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INTRODUCTION 
 
Obstructive sleep apnea (OSA), a common sleep 
disorder, affects a large proportion of the adult 
population [1, 2]. Intermittent hypoxia (IH) known as 
the primary characteristic of OSA is a potential key 
factor  leading  to  the  pathogenesis  of OSA-related co- 

 

morbidities, including cardiovascular disease [3], 
insulin resistance [4] and Alzheimer’s disease [5]. Over 
the past few decades, an increased risk factor for 
cardiovascular morbidities has been consistently 
observed among OSA patients [6, 7]. Furthermore, 
increasing evidence indicates that patients with OSA 
often show endothelial dysfunction, which is an early 
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ABSTRACT 
 
Objective: The functions and molecular regulatory mechanisms of miR-193a-3p in cardiac injury induced by 
obstructive sleep apnea (OSA) are poorly understood. This study aimed to explore the role of miR-193a-3p in 
intermittent hypoxia(IH)-induced human umbilical vein endothelial cells (HUVECs) injury. 
Results: In this study, we found that IH significantly decreased viability but enhanced cell apoptosis. 
Concurrently, the miR-193a-3p expression level was increased in HUVECs after IH. Subsequent experiments 
showed that IH-induced injury was ameliorated through miR-193a-3p silence. Fas apoptotic inhibitory molecule 
2 (FAIM2) was predicted by bioinformatics analysis and further identified as a direct target gene of miR-193a-
3p. Interestingly, the effect of miR-193a-3p inhibition under IH could be reversed by down-regulating FAIM2 
expression. 
Conclusion: In conclusion, our study first revealed that miR-193a-3p inhibition could protect HUVECs against 
intermittent hypoxia-induced damage by negatively regulating FAIM2. These findings could advance our 
understanding of the underlying mechanisms for OSA-related cardiac injury. 
Methods: We exposed HUVECs to IH condition; the expression levels of miR-193a-3p were detected by  
RT-qPCR. Cell viability, and the expressions of apoptosis-associated proteins were examined via CCK-8, and 
western blotting, respectively. Target genes of miR-193a-3p were confirmed by dual-luciferase reporter 
assay. 
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event in the process of cardiovascular disease [8, 9]. In 
animal OSA models, IH exposures and long-term sleep 
fragmentation could lead to endothelial dysfunction 
[10], thereby supporting a potential causal relationship 
between OSA and endothelial dysfunction. In two 
previous studies, they clearly indicated that the 
impairment of endothelial function was restored with 
improvement of IH exposures [11, 12]. However, the 
potential mechanisms involved in the occurrence of 
OSA-induced endothelial dysfunction are still poorly 
understood. 
 
MiRNAs are a class of small, noncoding RNAs, with the 
length of 20-26 nucleotides. They regulate gene 
expression by binding to the 3′ untranslated region (3′-
UTR) of target genes, which leads to the reduction of the 
corresponding genes by degradation of mRNA or 
inhibition of mRNA translation [13]. Increasing 
evidence indicates that miRNAs could regulate various 
physiological and pathological processes, including cell 
viability, apoptosis, autophagy, and differentiation [14]. 
Meanwhile, a number of miRNAs are involved and 
functional in cardiovascular disease, including acute 
myocardial infarction (AMI) [15], atherosclerosis [16], 
atrial fibrillation [17] and cardiac hypertrophy [18]. For 
instance, miRNA-214 was highly expressed in elderly 
AMI patients, which may regulate myocardial cell 
apoptosis via inhibiting miR-214 target genes expression 
[15]. Recently, miR-193a-3p has been verified as a key 
regulator in the development of numerous cancers such 
as non-small cell lung cancer [19], colorectal cancer [20] 
and bladder cancer [21]. However, the effects and 
modulatory mechanism of miR-193a-3p in protecting 

human umbilical vein endothelial cells (HUVECs) from 
IH-induced apoptosis have not been studied. 
 
