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INTRODUCTION 
 

Gliomas are the most common brain and central nervous 

system (CNS) tumors. According to cancer statistics, 

gliomas account for approximately 80% of all malignant 

primary brain tumors and 57.3% of gliomas was 

glioblastoma (GBM) [1, 2]. Hideo Nakamura et al. 

reported that the incidence rate for glioma was 6·6 per 
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ABSTRACT 
 

The present study focused on the expression patterns, prognostic values and potential mechanism of the PDI family 
in gliomas. Most PDI family members’ mRNA expressions were observed significantly different between gliomas 
classified by clinical features. Construction of the PDI signature, cluster and risk score models of glioma was done 
using GSVA, consensus clustering analysis, and LASSO Cox regression analysis respectively. High values of PDI 
signature/ risk score and cluster 1 in gliomas were associated with malignant clinicopathological characteristics and 
poor prognosis. Analysis of the distinctive genomic alterations in gliomas revealed that many cases having high PDI 
signature and risk score were associated with genomic aberrations of driver oncogenes. GSVA analysis showed that 
PDI family was involved in many signaling pathways in ERAD, apoptosis, and MHC class I among many more. 
Prognostic nomogram revealed that the risk score was a good prognosis indicator for gliomas. The qRT-PCR and 
immunohistochemistry confirmed that P4HB, PDIA4 and PDIA5 were overexpressed in gliomas. In summary, this 
research highlighted the clinical importance of PDI family in tumorigenesis and progression in gliomas. 
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100,000 and nearly half of this was glioblastoma [3]. Of 

note, the Central Brain Tumor Registry of the United 

States (CBTRUS) statistical report revealed that the 

incidence rate of glioblastoma increased with age, with 

1.24 per 100,000 population in age 35–44 years, 8.07 in 

age 55–64 years, 12.98 in age 65–74 years and with the 

highest rates in 75–84 years (15.29 per 100,000 

population) [2]. According to WHO classification, GBM, 

is defined as a grade IV glioma with its molecular 

classification revealing four subtypes; proneural, neural, 

classical, and mesenchymal [4, 5]. After a safe surgical 

resection, GBM patients are treated with radiotherapy and 

chemotherapy [6]. Unfortunately, their survival rate is 

very limited with most of the patients dying within 15–18 

months post-diagnosis while just 6.8% of the patients 

survive up to five years [2, 7–9]. Consequently, 

glioblastoma is a major threat to human health, especially 

in the elderly. 

 

Protein disulfide isomerase (PDI) family consists of 

twenty-one members sharing a common structure (the 

TRX-like domain). Their proteins have an N-terminal 

signal peptide consisting of 15–30 amino acids which 

are cleaved upon entry into the endoplasmic reticulum 

[10]. The PDI family members are mainly located in the 

ER, with a few also found in other cellular 

compartments, including the cell surface, cytosol, 

mitochondria, and nucleus [11]. This PDI family of 

enzymes have been identified primarily as reductases, 

oxidases, isomerases, and enzymatic chaperones 

catalyzing disulfide bond formation, breakage, 

rearrangement, and oxidative protein folding [11].  

 

Several studies have linked protein disulfide 

isomerases (PDIs) to the regulation of proliferation, 

invasion, and metastasis of various cancers, such as 

brain, lymphoma, kidney, ovarian, prostate, and lung 

cancers [12]. PDIA6 was found to be over-expressed 

in bladder cancer (BC) where it facilitated 

proliferation and invasion in BC cells via Wnt/β-

catenin signaling pathway [13]. Moreover, P4HB, 

PDIA3, and PDIA4 were found to be up-regulated in 

ovarian cancer and associated with the tumor grade 

and poor prognosis [14]. PDIA1 and PDIA3 serve 

vital roles in the progression of diffuse glioma. P4HB 

function using bacitracin attenuated the 

phosphorylated FAK and the secreted MMP-2, the 

downstream molecules of integrin, restrained 

migration of U87-MG Glioma cells [15]. Other 

studies have revealed that PDIs inhibition suppresses 

the growth of tumors. Inhibition of PDIA1 was shown 

to decrease the resistance to temozolomide (TMZ) in 

malignant glioma [16, 17]. Recently, Horibe et al. 

suggested that PDIA5 knockdown in GBM cells 

significantly suppressed the growth and migration of 

tumor cells [18]. 

PDIs have been associated with the progression of 

GBM, however little is known on the relationship 

between PDIs expression and the clinical outcome in 

gliomas. In the present study, the aim was to conduct a 

comprehensive analysis of twenty-one PDI family 

members. Bioinformatic tools and qRT-PCR were used 

for mRNA expression in gliomas. Therefore, data 

obtained revealed several new potential signaling 

pathways of PDIs involved in glioma progression. 

Furthermore, a prognostic nomogram using PDIs-based 

survival risk score and other clinical factors was 

established, and these provided novel insights for future 

diagnostics and therapeutic targets of glioma. 

 

RESULTS 
 

The relationship between PDIs mRNA expression 

and clinicopathological characteristics of glioma 

 

In humans, twenty-one members of the PDI family have 

been identified. In this study, TCGA and CGGA 

databases data revealed the correlation between PDIs 

mRNA expression and clinical-pathological features in 

gliomas. High transcription levels of P4HB, PDIA3, 

PDIA4, PDIA5, PDIA6, ERP27, ERP29, ERP44, 

TMX1, TMX3, TXNDC5, TXNDC12, AGR3, and 

DNAJC10 were found in GBM tissues. However, the 

transcription levels of PDIA2, AGR2, CASQ1, and 

CASQ2 were lower in GBM tissues than in LGG tissues 

(Figure 1A–1F). There was no significant difference in 

the mRNA level of PDILT between GBM and LGG 

samples based on both TCGA and CGGA (Figure 1A–

1F). However, there were inconsistent findings on the 

mRNA expression levels of TMX2 and TMX4 from 

TCGA and CGGA datasets in GBM versus in LGG 

tissues (Figure 1A–1F). Furthermore, TCGA and 

CGGA datasets confirmed the significant correlation 

between WHO grades and mRNA levels of P4HB, 

PDIA3, PDIA4, PDIA5, PDIA6, ERP27, ERP29, 

ERP44, TMX1, TMX3, TXNDC12, DNAJC10, and 

CASQ1 (Figure 1B–1G). In the TCGA LGGGBM 

cohort, the mRNA expression of P4HB, PDIA3, PDIA4, 

PDIA5, PDIA6, ERP27, ERP29, ERP44, TMX1, 

TMX3, TMX4, TXNDC5, TXNDC12, AGR3, and 

DNAJC10 in gliomas with mutant IDH were lower in 

comparison to those in gliomas with wild-type IDH. 

