification of oil red O staining, as detected by 
a microplate reader. (H) Representative photographs of Arg1, Mrc1, Cd86 and BECN1 expression, as evaluated by western blot analysis. (I) 
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Statistical results of Mrc1, Cd86 and Arg1 expression levels compared with those in the ox-LDL-treated group. The data are presented as the 
means ± SDs (n = 5). *P < 0.05, **P < 0.01 vs. the model group; $P < 0.05, $$P < 0.01 vs. the ox-LDL and AsC group. 

 
 

Figure 6. AsC promoted Sirt1 expression in macrophages. All mice were fed a HFD in the presence or absence of AsC (20 mg·kg-1·day-

1, i.g.) for 4 weeks. In the in vitro assay, RAW264.7 cells were pretreated with AsC (20 μM) for 12 h, and then exposed to ox-LDL for another 
24 h. (A) Aortic roots from ApoE−/− mice were stained for the macrophage marker Cd68 and coprobed with antibodies against Sirt1. (B) 
Quantification of Sirt1 expression in aortic root lesions. (C) Representative photographs of Sirt1 expression, as evaluated by western blot 
analysis. (D) Statistical results of the Sirt1 expression level compared with that in the control group. (E) Cellular thermal shift assay (CETSA) 
using macrophage lysates, which were exposed to AsC (20 μM). (F) AsC promoted the resistance of its target protein Sirt1 to proteases 
(DARTS). (G) Three-dimensional modeling of the binding of AsC to the binding domain of Sirt1. (H) Two-dimensional ligand interaction 
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diagram of AsC and SIRT1. The data are presented as the means ± SDs (n = 5). ##P < 0.01 vs. the control group; *P < 0.05, **P < 0.01 vs. the 
model group. 
LEU 206, GLU 208, PRO 212, GLU 214, GLN 222 and 
GLU 230, and alkyl interactions with ILE 223 (Figure 
6H). This result is basically the same as that reported by 
other researchers [30]. 
 
The in vivo, in vitro and molecular docking results, 
suggest that AsC prevented foam cell and athero-
sclerosis formation by targeting and upregulating Sirt1 
expression. 
 
AsC-mediated polarization and autophagy in ox-
LDL-treated macrophages were Sirt1-dependent 
 
Previous studies have shown that Sirt1 activation is 
necessary for autophagic flux activation [31]. It has 
been demonstrated that Sirt1 could be an ideal target for 
drugs [32]. We hypothesized that Sirt1 is involved in 
autophagic flux activation by AsC. Thus, the Sirt1 
inhibitor EX527 and Sirt1 siRNA were utilized to 
investigate whether Sirt1 activation was essential for 
AsC-induced autophagic flux in our study. After 
treatment with EX527, the modulation of Mrc1 and 
ATG5 by AsC was not detected in macrophages, 
demonstrating that the activation of polarization and 
autophagy were abolished by Sirt1 inhibition (Figure 
7A–7D). Sirt1 siRNA had similar effects, and these 
results collectively demonstrated that AsC enhanced 
autophagy through SIRT1 signaling (Figure 7E and 7F). 
 
Together, these results suggest that decreased Sirt1 
expression is involved in the impairment of autophagy 
in macrophages and that the effects of AsC in 
promoting autophagy may occur through Sirt1 
activation (Figure 8). 
 
DISCUSSION 
 
Although atherosclerosis has been effectively treated 
through lipid-reducing and anti-inflammatory drugs, the 
adverse effects associated with muscle symptoms and 
glucose homeostasis [33] compelled us to find effective 
and less toxic drugs to improve patient prognosis. In 
this study, we demonstrated that AsC, a naturally 
derived saponin, exerted a potent antiatherosclerotic 
effect. We further confirmed the beneficial pharma-
cological effect of AsC on macrophage autophagy and 
phenotype switching. Mechanistically, the adminis-
tration of AsC potently targeted and activated Sirt1 
signaling, which subsequently mediated macrophage 
autophagy and polarization. 
 