In the present study, we first used an in vitro model of 
endothelial injury induced by IH to investigate the role 
of and interaction between miR-193a-3p and Fas 
apoptotic inhibitory molecule 2 (FAIM2) in regulating 
IH-induced endothelial damage. We found that 
intermittent hypoxia induced endothelial injury in vitro, 
which was accompanied by the upregulation of miR-
193a-3p. Inhibition of miR-193a-3p attenuated inter-
mittent hypoxia-induced endothelial injury by 
regulating apoptosis via down-regulating FAIM2 
expression. Our novel insights into miRNA functions 
will elaborate the effects of miR-193a-3p in preventing 
IH-mediated endothelial injury by negatively regulating 
FAIM2, with the goal of providing new treatments for 
OSA-related cardiovascular diseases. 
 
RESULTS 
 
IH-induced endothelial damage in HUVECs 
 
To evaluate the role of IH conditions for endothelial 
function, cell viability was detected exposure to 
normoxia or IH conditions. The results showed that IH 
treatment significantly decreased cell viability in 
HUVECs (Figure 1A). Meanwhile, western blot 
analysis showed that the activities of caspase-3 and the 
pro-apoptotic protein Bax expression were significantly 
increased, whereas markedly decreased anti-apoptotic 
Bcl-2 expression when compared to the normoxia group 
(Figure 1B and 1C). 

 

 
 

Figure 1. IH inhibits cell viability in HUVECs. (A) Cell viability by a Cell Counting Kit-8. (B, C) Western blotting assays for Bcl-2, Bax, and 
Caspase-3 protein levels. β-Actin was served as internal control. IH: intermittent hypoxia; n = 3. (Data are presented as the mean ± SD of 
three independent experiments. *P < 0.05, **P < 0.01, and ***P < 0.001). 
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miR-193a-3p was upregulated in HUVECs exposed 
to IH 
 
To assess the effect of miR-193a-3p in endothelial 
function, we first measured the expression levels  
of miR-193a-3p in IH-mediated HUVECs by RT-
qPCR. As shown in Figure 2A, miR-193a-3p was 
significantly up-regulated by IH compared to the 
control group (P < 0.001). Next, to investigate the 
roles of miR-193a-3p, transfection of HUVECs with 
the miR-193a-3p inhibitor, or negative control was 
further performed. After transfection, the expression of 
miR-193a-3p was determined by RT-qPCR. As 
expected, miR-193a-3p had a remarkable reduction 
after transfecting with miR-193a-3p inhibitor when 
compared to the negative control group (P < 0.0001; 
Figure 2B). These outcomes demonstrated that the 
transfection was efficient. 
 
miR-193a-3p inhibition alleviated IH-induced 
endothelial injury 
 
To validate if miR-193a-3p inhibitor can protect 
HUVECs from IH-induced injury, we carried out miR-
193a-3p knockdown experiments. As shown in Figure 
3A, results from CCK-8 assay indicated that the cell 
viability of HUVECs was notably higher than that in the 
control group after transfecting with miR-193a-3p 
inhibitor (P < 0.05). Additionally, the apoptosis-
associated proteins Bcl-2, Bax and Caspase-3 were 
measured by western blotting. It showed that inhibition 
of miR-193a-3p significantly increased the expression 
of Bcl-2, whereas markedly decreased Bax and 

Caspase-3 expression in HUVECs exposure to IH 
(Figure 3B and 3C). 
 
miR-193a-3p directly targeted FAIM2, and inhibited 
FAIM2 expression 
 
We carried out bioinformatic analysis to explore the 
potential mechanism underlying miR-193a-3p inhibition 
suppressed IH-induced endothelial injury. Using 
miRbase, starBase, and TargetScan, FAIM2 was 
predicted as a new target of miR-193a-3p. The binding 
site between FAIM2 3′UTR and miR-193a-3p is shown 
in Figure 4A. Next, we performed a dual-luciferase 
reporter assay to confirm whether miR-193a-3p directly 
targeted to the 3′UTR of FAIM2. As shown in Figure 
4B, the results demonstrated that luciferase activity was 
significantly decreased in HUVECs co-transfected with 
miR-193a-3p mimics and FAIM2-WT compared to that 
of co-transfection with mimics control and FAIM2-WT. 
Additionally, the results also revealed that expressions 
of FAIM2 at mRNA and protein levels were markedly 
increased by knockdown of miR-193a-3p compared to 
the control group(Figure 4C to 4E). Collectively, these 
results identified that FAIM2 is a novel direct target of 
miR-193a-3p. 
 