The mRNA expression of PDIA2, CASQ1, and CASQ2 

was higher in the mutant IDH group (Figure 1C). There 

was no significant difference in the expression levels of 

PDILT, TMX2, and AGR2 between the two groups. 

Unlike previous findings, within the CGGA LGGGBM 

cohort, TMX2 was up-regulated in gliomas with mutant 

IDH and the expression of TMX4 in the two groups was 

not statistically significant (Figure 1H). There was a 

significant difference in the expression of some 

members of the PDI family between the two groups 
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(mutant IDH vs. wildtype IDH) in the LGG and GBM 

cohort (Figure 1D, 1I, Supplementary Figure 1A, 1B). 

Further, PDIA2, TMX2, and CASQ1 were down-

regulated in LGG with mutant IDH and 1p19q 

noncodeletion, and PDIA5, PDILT, ERP27, TMX1, 

TXNDC12, AGR3, and DNAJC10 were up-regulated in 

both TCGA and CGGA (Figure 1E, Supplementary 

Figure 1C). There was no significant difference in the 

mRNA level of other members of the PDI gene family 

in the low-grade gliomas with mutant IDH (1p19q 

codeletion vs. 1p19q noncodeletion) in TCGA or 

CGGA (Figure 1E, Supplementary Figure 1C). 

 

 
 

Figure 1. Relationship between mRNA expression patterns of PDIs in gliomas with different clinical characteristics (cancer 
type, WHO grade, the status of IDH and 1p19q). The heat maps, based on the public data from TCGA and CGGA databases, 

demonstrated upregulated mRNA (red) or downregulated mRNA (blue) of the PDI family members in the subgroups. TCGA database as 
training set and CGGA database as the validation set. * p < 0·05, ** p < 0·01, *** p <0·001.  
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Construction of the PDI signature model 

 

To construct a PDIs-based signature model for both in 

training and validation groups GSVA was performed. 

Heat maps presented the expression profiles of PDI 

family members ranked according to their PDI 

signatures from the TCGA and CGGA datasets (Figure 

2A, 2B). In the TCGA database, gliomas were classified 

into four molecular subtypes; proneural (PN), neural 

(NE), classical (CL), and mesenchymal (ME). In the 

current study, gliomas were further classified into two 

main subtypes based on their malignancy (CL+ME vs. 

NE+PN). The value of PDI signature in patients 

separated by subtype, MGMT promoter status, 1p19q 

codel status, IDH status, gender, age, grade, and cancer 

(LGG vs. GBM). In the TCGA LGGGBM cohort there 

were significant differences between the patients 

separated by subtype (CL+ME vs. NE+PN), MGMT 

promoter status, 1p19q codel status, IDH status, age, 

grade, cancer (LGG vs. GBM), but not by gender 

(Figure 2C–2J). Supplementary Figure 1D showed that 

there was no significant difference in PDI signature 

between classical and mesenchymal subtypes. Further, 

there were statistical differences observed in the groups 

divided by subtype (CL+ME vs. NE+PN), 1p19q codel 

status, IDH status in TCGA LGG and/or GBM cohort. 

However, there was no significant difference in the 

MGMT promoter status and IDH status in the TCGA 

GBM cohort (Supplementary Figure 1E–1J).  

 

The patients were divided into two groups (high vs. low 

group) using the median value of PDI signature as the cut-

off value to investigate the relationship between the value 

of PDI signature and patients’ prognosis. In the TCGA 

LGGGBM cohort, the Kaplan–Meier plot revealed that 

the high value of PDI signature was associated with poor 

OS, PFI and DSS (Supplementary Figure 2A–2C). 

Similar findings were also found in LGG and GBM 

(Supplementary Figure 2D–2I). Furthermore, as validated 

in the CGGA datasets, patients in the low-value group 

exhibited longer OS than those in the the high-value 

group (Supplementary Figure 2J–2L). These findings 

indicated a significant association between PDI signature 

and clinical features and the high value of PDI signature 

was associated with poor prognosis. 

 

As previously described, somatic mutations and copy 

number variations in the two groups were analyzed (1st vs. 

4th). High mutation frequency in IDH1, TP53, and ATRX 

were associated with low PDI signature in gliomas (IDH1, 

89% vs. 17%; TP53, 48% vs. 31%; ATRX, 32% vs. 15%), 

whereas TTN, MUC16, and PIK3CA were associated 

with high PDI signature (TTN, 10% vs. 24%; MUC16, 

8% vs. 13%; PIK3CA, 5% vs. 11%) (Figure 3A–3B). The 

mutation frequency of CIC in the low PDI signature group 

reached 20% (Figure 3A) while the mutations in PTEN, 

EGFR, NF1, and RYR2 were enriched in the cases with 

high PDI signature, of which all their frequencies were 

more than 10% (Figure 3B). 

 

GSVA was performed to characterize the potential 

function of PDIs in gliomas. Most of the functional 

pathways were enriched in higher PDI signature group. 

Some important biological processes in which PDI was 

known to be involved were identified, such as unfolded 

protein response (UPR), endoplasmic reticulum-

associated degradation (ERAD), endoplasmic reticulum 

stress (ERS). Many pathways were also associated with 

cancer pathogenesis, invasion, and metastasis, including 

WNT signaling pathways, positive regulation of NF 

kappa B transcription factor activity, vascular endothelial 

growth factor receptor (VEGFR) signaling pathway, 

apoptotic signaling pathway, regulation of MAPK cascade, 

cell cycle, p53 signaling pathway, cytosolic DNA sensing, 

pathways in cancer, and JAK-STAT signaling pathway. 

