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INTRODUCTION 
 

Breast cancer (BC) ranks as the most common cancer 

and the second most common cause of death from 

cancers in women worldwide [1–4]. According to the 

report of the Global Burden of Disease (GBD) Study 

2017, the estimated annual deaths of BC was 611.6 

thousand, and the all-age years of life lost (YLLs) was 

16400.7 thousand globally [5]. Sleep-related 

mechanisms, which might initiate, exacerbate or 

modulate the phenotypic expression of multiple 

diseases, have been widely investigated for their 

relationships with BC [6–8]. However, less 

investigation has explored the potential detrimental 

effects of obstructive sleep apnea syndrome (OSAS), 

which has become a highly prevalent condition 

throughout the lifespan [9–16]. 

 

OSAS, a sleep-related breathing disorder characterized 

by recurrent cessations of breathing during sleep, could 

lead to intermittent hypoxia and sleep fragmentation 

[17]. Chronic and intermittent hypoxia have been shown 

to play an essential role in the progress of 

carcinogenesis and tumor progression [18–20]. Many 

observational studies have implicated the potential 

detrimental role of OSAS in multiple cancers, although 

the results were inconsistent [6, 21–24]. The causality 

of OSAS and BC still remains unknown due to the 

inherent limitations in observational studies of 

confounding and reverse causation. 

 

Mendelian randomization (MR), using genetic variants 

as an instrument variable (IV) for the exposure to 

estimate causal effects of modifiable risk factors on 

disease outcomes, could overcome the limitations of the 
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ABSTRACT 
 

Although observational studies have reported a positive association between obstructive sleep apnea 
syndrome (OSAS) and breast cancer (BC) risk, causality remains inconclusive. We aim to explore whether 
OSAS is associated with etiology of BC by conducting a two-sample Mendelian randomization (MR) study in a 
Chinese population and Asian population from the Breast Cancer Association Consortium (BCAC). We found a 
detrimental causal effect of OSAS on BC risk in the primary analysis of our samples (IVW OR, 2.47 for BC risk 
per log-odds increment in OSAS risk, 95% CI = 1.86-3.27; P = 3.6×10-10). This was very similar to results of the 
direct observational case-control study between OSAS and BC risk (OR = 2.80; 95% CI = 2.24-3.50; P =1.4×10-

19). Replication in the Asian population of the BCAC study also supported our results (IVW OR, 1.33 for BC risk 
per log-odds increment in OSAS risk, 95% CI = 1.13-1.56; P = 0.0006). Sensitivity analyses confirmed the 
robustness of our findings. We provide novel evidence that genetically determined higher risk of OSAS has a 
causal effect on higher risk of BC. Further studies focused on the mechanisms of the relationship between 
OSAS and breast carcinogenesis are needed. 
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observational studies [25]. It have successfully adopted 

in a wide spectrum of diseases, including cancers, 

cardiovascular diseases, diabetes, and so on [16, 26–

34]. In current study, we aims to performed a two-

sample MR analysis to examine the causal effect of 

OSAS and etiology of BC.  

 

RESULTS 
 

Baseline characteristics of the included samples 

 

As shown in Table 1, two case-control studies were 

conducted. The first study aimed to replicate the GWAS 

findings of OSAS, which were mostly identified in 

European population. Then, we evaluated associations 

of the positive variants with BC risk in the second case-

control study. The distribution of age, body mass index 

(BMI), and smoking status were comparable between 

the cases and controls, while BC cases have more 

family history of cancer, and OSAS (Table 1, P<0.001).  

 

Replication of OSAS loci and their associations with 

BC risk in Chinese population 

 

All 23 OSAS risk loci identified by GWASs mostly in 

European population were presented in Supplementary 

Table 1. Among them, 13 variants met the standard of 

minor allele frequency (MAF) ≥ 5% in Chinese Han 

population and pairwise r2 < 0.8. As shown in Table 2, 

5 proxy SNPs, including rs10097555, rs11074782, 

rs10777373, rs11588454, and rs11897825, were 

identified to be significantly associated with OSAS risk 

in Chinese samples (P<0.05). All of these five variants 

were in agreement with HWE in controls (P >  0.05). As 

shown in Table 3, we found rs10097555, rs11074782, 

rs10777373, rs11588454, and rs11897825 were 

significantly associated with BC risk, after adjusted for 

age, smoking status, family history of cancer and BMI 

(P<0.05). Minor alleles of SNP rs11588454 and 

rs11897825 was associated with increased risk of BC, 

while those of rs10097555, rs11074782, rs10777373 

were associated with decreased risk of BC. 