Recently, many natural products have been studied to 
determine their impact on atherosclerosis [18]. Our 
group and several others have reported that TASAES 

exerts therapeutic effects on myocardial damage [34, 
35] and atherosclerosis [22, 23]. AsC, isolated from 
TASAES, was also reported to have powerful 
cardioprotective effects against ischemia-reperfusion 
injury in our previous study [20, 21]. Moreover, we 
demonstrated that another AsC analogue can protect 
against ox-LDL-damaged endothelial cell injury via 
autophagy induction [36], which prompted us to explore 
whether AsC has antiatherosclerotic effects and 
determine its protective mechanism. Expectedly, our 
data demonstrated that AsC ameliorated plaque area in 
atherosclerosis in HFD-fed ApoE-/- mice. Foam cell 
formation is a key event in the development of 
atherosclerotic plaques. Furthermore, we found that 
AsC reduced ox-LDL-induced foam cell formation in 
vitro through classical oil red O staining and Cd36 
detection. In addition, AsC had no obvious effects on 
blood lipid levels, body weight or the fat or lean to body 
weight ratio, which implied that the antiatherosclerotic 
effects of AsC are different from statins. The above 
results led us to understand how AsC executed its anti-
atherosclerosis ability. 
 
In past decades, research on antiatherosclerosis drugs 
mainly focused on lipid-reducing, anti-inflammatory, 
and antioxidative strategies, endothelial protection 
and foam cell inhibition. Few studies have focused on 
macrophage polarization, which is also a promising 
target for atherosclerosis therapy [37, 38]. Generally, 
the anti-inflammatory macrophage phenotype is 
considered atheroprotective, although CD163+ macro-
phages promote atherosclerosis [3, 4]. In this study, 
we observed a notable change in macrophage 
polarization. AsC treatment elevated Arg1 expression 
and reduced Cd86 expression in atherosclerosis, 
suggesting phenotypic switch to anti-inflammatory 
M2 macrophages. These results in addition to our oil 
red O staining results, revealed that the AsC-mediated 
polarization of macrophages to the M2 was correlated 
with the dynamics of atherosclerotic plaque re-
gression. Furthermore, the changes in gene or protein 
expression of macrophages Arg1, Mrc1, Cd86, Nos2 
and Il1b were in accordance with the in vivo results. 
Taken together, our results indicate that AsC 
specifically regulated macrophage polarization both in 
vitro and in vivo. 
 
It has been widely reported that macrophage autophagy 
can reduce the accumulation of foam cells and inhibit 
the formation and development of plaques [39, 40]. 
Here, we have analyzed autophagic flux in macro-
phages. Our results showed that AsC significantly 
increased the number of macrophage autophagosomes, 
which were blocked by 3-MA. Meanwhile, the 
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immunofluorescence data showed that the increase in 
LC3II-positive macrophages by AsC was dramatically 

decreased by 3-MA. Similar results were also observed 
at the protein level in ox-LDL-treated macrophages. 

 
 

Figure 7. AsC-induced autophagy and M2 phenotype polarization were Sirt1-dependent in ox-LDL-treated macrophages. 
Sirt1 was inhibited by 10 μM EX527 for 6 h or knocked down by siRNA, as described in the Materials and Methods section. 
Twenty-four hours posttransfection, cells were treated with AsC (20 μM) for 12 h and then incubated with ox-LDL (80 μg/mL) for an 
additional 24 h. (A, C) Representative immunofluorescence images showing Mrc1 and ATG5 expression in RAW264.7 cells. (B, D) The relative 
quantitative analysis of Mrc1 and ATG5 fluorescence in RAW264.7 cells. (E) Representative western blot analysis of Mrc1, Arg1, Cd86, BECN1, 
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ATG5, LC3, Sirt1 and β-actin in macrophages. (F) Quantification of the expression of Mrc1, Arg1, Cd86, BECN1, ATG5, LC3, and Sirt1. The data 
are presented as the means ± SDs (n = 5). *P < 0.05, **P < 0.01 vs. the ox-LDL group; $P < 0.05, $$P < 0.01 vs. the ox-LDL and AsC group. 
These results suggest that AsC observably promoted 
macrophage autophagy. 
 
There is increasing evidence indicating that autophagy 
is important for the induction of M2 macrophages. 
Many natural products have been found to mediate the 
crosstalk of polarization and autophagy in macrophages 
for disease therapy [41–43]. To study the relationship 
between ability of AsC to increase autophagy and the 
macrophage polarization, we constructed BECN1 RNAi 
mice for use in ApoE-/- mice [44] and BECN1 siRNA 
for use in macrophages. In the current study, we found 
that the decrease in plaque area and increase in Arg1 
expression by AsC were markedly inhibited by BECN1 
RNAi. Moreover, AsC-mediated foam cell inhibition 
and macrophage phenotype switching were also 
abolished by 3-MA and BECN1 siRNA, respectively. 
Therefore, these data strongly support that AsC can 
enhance autophagy, which contributes to M2 phenotype 
polarization. 
 