There were also immune-related regulatory pathways 

identified which did not traditionally focus on PDIs such 

as antigen processing and presentation, chemokine 

signaling pathway, B cell receptor signaling pathway, T 

cell receptor signaling pathway, and natural killer cell-

mediated cytotoxicity (Figure 3C). 

 

Constructing the cluster model of glioma based on 

consensus clustering analysis 

 

Tumor samples from TCGA and CGGA datasets were 

grouped into two clusters (cluster 1, cluster 2) using 

consensus clustering analysis to explore PDIs’ potential 

predictive and prognostic value. Cumulative distribution 

function (CDF) curves and consensus matrixes 

(Supplementary Figure 3A–3D) determined the optimal 

number of clusters (k=2). As shown in Figure 4A–4B, 

cluster 1 was related to the status of MGMT promoter 

unmethylated, 1p19q noncodel, IDH wildtype, higher 

grade, and GBM. Glioma patients in cluster 1 also had a 

higher PDI signature compared with cluster 2. The 

principal component analysis demonstrated the 

difference of PDIs mRNA expression between the two 

clusters (Figure 4C–4D). 

 

Apart from differences in clinical characteristics between 

cluster 1 and cluster 2, there were also differences in 

prognosis in the two groups. In the TCGA datasets, 

Cluster 2 significantly correlated with longer OS, PFI and 

DSS in contrast to cluster 1 (Figure 4E–4G). 

 

Constructing the risk score model based on least 

absolute shrinkage and selection operator (LASSO) 

Cox regression analysis 

 

A total of 18 significant factors with p < 0.05 were 

selected through the univariate COX regression analysis 
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Figure 2. The relationship between the PDI signature and clinical features in gliomas.  Heat maps revealed the expression 

profiles of PDIs and the distribution of clinicopathological features in gliomas based on data from TCGA (A) and CGGA (B) in which the 
samples were ranked according to their PDI signature. In the TCGA dataset, the distribution of PDI signature in the subgroups classified by 
subtype (C) MGMT promoter status (D) 1p19q codel status (E) IDH status (F) gender (G) age (H) grade (I) and cancer (J). TCGA database as 
training set and CGGA database as the validation set. *** p < 0·001, NS. p > 0.05.  



 

www.aging-us.com 2352 AGING 

 
 

Figure 3. (A, B) Genetic alteration profiles associated with PDI signature in TCGA and CGGA datasets. Oncoprint depicts the distribution of 

the top 20 genes with the highest mutation frequency in each glioma group (low PDI signature vs high PDI signature). (C) Functional 
annotation of PDI gene family with PDI signature, including GO and KEGG. The upper one panel shows the distribution of PDI signature and 
clinical features, and the lower two panels show the gene set enrichment in different pathways analyzed by GSVA package of R. TCGA 
database as training set and CGGA database as the validation set. 
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(P4HB, PDIA2, PDIA3, PDIA4, PDIA5, PDIA6, 

ERP27, ERP29, ERP44, TMX1, TMX3, TMX4, 

TXNDC5, TXNDC12, AGR3, DNAJC10, CASQ1, 

CASQ2) (Figure 5A–5B). These were then introduced 

into the LASSO Cox regression model, which exhibited 

the five most meaningful PDI family members and their 

coefficients which was used to calculate the risk score 

(Figure 5C–5E). The heat maps displayed the 

expression profiles of PDIs both in TCGA and CGGA 

datasets, as the samples were ranked according to their 

risk scores (Figure 6A, 6B). In the TCGA LGGGBM 

dataset, the risk score in different groups was stratified 

by clinical features, and exhibited by box plots. The 

higher risk score was related to the subtype (CL+ME vs. 

NE+PN), MGMT promoter unmethylated, 1p19q 

noncodel, IDH wildtype, age≥45, and GBM groups

 

 
 

Figure 4. (A, B) Comparison of the expression levels of PDIs and clinical features between two subgroups (cluster 1 vs cluster 2). Principal 

component analysis (PCA) was performed to reveal the difference of PDIs mRNA expression between two clusters in TCGA (C) and CGGA (D). 
The prognostic value of clusters in glioma patients. Kaplan–Meier survival analyses were used to demonstrate differences in OS, PFI and DSS 
between the two clusters of LGGGBM samples from TCGA (E–G) and CGGA (H). TCGA database as training set and CGGA database as the 
validation set. 
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(Figure 6C–6F, 6H, 6J, 6E). As shown in Supplementary 

Figure 3E, there was no significant difference in the risk 

score between classical and mesenchymal subtypes. 

Moreover, the risk score increased along with the WHO 

grade of gliomas (Figure 6I). However, there was no 

significant difference in groups separated by gender 

(Figure 6G). There were statistical differences in the 

LGG/GBM patients classified by subtype (CL+ME vs. 

NE+PN), 1p19q codel status, IDH status, but not by 

MGMT promoter status in the TCGA GBM cohort 

(Supplementary Figure 3F–3K).  

 

The prognostic differences between low and high-risk 

groups divided by the median risk score were 

compared. As shown in Supplementary Figure 4A–4I, 

the patients with high-risk score had significantly 

shorter OS, PFI, and DSS than those with a low-risk 

score in the TCGA LGGGBM, LGG, GBM cohorts. 

 

 
 

Figure 5. (A, B) Univariate Cox regression analyses were performed to select significant genes from PDI family according to the clinical 

information from TCGA. (C–E) LASSO coefficients of the significant members of PDI family for OS were calculated, of which the five most 
influential ones are presented in the figure. * p < 0·05, *** p < 0·001. 
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Similarly, the high-risk score was correlated with poor 

OS in the CGGA datasets (Supplementary Figure 4J–

4L). In summary, these findings imply that the PDIs-

based model plays an important role in the prediction of 

patients’ clinicopathological characters and prognosis. 