 

MR analyses 

 

The F-statistic for the 5 instrument SNPs were all well 

above the threshold of F >10 typically recommended for 

MR analyses. Table 4 presents the summary statistics of 

the five genetic variants used as instrumental variables 

in both our sample and Asian population of the BCAC 

study. Associations of genetically determined risk of 

OSAS with BC risk using multiple MR methods are 

shown in Table 5. We found evidence of a detrimental 

causal effect of OSAS on BC risk in the primary 

analysis of our samples (IVW OR, 2.47 for BC risk per 

log-odds increment in OSAS risk, 95% CI = 1.86-3.27; 

P = 3.6×10-10). This was very similar to results of the 

direct observational case-control study between OSAS 

and BC risk (OR = 2.80; 95% CI = 2.24-3.50; P 

=1.4×10-19). When we replicated our findings in the 

Asian population of the BCAC study, we also found the 

detrimental causal effect (IVW OR, 1.33 for BC risk per 

log-odds increment in OSAS risk, 95% CI = 1.13-1.56; 

P = 0.0006). Sensitivity analyses by MBE, penalized 

IVW, robust IVW, simple median, and weighted 

median method confirmed the robustness of our 

findings. For the potential pleiotropy effect, we didn’t 

find any other associations by searching MR-Base, 

PhenoScanner database and the GWAS catalog. The 

intercept from MR-Egger regression didn’t differed 

from zero (P>0.05). Also, MR-PRESSO analyses 

revealed that no potential outliers were detected in both 

our sample and Asian population of the BCAC study.  

 

DISCUSSION 
 

In current study, we applied a two-sample MR approach 

to comprehensively evaluate the causal relationships of 

OSAS and etiology of BC in both Chinese samples and 

Asian population of the BCAC study. The primary MR 

analyses showed that genetic predisposition to higher 

risk of OSAS was associated with higher risk of BC. 

Meanwhile, sensitivity analyses validated the robustness 

of the primary results. We also didn’t detect any 

pleiotropy effect of the IV for OSAS using series of 

methods. To the best of our knowledge, this should be 

first study which aims to explore the causal 

relationships between OSAS and risk of BC. 

 

Sleep-related disorders is a series of different medical 

disorders of the sleep patterns, including dyssomnias, 

parasomnias, circadian rhythm sleep disorders, and 

others [35, 36]. Among them, OSAS is the most 

frequent type of respiratory disturbance [37]. It was 

estimated that OSAS owned a mean prevalence rate of 

22% (range, 9-37%) in men and 17% (range, 4-50%) in 

women globally [38]. According to the results of a 

meta-analysis in Asian countries, China and India 

present the highest prevalence of OSAS [39]. Previous 

retrospective and prospective observational studies 

revealed there was a possible association between 

OSAS and elevated cancer risk, although it was not 

determined that whether it was a causal relationship [22, 

40–43]. Even some studies reported null association or 

reversed conclusion that cancers and its related 

therapies caused the occurrence of OSAS [44–46]. 

Against this background, the implement of MR in the 

causal inference was much more essential. Recently, a 

MR analysis evaluated the associations of self-reported 

chronotype (morning or evening preference), insomnia 

symptoms, sleep duration, with BC risk using the UK 

Biobank data [16]. They identified a protective effect of 
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Table 1. Characteristics of women included in the mendelian randomization study. 