Next, we investigated the molecular mechanism by 
which AsC protects against atherosclerosis. Sirt1, a 
nicotinamide adenine dinucleotide-dependent protein 
deacetylase, has gained attention for its protective 
effects against atherosclerosis [45, 46]. Excitingly, Sirt1 
can modulate macrophage polarization [47] and 
autophagy [48]. 
 
Our present results showed that compared with 
vehicle, AsC increased the expression of Sirt1 in vivo 
and in vitro. Moreover, AsC treatment elevates the 
temperature and enzyme stability of Sirt1, which 

indicated that Sirt1 may be a target of AsC. 
Molecular docking results confirmed this conclusion. 
To confirm the crucial roles of Sirt1 in AsC-mediated 
macrophage autophagy and polarization, a Sirt1 
inhibitor and siRNA were used to inhibit Sirt1 
expression. Mrc1 and ATG5 expression were sharply 
abrogated by EX527 in macrophages. Subsequently, 
Sirt1 siRNA reversed the AsC induced alterations in 
Mrc1, Arg1 and Cd86 expression and inhibited the 
AsC-induced increase in LC3-II/LC3-I, BECN1 and 
ATG5 expression, and the reduction in p62 
expression. Consistent with previous studies, the 
present results showed that the upregulation of Sirt1 
by AsC promoted cell autophagy [28] and 
polarization [49]. Along with the in vitro, in vivo and 
molecular docking results, these data led us to 
hypothesize that AsC modulates autophagy and 
polarization in macrophages by targeting Sirt1 and 
upregulating its expression. 
 
In conclusion, our findings in this paper provide novel 
insights into the molecular mechanisms of AsC against 
atherosclerosis (Figure 8). AsC should be developed as 
an efficient candidate, and macrophage polarization 
should also be considered as a drug target in the clinic. 
However, in the present work, we selected Sirt1 as the 
only target gene for the study. However, the 
antiatherosclerotic effects of AsC are intricate, and one 
gene cannot fully explain the actions of the compound. 
Multiple targets, multiple signaling pathways, and 
multiple biological processes should be explored in 
future studies to fully elucidate the molecular 
mechanisms of AsC against atherosclerosis. 
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Figure 8. Diagram of the proposed molecular mechanism of the antiatherosclerotic effect of AsC. 
MATERIALS AND METHODS 
 
Reagents 
 
Ox-LDL (by copper ion-induced LDL oxidation, 
MDA=35 nM) was obtained from Union-Bio 
Technology (Beijing, China). AsC was isolated in our 
previous study (Wang et al., 2014) at the Institute of 
Medicinal Plant Development (Beijing, China). 
Dimethylsulfoxide (DMSO), 3-(4,5-dimethylthiazol-
2yl-)-2, oil red O, DAPI and 3-methyladenine (3-MA) 
were purchased from Sigma-Aldrich (St. Louis, MO, 
USA). The DMEM Basal Medium and fetal calf serum 
(FBS) were obtained from HyClone (Logan, UT, USA). 
The CytoID Autophagy Detection Kit was obtained 
from Enzo Life Sciences (Farmingdale, NY, USA). 
Cd36 and Mrc1 flow cytometry antibodies were 
purchased from Biolegend (San Diego, CA, USA). 
EX527 was obtained from Target Molecule Corp. 
(Shanghai, China). Antibodies against P62, LC3II and 
pronase were obtained from Sigma-Aldrich (St. Louis, 
MO, USA). NP40 lysis buffer was obtained from 
Beyotime Biotechnology (Shanghai, China). Anti-
mouse and anti-rat IgG (H+L) F(ab')2 fragment anti-
bodies were acquired from Cell Signaling Technology 
(Danvers, MA, USA). Antibodies against Sirt1, Cd86, 
Mrc1, Arg1, and BECN1 were purchased from Abcam 
(Cambridge, United Kingdom). All other antibodies 
were purchased from Santa Cruz Biotechnology (Santa 
Cruz, CA, USA). 
 