Somatic mutations were observed in 149 (94.9%) and 

139 (88.54%) of 157 samples in the groups with a low 

and high-risk score respectively. There were some 

genes shown mutations in the two groups (low vs. high- 

risk score): IDH1, TP53, ATRX, TTN, PIK3CA, and

 

 
 

Figure 6. (A, B) The risk score model of PDI family in gliomas was established on the basis of LASSO coefficients. The distributions of clinical 

features and PDIs expression according to the risk scores from low to high in TCGA and CGGA are displayed by heat maps. (C–J) The risk 
scores differences between subgroups classified by subtype, MGMT promoter status, 1p19q codel status, IDH status, gender, age, grade, and 
cancer in LGGGBM cohort. TCGA database as training set and CGGA database as the validation set. *** p < 0·001, NS. p > 0·05. 
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MUC16. The frequency of IDH1, TP53, and ATRX 

mutations was significantly higher in gliomas with low 

risk score than those with high risk score (IDH1, 87% 

vs. 8%; TP53, 38% vs. 30%; ATRX, 24% vs. 10%), 

while the mutation frequency of TTN, PIK3CA, and 

MUC16 was significantly lower (TTN, 8% vs. 24%; 

PIK3CA, 6% vs. 11%; MUC16, 3% vs. 15%). 

Mutations of CIC (28%), FUBP1 (16%), and 

NOTCH1(12%) in low risk score group and, EGFR 

(30%), PTEN (25%), NF1 (13%), RYR2 (12%), and 

RB1 (11%) in high risk score group were identified 

(Figure 7A, 7B). 

 

SCNAs between samples with low and high-risk scores 

was investigated considering the somatic copy number 

alternations’ roles in oncogenesis. The incidence of the 

amplification of Chr 7 together with a deletion of Chr 

10 increased with an increase in the value of risk score 

in gliomas, while the codeletion of 1p/19q decreased 

(Figure 7C). GISTIC 2.0 analysis identified several 

significant regions of amplification harboring multiple 

oncogenes in gliomas with a high-risk score, including 

1q32.1 (PIK3C2B), 4q12 (PDGFRA), 7p11·2 (EGFR), 

and 12q14·1(CDK4). Focal deletion peaks were detected 

in the group with a high-risk score, such as 9p21·2 

(TUSC1), 9p21·3 (CDKN2A, CDKN2B), 10q23·31 

(PTEN, FAS), and 10q26·3 (BNIP3). Although the focal 

amplification and deletion peaks were also present in the 

low risk score cases, their G values were significantly 

lower (Figure 7D–7E). Additionally, there were 

significant genomic regions of amplification (8q23·3, 

8q24·21, 11q23·3, 19q13·3) and deletion (1p12, 4q35·2, 

14q24·3, 18q23, 19q13·43) observed only in gliomas with 

low-risk scores (Figure 7E). 

 

The GSVA analysis identified the biological functions 

of the PDI gene family in gliomas. From the GO and 

KEGG enrichment analysis, 10 signaling pathways 

having statistical significance and high correlation 

coefficient were selected. The higher gene set 

enrichment scores of all the selected pathways were 

associated with higher risk scores, excepting for neuron 

cell-cell adhesion. Some pathways were related to 

immune response, including T cell apoptotic process, 

antigen processing and presentation of peptide antigen 

via MHC class I, regulation of T cell-mediated 

cytotoxicity, negative regulation of immune response, 

cytokine-cytokine receptor interaction, and antigen 

processing and presentation. The cell adhesion-related 

pathways were also enriched, including neuron cell-cell 

adhesion, cell adhesion mediated by integrin, cell 

adhesion molecules CAMs, and focal adhesion. 

Biological processes significantly associated with the 

mechanisms of PDIs in gliomas included protein 

folding in endoplasmic reticulum, regulation of intrinsic 

apoptotic signaling pathway in response to DNA 

damage by P53 class mediator, tumor necrosis factor-

mediated signaling pathway, regulation of tyrosine 

phosphorylation of STAT3 protein, ECM receptor 

interaction, JAK-STAT signaling pathway, amino sugar 

and nucleotide sugar metabolism, P53 signaling 

pathway, DNA replication, and mismatch repair  

(Figure 8A). 

 

Comparisons among PDI signature, cluster, risk 

score and grade in predicting prognosis and clinical 

features 

 

ROC analysis compared the PDI signature, risk score, 

cluster and grade in predicting prognosis and clinical 

characters. The risk score was the best indicator in 

predicting 3-year survival, subtype (CL+ME/NE+PN), 

MGMT status, 1p19q codel status and IDH status. 

Consensus clustering analysis model was the least 

performer in predicting prognosis and clinical features 

(Figure 8B–8F). The Sankey diagrams indicated that 

glioma patients with high-risk scores had higher PDI 

signature, higher grade and mainly enriched in cluster1, 

while the low-risk score was associated with low PDI 

signature, lower grade and cluster2 (Figure 8G–8H). 

Besides, there was a positive correlation between risk 

score and PDI signature (r = 0·84, p < 0.001) 

(Supplementary Figure 5A). 

 

Constructing prognostic nomogram for overall 

survival 

 