Variables 

OSAS  BC 

Cases  

(n=900) 

Controls 

(n=1078) 
P value   

Cases 

(n=1200) 

Controls 

(n=1200) 
P value  

Age        

≥50 462 (51.3%) 564 (52.3%) 0.662  685 (57.1%) 641 (53.4%) 0.071 

<50 438 (48.7%) 514 (47.7%)   515 (42.9%) 559 (36.6%)  

Body mass index (BMI) 23.97±3.21 23.88±3.17 0.532  23.96±3.20 23.90±3.24 0.648 

Family history of cancer        

Yes 113 (12.6%) 108 (10.0%) 0.074  289 (24.1%) 122 (10.2%) <0.001 

No 787 (87.4%) 970 (90.0%)   911 (75.9%) 1078 (89.8%)  

Smoking status        

Smokers 160 (17.8%) 162 (15.0%) 0.099  215 (17.9%) 184 (15.3%) 0.089 

Non-Smokers 740 (82.2%) 916 (85.0%)   985 (82.1%) 1016 (84.7%)  

OSAS        

Yes - -   289 (24.1%) 122 (10.2%) <0.001 

No - -   911 (75.9%) 1078 (89.8%)  

 

Table 2. Replication of the GWAS identified OSAS variants in Chinese population. 

 OSAS cases Controls OR (95% CIs) * P value 

rs10097555     

AA 621 691 1.00 (Reference)  

AG 267 355 0.84 (0.69-1.01) 0.069 

GG 12 32 0.42 (0.22-0.8) 0.009 

G vs A   0.80 (0.71-0.90) 0.001 

rs11074782     

CC 606 680 1.00 (Reference)  

TC 267 343 0.87 (0.72-1.06) 0.171 

TT 27 55 0.55 (0.35-0.88) 0.012 

T vs C   0.82 (0.73-0.92) 0.001 

rs10777373     

CC 472 513 1.00 (Reference)  

TC 361 446 0.88 (0.73-1.06) 0.179 

TT 67 119 0.61 (0.44-0.84) 0.003 

T vs C   0.82 (0.73-0.94) 0.003 

rs11588454     

TT 479 638 1.00 (Reference)  

TC 360 388 1.24 (1.03-1.49) 0.026 

CC 61 52 1.56 (1.06-2.30) 0.023 

C vs T   1.25 (1.11-1.40) 0.002 

rs11897825     

AA 286 409 1.00 (Reference)  

AG 466 518 1.29 (1.06-1.57) 0.012 

GG 148 151 1.40 (1.07-1.84) 0.015 

G vs A   1.20 (1.09-1.32) 0.001 

* Adjusted for age, smoking status, family history of cancer and BMI. 
 

morning preference and suggestive evidence for an 

adverse effect of increased sleep duration on BC risk 

[16]. However, OSAS trait was not evaluated due to the 

complexity of trait measurement. 

To make up for this defect, a two-sample MR method was 

implemented to evaluated the explore the causal 

relationships between OSAS and risk of BC in current 

study. Results of both of Chinese samples and the Asian 
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Table 3. Associations of the OSAS variants with BC risk in Chinese population. 

 OSAS cases Controls OR (95% CIs) * P value 

rs10097555     

AA 827 769 1.00 (Reference)  

AG 351 395 0.83 (0.69-0.98) 0.032 

GG 22 36 0.57 (0.33-0.97) 0.038 

G vs A   0.82 (0.70-0.95) 0.007 

rs11074782     

CC 821 757 1.00 (Reference)  

TC 341 381 0.83 (0.69-0.98) 0.033 

TT 38 62 0.57 (0.37-0.85) 0.006 

T vs C   0.79 (0.68-0.91) 0.001 

rs10777373     

CC 631 571 1.00 (Reference)  

TC 461 498 0.84 (0.71-0.99) 0.041 

TT 108 131 0.75 (0.56-0.99) 0.039 

T vs C   0.85 (0.75-0.96) 0.009 

rs11588454     

TT 651 705 1.00 (Reference)  

TC 461 426 1.17 (0.99-1.39) 0.066 

CC 88 69 1.38 (0.99-1.92) 0.056 

C vs T   1.18 (1.03-1.34) 0.015 

rs11897825     

AA 388 452 1.00 (Reference)  

AG 611 583 1.22 (1.02-1.46) 0.027 

GG 201 165 1.42 (1.11-1.82) 0.005 

G vs A   1.19 (1.06-1.34) 0.003 

* Adjusted for age, smoking status, family history of cancer and BMI. 
 