Animals 
 
All animal experiments were approved by the 
Institutional Animal Care and Use Committee 
(IACUC) at the Chinese Academy of Medical Sciences 
and Peking Union Medical College, Beijing, China. 
Six-week-old (17 ± 1 g) male ApoE-/- mice with a 
C57BL/6 N background were purchased from Beijing 
Vital River Laboratory Animal Technology Co., Ltd. 
(Beijing, China) and maintained in conventional cages 
in a temperature controlled facility (temperature: 22 ± 
1°C; humidity: 60%) with a 14 h light/10 h dark cycle. 
A BECN1 knockdown mouse model was constructed 
by injecting a lentivirus (Lv) expressing RNA 
inference (RNAi) targeting BECN1, which was 
purchased from Shanghai GeneChem Co. Ltd. 
(Shanghai, China), into the tail vein of ApoE-/- mice, 
according to a previous study [44]. A Lv vector 
expressing green fluorescence protein only was used 
as the control. Mice were randomly divided into five 
experimental groups (n = 8/group): (I) the C57 mouse 
group; (II) ApoE-/- mouse group; (III) ApoE-/- mouse 
+ AsC group; (IV) ApoE-/- mouse + BECN1 RNAi 
group; and (V) ApoE-/- mouse + AsC + BECN1 RNAi 

group. One month after the injection of Lv, the mice 
were subjected to either AsC (20 mg·kg-1·day-1, i.g.) or 
normal saline for 4 weeks as described above (Figure 
2A). All mice were fed with a high fat diet (HFD, 
0.3% cholesterol and 20% pork fat) for 4 weeks. AsC 
was dissolved in normal saline. 
 
Serum lipids 
 
At the end of the experiment, all mice were fasted 
overnight and their sera were acquired from the inner 
canthus. Then, the heart and aortas were separated 
immediately, and the aortas were stored at -80°C. 
Serum lipid levels were determined based on 
commercial kits using a Beckman AU480 biochemical 
autoanalyzer (Fullerton, CA, USA). 
 
Histological and immunohistochemical assays 
 
Serial cryo-sections (6 μm thick) of the aortic root were 
stained with oil red O. Sirt1, Cd86, Arg1 expression in 
the aortic root was detected by immunofluorescence. 
Briefly, the aortic sections were incubated with primary 
antibody (1:50) overnight at 4°C. After rinsing, the 
sections were incubated for 1 h with the secondary 
antibody at room temperature and then incubated with 
0.5 g/L DAPI containing antifluorescence quenching 
agent for 5 min. Images were obtained with a the Tissue 
FAXS microscope (Tissue FAX plus; Tissue Gnostics, 
Vienna, Austria) and analyzed based on our previous 
method [22]. 
 
Cell culture and treatment 
 
RAW264.7 macrophages were obtained from the 
National Infrastructure of Cell Line Resource 
(Beijing, China), and cultured in DMEM basic 
medium supplemented with 10% (v/v) FBS and 1% 
penicillin-streptomycin. Macrophages were main-
tained in a 5% CO2 incubator at 37°C. AsC was 
dissolved in DMSO to generate a solution and diluted 
with culture medium. Then, the cells were seeded in 
various plates, pretreated with AsC, and exposed to 
ox-LDL (80 μg·mL-1) for 24 h. 
 
Oil red O staining 
 
Macrophages were pretreated with AsC (20 μM) for 12 
h and then incubated with ox-LDL for 24 h. The cells 
were washed three times with PBS and fixed with 4% 
(w/v) paraformaldehyde for 10 min at room tem-
perature. After that, the cells were stained with filtered 
oil red O solution (30 min, 60°C) and observed under a 
microscope (Olympus, Tokyo, Japan). Then, the 
absorbance was measured at 358 nm by a Tecan Infinite 
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M1000 Microplate Reader (Tecan, Männedorf, 
Switzerland). 
Transmission electron microscopy (TEM) 
 
After all treatments, the cells were collected and fixed 
in 2.5% glutaraldehyde (TAAB, Berkshire, England) 
in 0.1 M sodium phosphate buffer (pH 7.4) overnight. 
The cells were washed in the same buffer 3 times and 
postfixed in 1% osmic acid at 4°C for 2 h and then 
dehydrated and embedded in epoxypropane according 
to a standard procedure. Ultrathin sections were 
stained with uranyl acetate and lead citrate and 
observed under a JEOL JEM1230 (JEOL Ltd., Tokyo, 
Japan). 
 