Univariate and multivariate Cox regression analyses 

using clinical data downloaded from the TCGA and 

CGGA database investigated the independent 

prognostic indicators related to patients' clinical 

outcomes (OS, DSS, PFI). Risk score (TCGA p = 

0·0198, HR = 1·66; CGGA p = 0·0072, HR = 1·56) and 

1p19q (TCGA p = 0·0392, HR = 1·84; CGGA p = 

2·35E-05, HR = 3·27) were independent prognostic 

indicators for OS time. Considering parameters of grade 

III and grade IV with statistical significance, the grade 

was adopted as one of the prognostic indicators as well 

(Supplementary Table 1). As shown in Figure 9A–9D, 

the P value of the global Schoenfeld test and variables 

were all greater than 0.05, indicating that the model and 

each variable were satisfied with the PH (proportional 

hazards) test (global Schoenfeld test p = 0.06675, risk 

score, p = 0·0632; Grade III, p = 0·1577; Grade IV, p = 

0·6294; 1p19q, p = 0·8261). There was no statistical 

significance in IDH and age in the multivariate Cox 

regression analysis in CGGA datasets (IDH, p = 0·1604; 

age, p = 0·5103). Through Cox regression analyses, risk 

score, WHO grade, IDH, 1p19q, and age were identified 

as independent factors in predicting DSS, while risk 

score and IDH were identified as significant prognostic 

factors of PFI (Supplementary Table 1). 
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Cox regression model identified three significant 

prognostic variables which were used to construct the 

nomogram. Each of the variables was initially assigned 

a score by finding its position on the corresponding 

axis. The points of all the variables were added up and 

the probabilities of the outcomes determined by the 

location of the total score on the survival axes (Figure 

9E). Calibration curves validated the accuracy of the 

nomogram in TCGA and CGGA and the nomogram-

predicted OS corresponded closely with the observed

 

 
 

Figure 7. (A, B) The significantly mutated genes in gliomas were assigned to low and high risk score groups. Here only the top 20 genes with 

the highest mutation frequency are displayed in figures. (C) The overall CNAs profile in order of increasing risk score. (D–E) GISTIC 2.0 analysis 
of cases with low and high risk scores revealed chromosomal regions that were significantly deleted (blue) and amplified (red). The green line 
represents the significance threshold (q value=0·25). TCGA database as training set and CGGA database as the validation set. 
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OS at 3- and 5-year OS (Figure 9F–9G). This data 

prepared the ROC curve and the AUC values were 

0·918 and 0·875 in predicting 3-year and 5-year OS for 

glioma patients in TCGA, respectively (Figure 9H). A 

similar process was performed in CGGA, and gave an 

AUC of 0·862 and 0·875 for the 3- and 5-year OS, 

respectively (Figure 9I).  

 

The prognostic model value was calculated according to 

the formula, value = β1X1+ β2X2 + … + βnXn (β, 

regression coefficient; X, prognostic factors). There was 

a significant difference in the OS between the two 

groups (p < 0·0001) (Supplementary Figure 5B). 

Similar results were observed in CGGA (p < 0·0001) 

(Supplementary Figure 5C). 

 
 

Figure 8. (A) GO and KEGG analyses for the PDI gene family and the risk scores determined using GSVA. The heat map shows the distribution 

of risk scores and clinical features (upper one panel), and gene set enrichment of different pathways (lower two panels). Comparisons of the 
performance of PDI signature, risk score, grade and cluster in predicting the 3-year overall survival of glioma patients (B) subtype (C) MGMT 
promoter status (D) 1p19q codel status (E) and IDH status (F). (G, H) The relationship among the five indicators, PDI signature, risk score, 
cluster, WHO grade, and cancer type. TCGA database as training set and CGGA database as the validation set. 
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Figure 9. Prognostic nomogram for predicting the 3-year and 5-year overall survival of glioma patients. The Schoenfeld residual 

plots were displayed for risk score (A) Grade III (B) Grade IV (C) 1p19q (D) in the prognostic nomogram. The solid line was a smoothing-spline 
fit to the plot, with the dashed lines representing the 95% confidence interval. (E) Prognostic nomogram for glioma patients was created 
based on four key characteristics. (F, G) The calibration curve of OS at 3 years (blue) and 5 years (red). The predicted probability of OS is 
plotted on the x-axis and the observed OS is plotted on the y-axis. (H, I) ROC curves from the nomogram of 3-year and 5-year OS. The mRNA 
expression patterns of P4HB (J) PDIA4 (K) PDIA5 (L) and TXNDC12 (M) in glioma cell lines (U251, T98G, A172, U343). TCGA database as 
training set and CGGA database as the validation set. 
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The mRNA and protein expression patterns of PDIs 

in glioma 

 

The qRT-PCR assay was performed to identify 

significant genes for construction of the risk score 

model in gliomas. AGR3 was eliminated as it played a 

non-significant role in this model. As shown in Figure 

9J–9M, all four genes, P4HB, PDIA4, PDIA5, and 

TXNDC12, were expressed in glioma cell lines, and 

these genes were differentially expressed in different 

cell lines (U251, T98G, A172, U343). 

 

Furthermore, the immunohistochemistry-based expression 

data of PDI gene family members was obtained from the 

online Human Protein Atlas. As shown in Supplementary 

Figure 5D–5E, the protein expression of P4HB and 

PDIA4 were higher in glioma tissues compared to normal 

brain tissues. Additionally, PDIA5 protein was not 

detected in normal tissues, and it was lowly expressed in 

cancer tissues (Supplementary Figure 5F). However, the 

protein expression pattern of TXNDC12 was not 

presented here due to lack of immunohistochemistry 

images.  

 

DISCUSSION 
 

In the last three decades, the incidence rate of primary 

malignant brain and other CNS tumor has increased 

year by year, with an annual rate of 1%-2%, especially 

in the elderly population [1]. The average annual age-

adjusted incidence rate (AAAIR) of GBM was the 

highest among malignant brain and other CNS tumors 

(3.22 per 100,000 population) [2]. Recently, CBTRUS 

also reported that the median age at diagnosis for GBM 

was 65 years and survival time was markedly reduced 

in the elderly patients [2]. Therefore, it is necessary to 

explore the pathogenesis of glioblastoma to save the 

older patients from this difficult situation. Dorota et al. 

showed that PDIA6 was over-expressed in migrating 

glioma cells and invasive glioma cells, indicating the 

important role PDIA6 plays in glioma invasion [19]. 