Table 4. Genetic variants used as instrumental variables in summary statistics approach. 

SNPs Effect allele Beta (OSAS) Se (OSAS) Beta (BC) Se (BC) 

Current study      

rs10097555  A 0.22 0.06 0.20 0.07 

rs11074782 C 0.20 0.06 0.24 0.07 

rs10777373 C 0.20 0.06 0.16 0.06 

rs11588454 C 0.22 0.06 0.16 0.07 

rs11897825 G 0.18 0.05 0.17 0.06 

BCAC study (Asian population)   

rs10097555  A 0.22 0.06 0.08 0.03 

rs11074782 C 0.20 0.06 0.08 0.04 

rs10777373 C 0.20 0.06 0.05 0.05 

rs11588454 C 0.22 0.06 0.04 0.04 

rs11897825 G 0.18 0.05 0.02 0.04 

 

population of the BCAC study revealed that OSAS has a 

causal effect on higher BC risk. This results supported the 

previous underpowered and inconsistent studies and 

provided stronger evidence for the carcinogenesis role of 

OSAS [23, 46–49]. We included five instrument SNPs, 

which were reported in previous genome-wide association 

studies (GWAS) and replicated in our Chinese samples, 

for the IV construction of OSAS [40, 51].  

 

In vitro and in vivo experiments have provided many 

insights into the mechanism of hypoxia in the progress 

of carcinogenesis and tumor progression of breast 
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Table 5. Genetically predicted associations between OSAS and susceptibility of BC. 

MR methods 
Current study  BCAC study (Asian population) 

OR (95% CI) P value  OR (95% CI) P value 

IVW 2.47 (1.86-3.27) 3.6×10-10  1.33 (1.13-1.56) 0.0006 

MBE 2.31 (1.34-4.01) 2.7×10-3  1.42 (1.06-1.91) 0.021 

Penalized IVW 2.47 (1.86-3.27) 3.6×10-10  1.33 (1.13-1.56) 0.0006 

Robust IVW 2.45 (1.89-3.16) 8.4×10-12  1.33 (1.19-1.49) 8.9×10-7 

Simple median 2.48 (1.53-4.03) 2.3×10-4  1.28 (1.00-1.64) 0.047 

Weighted median 2.43 (1.51-3.91) 2.4×10-4  1.34 (1.06-1.70) 0.013 

cancer. Two main hypoxia markers, CAIX and HIF-1α, 

have been widely studied and were up-regulated in BC 

tissues using GEPIA 2 [52]. An HIF-1α/VEGF-A Axis 

in cytotoxic T cells was involved in the regulation of 

tumor progression, while loss of HIF-1α in CD8+ T 

cells could reduce tumor infiltration and tumor cell 

killing, and altered tumor vascularization [53]. A high 

amount of adipocytes enhanced BC progression due to 

the increased expression of HIF-1α [54]. Additionally, 

higher levels of serum CAIX was significant prognostic 

biomarkers of shorter PFS for BC, and CAIX could 

form a transport metabolon with monocarboxylate 

transporters in human breast cancer cells [55, 56]. 

 

This study has several methodological strengths. First, 

multiple samples to assess the causal effect of OSAS 

on BC risk. Second, rigor of the IV construction for 

OSAS. All five variants were GWAS identified and 

replicated in our samples. The F-statistic for the 5 

instrument SNPs were all well above the threshold of 

F >10 typically recommended for MR analyses. Third, 

results were confirmed through sensitivity analyses 

and pleiotropy effect examination. Limitation should 

be also considered when interpret the results. First 

should be the limited number of IV variants. In current 

study, OSAS risk loci identified by GWASs mostly in 

European population were evaluated first in Chinese 

population. Only 5 variants replicated to be associated 

with OSAS in Chinese population. Next step, more 

GWASs of OSAS conducted in Asian population are 

needed. Second, shortage of a large-sample cohort 

limited the authority of evidence. Future large pooling 

consortia, larger GWAS of OSAS in Asian population 

and MR studies using individual level data are 

warranted. 