Knockdown of FAIM2 eliminated the protective 
effects of miR-193a-3p inhibition against IH-induced 
injury in HUVECs 
 
Finally, we try to validate whether FAIM2 is linked to 
the effects of miR-193a-3p on IH-induced injury. 
HUVECs were transfected with si-FAIM2, miR-193a-3p 

 

 
 

Figure 2. IH induces upregulation of miR-193a-3p, and miR-193a-3p is inhibited in HUVECs after transfection. (A) miR-193a-3p 
expression was measured by RT-qPCR. (B) Cells were transfected with miR-193a-3p inhibitor, and negative control. Relative miR-193a-3p 
expression was normalized to U6. IH: intermittent hypoxia; n = 3. (Data are presented as the mean ± SD of three independent experiments. 
***P < 0.001, and ****P < 0.0001). 
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inhibitor, or corresponding negative control. As shown in 
Figure 5A to 5C, the effectiveness of miR-193a-3p 
inhibition on cell viability, and the expression of 
apoptosis-related proteins were all reversed by 
knockdown of FAIM2 compared to the control group 
under IH condition. Therefore, we come up with the 
conclusion that miR-193a-3p silence may ameliorate 
IH-mediated endothelial injury through up-regulating 
FAIM2. 
 
DISCUSSION 
 
In the present study, our data indicated that IH could 
induced injury in HUVECs and miR-193a-3p was 
remarkably up-regulated under IH condition. However, 
miR-193a-3p inhibitor could protect HUVECs against 
IH-induced damage, as evidenced by the improvement 
of cell viability, the down-regulation of Bax, Caspase-3 
and the up-regulation of Bcl-2. After that, miR-193a-3p 
was validated to inhibit FAIM2 and FAIM2 was further 
identified as a novel direct target of miR-193a-3p by 
luciferase reporter assay. Finally, effects of miR-193a-
3p suppression on HUVECs could be relieved by 
knockdown of FAIM2. To our knowledge, the current 
study first revealed that inhibition of miR-193a-3p 
could protect HUVECs against IH-induced injury by 
targeting FIAM2. 
 
OSA, characterized by intermittent hypoxia, is 
considered as an independent risk factor for a variety of 
cardiovascular diseases, including myocardial ischemia, 
hypertension, atherosclerosis and heart failure [8, 22]. 
Multiple contributing factors supporting the potential 
association between OSA and cardiovascular diseases 
have been suggested, including intermittent hypoxia, 
oxidative stress, increased sympathetic activity, and 

systemic inflammation, all of which may be linked to 
endothelial dysfunction [8, 23, 24]. Endothelial 
dysfunction is an important onset in the pathogenesis of 
atherosclerosis and other cardiovascular disease [25, 
26]. Studies have confirmed the association between 
OSA or IH and endothelial dysfunction [27–29]. IH 
during OSA leads to several pathological responses 
including oxidative stress and inflammation, which is 
suggested to account for endothelial dysfunction [30, 
31]. In a word, consistent evidence shows that OSA 
may cause endothelial dysfunction. As yet, little is 
known about the processes leading from endothelial 
dysfunction to pathological changes of cardiovascular 
consequences in OSA. In our study, IH stimulation 
significantly reduced cell viability and promoted cell 
apoptosis in endothelial cells. Therefore, how to relieve 
IH-related endothelial injury arouses more and more 
concern. 
 
In the past decade, a number of microRNAs have 
already been demonstrated to play crucial roles in the 
biological functions of endothelial cells (ECs), such as 
cell proliferation, migration, apoptosis, and differen-
tiation [30–34]. Liu et al. disclosed that miR-495 
regulated the proliferation and apoptosis of HUVECs by 
directly targeting CCL2 [35]. Similarly, miR-497 was 
identified to play an important role in the development 
of atherosclerosis by inducing apoptosis and 
suppressing the proliferation of HUVECs [36]. These 
all highlighted the critical role miRNAs involved in the 
apoptosis of ECs. Furthermore, miRNAs are also 
involved in the regulation of initiation and development 
of cardiovascular disease [37, 38]. For example, miR-
208 and miR-1 are identified as novel biomarkers for 
cardiovascular diseases, including coronary artery 
disease, essential hypertension and heart failure [39]. 