However, Tae-Wan Kim et al. reported that the 

inhibition of PDIA6 transduced EGFR signaling via 

activating and inducing ADAM17 enhanced U87MG 

cell migration and invasion [20]. However, no study the 

analyzes the their effects of the twenty-one PDI 

members on the progression and clinical outcome of 

gliomas. Therefore, in this study, bioinformatics 

analysis, GSVA, consensus clustering analysis, and 

LASSO Cox regression analysis, were used to construct 

PDI signature, cluster and risk score models of glioma, 

respectively. The efficacy of PDI signature, risk score 

and cluster in predicting the clinical characteristics and 

clinical outcomes were analyzed and compared and risk 

score was the best indicator. Somatic alterations 

analysis revealed that gliomas with high PDI signature 

and risk score were associated with genomic aberrations 

of driver oncogenes (TTN, MUC16, PIK3CA), but had 

less mutations of IDH1, TP53, and ATRX. 

Furthermore, amplification peaks of oncogenes 

(PIK3C2B, PDGFRA, EGFR, CDK4), and deletion 

peaks of tumor suppressor genes (TUSC1, CDKN2A, 

CDKN2B, PTEN, FAS, BNIP3) were detected in the 

gliomas with a high risk score. These findings revealed 

that the PDI family are involved in the malignant 

biological process in gliomas. 
 

GSVA analysis investigated the mechanism of PDIs 

in gliomas. Consistent with previous studies, the 

common biological functions of PDIs identified in 

tumorigenesis and development, included unfolded 

protein response, endoplasmic reticulum-associated 

degradation, endoplasmic reticulum stress, cell 

adhesion, apoptosis, WNT signaling pathways, and 

cytosolic DNA sensing. There is sufficient evidence 

supporting that PDI family members are considered as 

potential targets for tumors due to their functions in 

UPR, ERAD and ERS signaling pathways. Integrins 

have been confirmed to be associated with glioma cell 

invasion, migration and temozolomide resistance [21–

23]. Thiol-disulfide exchange reactions in integrins, 

which play a pivotal role in their activation, are 

regulated by PDI [15, 19, 23]. Previous studies have 

not only revealed that PDI is located in the 

endoplasmic reticulum, which restrains ER stress 

induction by preventing the accumulation of 

misfolded proteins which inhibits apoptosis but also 

suggested that cytosolic PDI is a substrate for 

caspase-3 and -7 which possesses the anti-apoptotic 

function [12, 24–27]. Further, Kuo et al. demonstrated 

that PDIA4 inhibited cell death via preventing the 

activation/degradation of procaspases-3 and -7 to 

promote tumor growth and metastasis in lung 

carcinoma [28].  
 

The findings of function annotation revealed a number of 

unreported signaling pathways in gliomas which PDIs 

may be involved in and included P53 signaling pathway, 

cell cycle, tumor necrosis factor (TNF) mediated signaling 

pathway, regulation of MAPK cascade, JAK-STAT 

signaling pathway, positive regulation of NF kappa B 

transcription factor activity, regulation of tyrosine 

phosphorylation of STAT3 protein, vascular endothelial 

growth factor receptor signaling pathway, DNA 

replication, and mismatch repair. Green et al. noted that 

PDIA3 was able to interact with P53 to inhibit P53-

meditated apoptosis [29]. Similarly, there are studies 

supporting that PDIs contribute to the regulation of the 

activity of signaling pathways involved in cellular 

proliferation, apoptosis, and oncogenesis through 

interaction with targets, such as TNF, STAT3, NF kappa 

B [30–33].  
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An important finding was that PDIs were associated with 

immune regulation in gliomas, such as negative 

regulation of immune response, antigen processing and 

presentation of peptide antigen via MHC class I, T cell 

receptor signaling pathway, T cell apoptotic process, 

regulation of T cell-mediated cytotoxicity, antigen 

processing and presentation, chemokine signaling 

pathway, B cell receptor signaling pathway, and natural 

killer cell-mediated cytotoxicity. Gastric cancer patients 

having high expression of PDIA3 had a favorable 

prognosis and this was associated with the involvement 

of PDIA3 in antigen processing and formation of a 

complex with MCH class I which induced an immune 

response [34]. However, up-regulation of PDIA3 was 

associated with poor prognosis in gliomas [17]. Previous 

studies have shown that the major histocompatibility 

complex class I chain-related protein A (MICA) is shed 

from tumor cells via PDIA6 reducing the disulfide bond 

between them, facilitating the escape of tumor cells from 

immune responses [18, 35]. These findings demonstrated 

that the immune response could be explored further to 

understand the pathogenesis of the PDI family in 

gliomas. 
 

Considering the important roles of PDI family members 

in cancer progression, some studies have designed PDIs’ 

inhibitors. Herein, we have briefly reviewed the 

previously reported inhibitors for PDI family members. 

Bacitracin, interacting with reduced PDI and then 

interfering the integrin, inhibits the glioma cell migration 

and facilitates apoptosis induced by chemotherapy agents 

in melanoma cells. BAP2 and analogs play key roles in 

inducing ER stress, decreasing DNA repair proteins’ 

expression, inhibiting cell migration and growth in GBM 

via binding to His256 in the b domain of PDI [36]. The 

compounds, as the inhibitor of P4HB and PDIA2, reduce 

the expression of DNA damage and repair genes [37]. 

35GB, the cytotoxic inhibitor of PDI, makes significant 

contributions in nuclear factor erythroid-2-related factor 

2 (Nrf2) antioxidant pathway, ERS response, and 

autophagy [38]. Previous studies demonstrated that 

anacardic acid and ribostamycin are able to enhance the 

cytotoxic activity of TMZ by inhibiting the reductase and 

chaperone activities of PDIA6 respectively [39]. Besides, 

there are other compounds functioning as inhibitors of 

PDIs in cancers, such as T8, ML359, PACMA31, 

CCF642 [40–43]. 
 

In summary, this study the expression patterns, 

prognostic value, and potential mechanisms of the PDI 

gene family in gliomas were analyzed. This study was 

the first to construct clinical models in predicting 

prognosis and clinicopathological characteristics of 

glioma and revealed potential signaling pathways. 

However, further research should be shed light on the 

validation of PDIs biological impacts on gliomas. 