Flow cytometry 
 
Autophagosome formation in macrophages was 
investigated using a CytoID Autophagy Detection Kit 
(Enzo Life Sciences, NY, USA) according to the 
manufacturer’s instructions. The CytoID fluorescent 
reagents specifically evaluated autophagic vacuoles 
formed during autophagy. Briefly, macrophages were 
obtained and washed twice in PBS. The cells were 
resuspended in 0.5 mL of freshly diluted CytoID 
reagents and incubated at 37 °C for 30 min. The cells 
were washed and the CytoID fluorescence of the cells 
was immediately analyzed by flow cytometry (BD 
Biosciences, NJ, USA). The percentage of cells with 
CytoID staining was used to represent the formation of 
autophagosomes. 
 
Macrophages were surface stained with anti-Cd36 and 
anti-Mrc1 antibodies and then analyzed by flow 
cytometry. Briefly, macrophages were collected and 
stained with anti-Cd36 and anti-Mrc1 antibodies for 20 
min at 37°C, washed with PBS and analyzed using flow 
cytometry. The fluorescence intensity was statistically 
compared with model group. 
 
Arginase assay 
 
Arginase activity was measured based on a previous 
study [50]. Briefly, macrophages were collected and 
lysed with 0.1% Triton X-100 (containing protease 
and phosphatase inhibitors). Then, the cell lysate  
was incubated with arginase activation solution  
(5 mM MnCl2 in 25 mM Tris HCl [pH 7.4]) for  
10 min at 56°C. Subsequently, the mixture was  
added to the arginase substrate solution (0.5 M  
L-arginine in water [pH 9.7]) and incubated at  
37°C for 1 h. The reaction was terminated by the 
addition of an acid mixture (H2SO4, H3PO4, and 
water at a ratio of 1:3:7), followed by the addition of 
a-isonitrosopropiophenone (9% w/v), which was 
heated to 100°C for 45 min. The OD value was 

measured at 540 nm on a microplate reader (Tecan, 
Switzerland). 
Immunofluorescence 
 
Cell immunofluorescence staining was performed using 
rat anti-LC3II, anti-Mrc1, anti-ATG5 antibodies as well 
as rat IgG (H+L) F(ab')2 fragment. DAPI was used to 
visualize the nuclei. The cells were observed by the 
ImageXpress® Micro system (Molecular Device, CA, 
USA) and analyzed by MetaXpress Software according 
to our previous study [36]. 
 
Quantitative real-time PCR 
 
The RAW264.7 cells were pretreated with AsC (20 μM) 
12 h before exposure to ox-LDL for 24 h. Total RNA 
was extracted using TRIzol (Invitrogen, Carlsbad, CA, 
United States). The isolated RNA was reverse 
transcribed into cDNA using the GoScriptTM Reverse 
Transcription System (Promega). Then, amplification 
was carried out using real-time RT-PCR with the Power 
SYBR Premix Ex TaqTM II (TaKaRa Biotechnology, 
Dalian, China) in an iQ5 Real-time PCR detection 
system with analysis software (Bio-Rad, Santa Rosa, 
CA, United States). Primers (Table 1) were designed 
using premier primer Software 6.0 (Canadian Premier 
Life Insurance Company, ON, Canada). The 2-ΔCT 
method was used to analyze the results according to our 
previous research [24]. 
 
Cellular thermal shift assay (CETSA) 
 
CETSA was performed according to a previous study 
[26]. Briefly, the cells were collected and heated 
individually at different temperatures (42, 46, 50, 54, 
58, and 62°C) for 3 min and then cooled for 3 min at 
room temperature. Then, the samples were centrifuged, 
and the obtained cells were analyzed by western 
blotting. 
 
Drug affinity responsive target stability (DARTS) 
assay 
 
Briefly, total cell protein was isolated using NP40 lysis 
buffer. The lysate was equally distributed into seven 
groups and treated with different concentrations of 
DMSO as a control or AsC (0, 5, 10, 20, 50 and 100 
μM) separately for 1 h at room temperature. Then, 
pronase (25 μg·mL-1) was added to the lysates for a 
further an additional 30 min at 37°C. The reactions were 
stopped by adding SDS-PAGE loading buffer, and the 
samples were analyzed via western blotting. 
 