 

 
 

Figure 3. miR-193a-3p silence alleviates IH-induced injury in HUVECs. Cells were transfected with miR-193a-3p inhibitor, and 
negative control. Cells with normoxia treatment were acted as control. (A) Cell viability. (B, C) Expression levels of apoptosis-related proteins. 
β-Actin was served as internal control. IH: intermittent hypoxia; n = 3. (Data are presented as the mean ± SD of three independent 
experiments. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001). 
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Our results showed that miR-193a-3p was markedly 
upregulated after IH stimulation, implying the crucial 
function of miR-193a-3p in the progression of IH-
induced endothelial injury. Therefore, we chose miR-
193a-3p to explore the relationship between miRNAs and 
endothelial injury induced by IH in the present study. 
 
To the best of our knowledge, our study is the first 
report about the function of miR-193a-3p in HUVECs 
under IH condition. It has now been revealed that miR-
193a-3p plays a vital role in multiple diseases, such as 

acute myeloid leukemia [40], osteosarcoma cells [41] 
and colorectal cancer [42]. Recent studies have declared 
that miR-193a-3p participated in various biological 
processes, such as proliferation, migration, and 
apoptosis [43]. For example, miR-193a-3p over-
expression can promote apoptosis and inhibit 
proliferation in H295R cells by targeting CYP11B2 
[44]. Our study showed that miR-193a-3p inhibitor 
could reverse IH-induced apoptosis in HUVECs. Taken 
together, we identified that miR-193a-3p could mediate 
IH-induced endothelial injury in HUVECs. 

 

 
 

Figure 4. FAIM2 is a target of miR-193a-3p, and FAIM2 could be inhibited by miR-193a-3p in HUVECs. (A) The presumptive 
binding site of miR-193a-3p in the 3′-UTR of FAIM2. (B) Luciferase reporter assay. We cotransfected HUVECs with wild-type or mutant FAIM2 
3′-UTR reporters and miR-193a-3p mimics or corresponding control. (C–E) HUVECs were transfected with miR-193a-3p mimics or 
corresponding control. mRNA and protein expressions of FAIM2 were determined by western blot. n = 3. (Data are presented as the mean ± 
SD of three independent experiments. **P < 0.01, ***P < 0.001, and ****P < 0.0001). 
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To further clarify the mechanism of miR-193a-3p in 
HUVECs proliferation and apoptosis, we performed 
bioinformatic analysis and dual-luciferase reporter 
assay to find its target gene. By using miRbase, 
starBase, and TargetScan software, we found that 3′-
UTR of FAIM2 contained the putative binding sites for 
miR-193a-3p. FAIM2, also called Lifeguard (LFG) or 

neural membrane protein 35 (NMP35), is an anti-
apoptotic protein known as a distinct gene of the LFG 
family [45]. FAIM2 also takes part in other apoptotic-
independent processes, such as axonal growth, neuronal 
differentiation, and neuroplasticity [46, 47]. Next, we 
demonstrated that overexpression of miR-193a-3p 
resulted in suppression of luciferase activity. In 

 

 
 

Figure 5. Effects of miR-193a-3p inhibition in HUVECs under IH condition are reversed by knockdown of FAIM2. miR-193a-3p 
inhibitor, si-FAIM2, and corresponding scrambled control were transfected into HUVECs. Cells without transfection were served as control. 
(A) Cell viability. (B, C) Western blot assays of FAIM2, Bcl-2, Bax, and Caspase-3 protein. β-Actin was served as internal control. IH: 
intermittent hypoxia; n = 3. (Data are presented as the mean ± SD of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, 
and ****P < 0.0001). 
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addition, we observed that miR193a-3p downregulation 
significantly increased mRNA and protein expression of 
FAIM2 in HUVECs under IH condition. Based on the 
above data, we indicated that FAIM2 is an important 
direct target of miR-193a-3p in HUVECs during IH. 
Finally, FAIM2 suppression could abolish the inhibitory 
effect of miR-193a-3p inhibitor on HUVECs pro-
liferation and apoptosis under IH. In brief, our study 
first demonstrated that downregulation of miR-193a-3p 
attenuated IH-induced HUVECs injury by targeting 
FAIM2. 
 