MATERIALS AND METHODS 
 

Datasets analysis 

 

RNA-seq data and corresponding clinical information 

were downloaded from the TCGA database 

(http://cancergenome.nih.gov) as training set and from 

CGGA database (http://www.cgga.org.cn) as the 

validation set, which was summarized in Supplementary 

Table 2. Heat maps were then created to visualize 

differences in PDIs expression.  

 

Gene set variation analysis (GSVA) 

 

The PDI signature for each glioma sample was 

established using GSVA, a non-parametric and 

unsupervised algorithm. The heat maps and box plots 

were used to illustrate the relationship between PDI 

signature and PDIs mRNA expressions and clinical 

features of gliomas. The functional enrichment analysis 

was performed using “GSVA package” to reveal the 

potential signaling pathways of PDIs involved in glioma, 

setting |correlation coefficient| > 0·5 as the cutoff value 

[44]. Gene Ontology (GO) terms and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

pathways were obtained from Molecular Signatures 

Database (MSigDB) [45]. 

 

Consensus clustering analysis 

 

To create clusters of gliomas based on members with 

similar intrinsic features of PDIs mRNA expression, 

samples were grouped into distinct subgroups by 

consensus clustering analysis with the R package 

“ConsensusClusterPlus” [46]. The subsampling 

parameter was 80% with 1000 times and k (the number 

of clusters) ranged from 2 to 10. The optimal number 

of clusters was determined according to cumulative 

distribution function plots and consensus matrices 

[47]. Differences in PDIs expression and clinical 

features of glioma between clusters were visualized by 

heat maps. 

 

Least absolute shrinkage and selection operator 

(LASSO) Cox regression 

 

The LASSO Cox regression was used to construct a 

PDIs-based survival risk assessment model. Prognostic 

PDI family members were used to calculate the LASSO 

coefficients, according to the highest lambda value 

through Lasso method (lambda 1se) with 10-fold cross 

validation [48]. Subsequently, the risk score model of 

glioma was established based on LASSO coefficients. 

The association between risk score and PDIs expression 

and clinical characters was illustrated by heat maps and 

box plots. 

http://cancergenome.nih.gov/
http://www.cgga.org.cn/
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Survival analysis 

 

Glioma patients were divided into high and low groups 

on the basis of median PDI signature or risk score. 

Survival curves were created by the Kaplan-Meier 

method with log-rank test, comparing the overall 

survival (OS), progression free interval (PFI), and 

disease specific survival (DSS) rates of patients in low 

and high group. Additionally, survival analyses were 

conducted between clusters of gliomas. 

 

Analysis of genetic alterations in gliomas 

 

We further investigated genetic alterations in gliomas, 

including somatic mutations and somatic copy number 

alternations (SCNAs), based on samples obtained from 

TCGA database. Glioma samples were divided into four 

groups according to the values of PDI signature and risk 

scores of low and high groups. Thereafter, the top 20 

genes with the highest mutation frequency in the 1st 

(lowest) and 4th (highest) groups were screened and 

presented. In addition, Genomic Identification of 

Significant Targets in Cancer 2·0 (GISTIC) was used to 

explore SCNAs between the two groups classified by 

median value of risk score, according to the gene copy 

number variation data and Human genome reference 

consortium h19 downloaded from TCGA and GISTIC 

2·0 [49]. The threshold copy number at alteration peaks 

were derived from GISTIC analysis. 

 

Receiver operating characteristic (ROC) 

 

ROC and the area under the curve (AUC) were used to 

compare the prediction performance of PDI signature, risk 

score, clustering and grade in several aspects, including 3-

year OS, subtype (CL+ME, NE+PN), MGMT status 

(methylated, unmethylated), 1p19q codel status (codel, 

noncodel), and IDH status (wildtype, mutant).  

 

Cox regression analysis and nomogram construction 

 

The univariate and multivariate Cox regression analyses 

were performed to identify prognostic factors with P 

value < 0·05 for designing a prognostic model. A 

nomogram was constructed using the “RMS” [50, 51] in 

R software to predict 3- and 5-year OS in accordance 

with the results of multivariate Cox regression analyses. 

The prediction accuracy of the nomogram for OS was 

evaluated by a calibration curve and AUC. Furthermore, 

the accuracy of the prognostic models was also 

validated in CGGA dataset. 

 

Cell culture 

 

Human glioma cell lines (U251, T98G, A172, U343) 

were obtained from the Chinese Academy of Sciences 

(Shanghai, China). All cells were maintained in 

Dulbecco's modified Eagle's medium (DMEM) (Gibco, 

CA, USA) supplemented with 10% fetal bovine serum 

(FBS) (Gibco, CA, USA) at 37°C with 5% CO2. 

 

Quantitative real-time polymerase chain reaction 

(qRT-PCR) analysis 

 

Total RNA was extracted from cells using RNAiso Plus 

reagent (Gibco, CA, USA) according to manufacturer’s 

instructions. The total RNA was reverse-transcribed 

into cDNA using the PrimeScript RT Master Mix 

(Takara, China) kit following the manufacturer’s 

recommendations. The qRT-PCR was conducted with 

the SYBR® Premix DimerEraserTM (Takara, China) on 

the LightCycler® 480 system (Roche Diagnostics, Basel, 

Switzerland). The following primer sequences were used: 

P4HB forward primer, 5′-GGTGCTGCGGAAAAGCAA 

C-3′ and reverse primer, 5′-ACCTGATCTCGGAACCT 

TCTG-3′; PDIA4 forward primer, 5′-GGCAGGCTGT 

AGACTACGAG-3′ and reverse primer, 5′-TTGGTCAA 

CACAAGCGTGACT-3′; PDIA5 forward primer, 5′-

AAAGGTCTCCTCGCTCATTGA-3′ and reverse primer, 

5′-CACCAGTACATTATTCCGGGTTC-3′; TXNDC12 

forward primer, 5′-TGGCAAGGTGCATCCTGAAAT-3′ 

and reverse primer, 5′-TGCTCGGCACTGACATAA 

AAA-3′. GAPDH was used as the internal reference gene 

for data normalization. The qRT-PCR reaction steps were 

as follows: denaturation at 95°C for 30 sec, followed by 

45 cycles of 95°C for 5 sec and 60°C for 20 sec. The 

relative mRNA expression was analyzed using the 2-ΔΔCt 

method. 