Molecular docking 
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The binding poses of AsC in the active site of Sirt1 
(PDB code: 4ZZJ) were analyzed using the docking 

program Lib Dock according to our previous method 

Table 1. Primers used for quantitative real-time PCR. 

Gene Primer sequence (5' to 3') Product (bp) 
GAPDH F: CTGCGGCATCCACGAAACT 126 

R: AGGGCCGTGATCTCCTTCTG 
IL-1β F: TGCCACCTTTTGACAGTGATGA 135 

R: TGTGCTGCTGCGAGATTTGA 
iNOS F: CTGCAGCACTTGGATCAGGAACCTG 311 

R: GGAGTAGCCTGTGTGCACCTGGAA 
CD206 F: TGCTACTGAACCTCCTCAACTGC 121 

R: AGCCTGACCCCAACTTCTCGT 
Arg-1 F: TGCATATCTGCCAAAGACATCG 137 

R: TCCATCACCTTGCCAATCCC 
 

[21]. The binding affinities (LibDockScore) in 
Discovery Studio 4.5 were used to evaluate the 
interactions between AsC and Sirt1. 
 
siRNA assay 
 
siRNAs targeting BECN1 and Sirt1 were purchased 
from Santa Cruz Biotechnology along with control 
siRNA and siRNA transfection reagent, according to 
our previous report [36]. Briefly, 80% confluent cells 
were transiently transfected with 100 nM siRNA per 
dish for 7 h according to the manufacturer's method. 
Then, the cells were switched to DMEM complete 
medium and incubated for an additional 24 h. Where 
indicated, macrophages were treated with AsC (20 μM) 
for 12 h and then exposed to ox-LDL for another 24 h. 
The knockdown efficiency of the target proteins was 
measured by western blotting. 
 
Western blot analysis 
 
Macrophages were harvested and lysed with cell lysis 
buffer containing 0.1 mM dithiothreitol and proteinase 
inhibitor cocktail. Protein concentration was detected 
using a Bio-Rad DC protein determination kit. A 
western blot assay was then performed, and 
immunoblotting was developed using an ECL kit. Band 
intensities were analyzed using Gel Pro software 
(Media Cybernetics, Rockville, MD, United States). 
 
Statistical analysis 
 
All analyses were performed with GraphPad Prism 6.0 
software (San Diego, CA, USA). The data are presented 
as the mean ± S.D. Multigroup comparisons were 
analyzed by one-way analysis of variance (ANOVA) 
followed by Tukey's post hoc test. Comparisons 
between two groups were performed by use of Student's 
unpaired t-test. Values of P < 0.05 were considered to 
indicate statistical significance. The data and statistical 
analysis complied with the recommendations on 

experimental design and analysis in pharmacology 
(Curtis et al., 2018). 
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SUPPLEMENTARY MATERIALS 
 
Body composition and body weight determination 
 
Body composition was measured using the Bruker LF65 
II “Minispec” body composition analyzer (Bruker 
Optics, Billerica, MA) as previously reported (Gordon 
et al., 2016). Briefly, a mouse was placed in an acrylic 
cylinder (48-mm diameter) and was loosely restrained 
in the cylinder by pushing a plunger to maintain the 
mouse inside the cylinder based on the size of the 
mouse. The cylinder was then positioned inside the bore 
of the magnet. The measurements of fat, lean, and fluid 
were recorded in 2 min. And the % fat, lean and fluid 
relative to body weight were calculated. 
 
HE staining 
 
Frozen sections of the aortic root were stained with oil 
red O according to our previous method (Luo et al., 
2015).  
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Supplementary Figures  
 

 
 

Supplemetary Figure 1. The effects of AsC on body component and necrosis area in HFD-treated mice. (A) The fat, lean and free 
fruid level in all mice. (B) HE staining of aortic root in all mice. (C) The statistic results of nercrotic core described in (B). Data are presented as 
means ± SD (n = 5). ##P < 0.01 vs. the Control group; N.S. means no significance. 
 

 

Supplementary Figure 2. The representive results of Cd36 detected by flow cytometry. 
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Supplementary Figure 3. The representive results of Mrc1 detected by flow cytometry. 