The goal of our study was only to assess the effect and 
potential mechanism of miR-193a-3p inhibition in vitro 
experiments just as a preliminary exploration. However, 
we must acknowledge that our study presents some 
limitations. Firstly, different stimulation times of IH is 
likely to show different effects on HUVECs, which 
requires to be further verified. Secondly, we did not 
investigate the morphological change of apoptosis. 
Thirdly, this study was conducted in vitro, therefore, 
more in vivo experiments are still needed to confirm the 
present observations in the future. Fourthly, we did not 
perform these experiments using a second human 
endothelial cell line or primary cells, which had  
to be considered as a disadvantage. Finally, other 
miRNAs and genes are likely to play critical roles in 
IH-induced endothelial injury. A single miRNA could 
regulate various target genes, and vice versa. Therefore, 
we will focus our attention on roles of other miRNAs 
and target genes on IH-induced endothelial injury in 
future studies. 
 
Taken together, we confirmed that miR-193a-3p was 
increased in HUVECs under IH condition and miR-
193a-3p inhibition could protect HUVECs from IH-
induced injury. In addition, we first identified that miR-
193a-3p down-regulation mediated IH-induced 
endothelial injury by regulating FAIM2 expression. Our 
findings will provide a novel understanding of the 
mechanism of IH-induced endothelial injury and thus 
serve as a potential therapeutic target for treating OSA-
associated cardiac diseases. 
 
MATERIALS AND METHODS 
 
Cell culture 
 
Human umbilical vein endothelial cells (HUVECs) 
was purchased from the Cell Bank of the Chinese 
Academy of Sciences (Shanghai, China). Cells were 
cultured in Dulbecco’s modified Eagle’s medium 
(HyClone) containing 10% fetal bovine serum  
(Gibco) and 1% penicillin/streptomycin, in a cell 
incubator with 5% CO2 at 37°C (Thermo, Waltham, 
MA, USA). HUVECs were found to be negative for 

mycoplasma by PCR to exclude the possibility of 
cryptic contamination. 
 
Establishment of IH model 
 
When HUVECs were propagated to 70-80% confluence, 
the method of IH stimulation was carried out as 
previously described [48], with slight modifications. In 
brief, cells were maintained under hypoxia condition 
induced by flushing a mixed air of 1% O2 and 5% CO2 
balanced with N2 for 35 min, and then normoxia 
condition (21% O2 with 5% CO2 balanced with N2 for 25 
min). Repeated IH exposure was performed for 6 times. 
 
MiRNA target prediction 
 
To predict the potential target genes of miR-193a-3p, 
three different miRNA target prediction algorithms: 
TargetScan7.2 (http://www.targetscan.org/), starBase  
(http://starbase.sysu.edu.cn/) and miRbase (http://www. 
mirbase.org/) were employed. Considering the high 
false positive rates of prediction, the three prediction 
tools were combined used to improve the quality of 
miRNA target prediction. 
 
Real-time quantitative PCR (RT-qPCR) 
 
After intervention, mRNA of HUVECs was isolated 
using Trizol reagent (Takara) according to 
manufacturer’s protocol. To analyze the expression of 
miR-193a-3p, the RevertAidTM First Strand cDNA 
Synthesis Kit (#K1622; Thermo) with a special stem-
loop primer and SYBR Green PCR Master Mix 
(#K0223; Thermo) were used to reverse transcription and 
quantitative PCR. To detect the expression level of 
FAIM2, the One Step SYBR® PrimeScript® PLUS RT-
RNA PCR Kit (Takara) was applied. U6 and Actin were 
used as an internal control. The RT-qPCR was performed 
on ABI 7500 thermocycler (Applied Biosystems, Foster 
City, CA, USA). Each sample was measured in triplicate. 
Relevant primers were listed in the Table 1. The relative 
expression of qPCR results was calculated by the 2−ΔΔCT 
method. 
 