 

The human protein atlas and 3D protein structure 

 

The immunohistochemical assay images of different 

PDI family members in the normal and high grade 

glioma tissues were downloaded from the Human 

Protein Atlas website (https://www.proteinatlas.org) [52, 

53]. 

 

Statistical analysis 

 

All statistical analyses were conducted using R 

software (version 3·5·3). Differences between groups 

were assessed using the two-tailed Students’ t-test. 

Multiple groups were compared by one-way ANOVA 

test. The Schoenfeld residual plots was performed to 

assess the PH assumption. Univariate and multivariate 

Cox regression analyses were performed to determine 

the prognostic value of the risk score and clinical 

features. The partition around medoids (PAM) 

algorithm has been conducted in the consensus 

clustering analysis. The chi-squared test was performed, 

while analyzing clinical characteristics’ difference between 

cluster 1 and 2. Kaplan-Meier method with log-rank 

https://www.proteinatlas.org/
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test was used to compare the OS, PFI and DSS rates of 

glioma patients (low-/high-PDI signature, low-/high-

risk score, cluster 1/2). The correlation between two 

variables was analyzed with Spearman rank. p < 0·05 

was considered to indicate statistical significance. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 

 

 

 

 
 

Supplementary Figure 1. (A, B) The mRNA expression patterns of PDIs in GBM with different status of IDH from TCGA and CGGA datasets. 

(C) The mRNA expression patterns of PDIs in LGG with different status of 1p19q from CGGA dataset. (D–J) In TCGA dataset, the distribution of 
PDI signature in gliomas was classified by subtype, 1p19q codel status, IDH status and MGMT promoter status. TCGA database as training set 
and CGGA database as the validation set. * P<0.05, ** P<0.01, ***P<0.001, NS. P&gt;0.05.  
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Supplementary Figure 2. The prognostic value of PDI signature in patients with gliomas. Kaplan-Meier survival curves for the OS, 

PFI and DSS, based on the value of PDI signature in LGGGBM (A–C), LGG (D–F), and GBM (G–I) samples downloaded from TCGA. (J–L) The 
survival curves of OS were constructed based on the CCGA datasets. TCGA database as training set and CGGA database as the validation set. 
CV, cut-off value used to divide patients into high and low groups. 
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Supplementary Figure 3. (A, B) Clustering by the consensus clustering algorithm with k= 2 to 10. The cumulative distribution function 

(CDF) plot of the PDIs mRNA expression in gliomas from TCGA and CGGA. k=2 was defined as the optimal number. (C, D) Consensus matrix for 
2 clusters. The dark blue rectangles show the samples assigned to the 2 clusters while the light blue lines represent the unassigned samples. 
Comparisons of risk score values between subgroups separated by clinicopathological characters. Differences in risk scores in LGGGBM (e), 
LGG (F, H) and GBM (I, K) classified by subtype, 1p19q codel status, IDH status and MGMT promoter status. ***P<0.001, NS P>0.05. TCGA 
database as training set and CGGA database as the validation set.   
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Supplementary Figure 4. The prognostic value of risk scores in patients with gliomas. Kaplan-Meier survival curves for the OS, PFI 

and DSS, according to the risk score values in LGGGBM (A–C), LGG (D–F), and GBM (G–I) samples downloaded from TCGA database. (J–L) The 
survival curves for the OS based on datasets from the CCGA database. TCGA database as training set and CGGA database as the validation 
set. CV, cut-off value used to divide patients into high and low groups.   
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Supplementary Figure 5. (A) Correlation between PDI signature and risk score. (B–C);Comparison of OS between two groups divided by 

the median value of the prognostic model (Low vs High). Representative immunohistochemical staining images of P4HB (D), PDIA4 (E), and 
PDIA5 (F), in normal brain tissues and high grade glioma tissues, which were downloaded from the Human Protein Atlas website 
(www.proteinatlas.org). TCGA database as training set and CGGA database as the validation set. CV, cut-off value used to divide patients into 
high and low group. 

  

www.proteinatlas.org
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Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 
 

Supplementary Table 1. Univariate and multivariate Cox regression analysis of factors affecting overall survival of 
patients. 

 

Supplementary Table 2. Clinical information of glioma patients from TCGA and CGGA database. 

Clinicopathological features 
TCGA CGGA 

n (n%) n (n%) 

Number of patients 641 (100%) 319 (100%) 

Subtype   

Proneural 229 (35.73%) 101 (31.66%) 

Classical 79 (12.32%) 71 (22.26%) 

Neural 108 (16.85%) 81 (25.39%) 

Mesenchymal 90 (14.04%) 66 (20.69%) 

NA 135 (21.06%) 0 (0.00%) 

MGMT   

Methylation 460 (71.76%) \ 

Unmethylation 150 (23.40%) \ 

NA 31 (4.84%) \ 

1p19q   

Codeletion 165 (25.74%) 67 (21.00%) 

Noncodeletion 472 (73.63%) 245 (76.80%) 

NA 4 (0.63%) 7 (2.20%) 

IDH   

Mutation 417 (65.05%) 174 (54.55%) 

Wildtype  217 (33.85%) 145 (45.45%) 

NA 7 (1.10%) 0 (0.00%) 

Gender   

Male 371 (57.88%) 198 (62.07%) 

Female 270 (42.12%) 121 (37.93%) 

Age   

<45 315 (49.14%) 187 (58.62%) 

≥45 326 (50.86%) 132 (41.38%) 

Grade   

WHO grade II 244 (38.07%) 102 (31.97%) 

WHO grade III 259 (40.41%) 77 (24.14%) 

WHO grade IV 137 (21.37%) 136 (42.63%) 

NA 1 (0.15%) 4 (1.26%) 

Cancer type   

LGG 504 (78.63%) 179 (56.11%) 

GBM 137 (21.37%) 136 (42.63%) 

NA 0 (0.00%) 4 (1.26%) 

 