 

CONCLUSIONS 
 

In summary, this study provides novel evidence that 

genetically determined higher risk of OSAS has a causal 

effect on higher risk of BC. Our results, in combination 

with previous literature, provide evidence that 

population-wide screening for OSAS should be 

recommended as a primary BC prevention strategy. 

Future research should be best focused on 

understanding the mechanisms of the relationship 

between OSAS and breast carcinogenesis.  

 

MATERIALS AND METHODS 
 

Study population 

 

In this two-sample MR study, ethical approval was 

obtained from the Ethical Committee of the Second 

Hospital of Shanxi Medical University, and all 

participants signed the informed consent. The 

determination of OSAS was conducted using an overnight 

laboratory-based polysomnography (PSG) test, together 

with the measurement of apnea–hypopnea index (AHI). 

Then, OSAS was defined as an AHI >5 events/h, and 

daytime symptoms specific for an OSAS. The diagnosis 

of BC was determined by histopathological examination. 

Demographic information was collected from the medical 

records. During the same period of time, healthy 

volunteers visiting the same hospital for physical 

examination were selected as controls. The shared 

controls was frequency matched by age, ethnicity and 

body mass index (BMI). Finally, 900 OSAS (1078 

controls, 122 OSAS cases were excluded from the 

controls in this stage) and 1200 BC cases (1200 controls) 

were included in current study. Ten ml of venous blood 

was collected from each study subject. Besides, we  

also applied the summarized iCOGS data of Asian 

population (6269 BC cases; 6624 controls) from the 

Breast Cancer Association Consortium (BCAC) to 

validate our findings [57].  

 

Variants selection and genotyping 

 

In MR, genetic variants associated with a risk factor 

are used as IV to infer the true relationship between 

the risk factor and outcome. Using the GWAS 

identified loci to construct the IV was the most 

commonly used method, as the repeatability, accuracy 

and stability of the results [58]. In current study, we 

first retrieved the GWAS catalog, and 23 OSAS risk 
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loci were identified, mostly in European population 

(Supplementary Table 1). Then, the variants were 

filtered with the standard of minor allele frequency 

(MAF) ≥ 5% in Chinese Han population and pairwise 

r2 < 0.8. Thirteen variants were kept. Further, 

genotyping was performed for these 13 SNPs using 

the TaqMan allelic discrimination assay on an ABI 

7900 system (Applied Biosystems Inc, Foster City, 

CA, USA). Blind duplicates of 10% randomly 

selected samples were genotyped to verify the 

reproducibility of genotype calls; concordance 

between duplicates was greater than 100% for all 

pairs. 

 

Statistical analysis 

 

All statistical analyses were conducted using the R 

statistical software (version 3.6.1), and all P values are 

two-tailed, and P < 0.05 was considered significant. The 

associations of each SNP with OSAS and BC 

susceptibility were estimated by unconditional logistic 

regression analyses with odds ratios (ORs) and 95% 

confidence intervals (CIs).  

 

We selected the random-effect inverse-variance 

weighted (IVW) method as the primary analyses. 

Furthermore, model based estimation (MBE), penalized 

IVW, robust IVW, simple median, and weighted 

median method were used for sensitivity analyses. We 

computed F-statistics to quantify the strength of the 

selected instruments. Besides, three methods were 

conducted to detect possible pleiotropy. First, we 

looked up the MR-Base (http://app.mrbase.org/), 

PhenoScanner database (http://www.phenoscanner. 

medschl.cam.ac.uk/) and the GWAS catalog (https:// 

www.ebi.ac.uk/gwas/home) for potential associations of 

all 5 variants in our study with the following BC-related 

traits and risk factors. Second, we tested whether the 

intercept from MR-Egger regression differed from zero, 

which provided evidence of directional pleiotropy. 

Third, the MR-Pleiotropy Residual Sum and Outlier 

(MR-PRESSO) was used to identify and correct for 

potential outliers. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Table 
 

Please browse Full Text version to see the data of Supplementary Table 1 
 

Supplementary Table 1. GWAS loci for obstructive sleep apnea in GWAS catalog. 