Cell transfection 
 
miR-193a-3p inhibitor, small interfering RNA targeting 
FAIM2 (si-FAIM2), and corresponding scrambled 
control were chemically synthesized by Sangon Biotech 
Co. (Shanghai, China). When HUVECs in 6-well plates 
grew to about 80% confluence, we replaced the medium 
with serum-free medium. The cells were then 
transfected with miR-193a-3p inhibitor, si-FAIM2 and 
corresponding scrambled control using Lipofectamine 
3000 (Invitrogen, USA) following manufacturer’s 
instructions. Cells were then exposed to IH. 

http://www.targetscan.org/
http://starbase.sysu.edu.cn/
http://www.mirbase.org/
http://www.mirbase.org/
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Table 1 Primers used for RT-qPCR. 

ID Sequence (5′-3′) 
miR-193a-3p Sense: ACACTCCAGCTGGGTGGGTCTTTGCGGGCG 
 Antisense: TGGTGTCGTGGAGTCG 
miR-193a-3p inhibitor ACUGGGACUUUGUAGGCCAGUU 
Inhibitor control CAGUACUUUUGUGUAGUACAA 
FAIM2 Sense: AGTTCGTCGAGTCTTTGTCAGA 
 Antisense: GGGTCCAGAACAGCAAGC 
si-FAIM2 Sense: GCGGGUGUAUUUACAUUGUTT 
 Antisense: ACAAUGUAAAUACACCCGCTT 
U6 Sense: CTCGCTTCGGCAGCACA 
 Antisense: AACGCTTCACGAATTTGCGT 
β-Actin Sense: TGGACTTCGAGCAAGAGATG 
 Antisense: TGTTGGCGTACAGGTCTTTG 

 

CCK-8 assay 
 
The cell viability was detected by CCK-8 assay 
(TransGen Biotech, Beijing, China) following the 
manufacturer’s instructions. HUVECs were plated in 96-
well (5 × 103 cells/well). After IH stimulation, 10ul/well 
of CCK-8 was added into each well. Next, the mixture of 
96-well plates was maintained at cell incubator  
for additional 2h. Finally, the absorbance was measured 
at 450nm with the use of a Multiskan GO 
Spectrophotometer (Thermo Fisher Scientific, USA). 
 
Western blot analysis 
 
Proteins were extracted by using Mammalian Protein 
Extract on Reagent (CWBIO, Beijing, China) 
supplemented with protease inhibitors. Subsequently, 
BCA Protein Assay Kit (CWBIO, Beijing, China) was 
performed to determine protein concentrations. Equal 
amounts of protein were then separated by sodium 
dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS-PAGE) and transferred to polyvinylidene fluoride 
(PVDF) membranes. Next, the membranes were 
blocked in 5% non-fat dry milk for 1 h, and then 
followed by incubation with primary antibodies at 4˚C 
overnight. After washes, relevant secondary antibodies 
were applied at room temperature for 1 h. Finally, the 
membranes were washed and developed using standard 
chemiluminescence and the Bio-Rad ChemiDoc™ 
XRS+System. The intensity of bands was analyzed with 
Image-Pro Plus 6.0 software (Media Cybernetics, 
Rockville, MD, USA) and normalized to β-Actin. 
 
Dual-luciferase reporter assay 
 
The fragment from FAIM2 3′-untranslated region 
(3′UTR), containing the predicted miR-193a-3p binding 

sequence, was amplified by PCR. To amplify the 
sequence for the mutation within the miR-193a-3p 
binding sites, we applied the point mutation method by 
using the KOD-Plus mutagenesis kit (Toyobo, Osaka, 
Japan). For dual-luciferase reporter experiments, the pSI-
Check2 luciferase reporter vector containing the binding 
sites of 3′-UTR of FAIM2 mRNA or mutant 3′-UTR of 
FAIM2 was cotransfected with miR-193a-3p mimics or 
negative controls into HUVECs using LipofectamineTM 
3000. After 48 h, we measured the firefly luciferase and 
renilla luciferase activity by a fluorescence detector 
(Promega). Renilla luciferase activities were normalized 
as control for each transfected well. Each experiment was 
replicated in triplicate. 
 
Statistics and data analysis 
 
All statistical analyses were performed with SPSS 22.0 
software. All data are presented as mean ± SD. 
Differences were compared by one-way analysis of 
variance, followed by a modified Student’s t test. 
Differences were considered statistically significant if p < 
0.05. All experiments were repeated at least three times. 
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