Correction for: Mitochondrial fission regulator 2 (MTFR2) promotes growth, migration, invasion and tumour progression in breast cancer cells

Guanming Lu ${ }^{1, *}$, Yuanhui, Lai ${ }^{2,}{ }^{\text {, }}$, Tiantian Wang ${ }^{3,{ }^{*}}$, Weihao Lin ${ }^{4}$, Jinlan Lu ${ }^{5}$, Yanfei ${ }^{1}{ }^{1}$, Yongcheng Chen ${ }^{1}$, Haiqing Ma^{6}, Ruilei Liu ${ }^{7}$, Jie $\mathrm{Li}^{4,8}$
${ }^{1}$ Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Basie, Guangxi, China
${ }^{2}$ Department of Breast and Thyroid Surgery, Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
${ }^{3}$ Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Ji'nan, Shandong, China
${ }^{4}$ Department of Breast and Thyroid Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
${ }^{5}$ Department of Stomatology, Affiliated Hospital of Youjiang Medical University for Nationalities, Basie, Guangxi, China
${ }^{6}$ Department of Oncology, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
${ }^{7}$ Department of Breast and Thyroid Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
${ }^{8}$ Division of Thyroid and Parathyroid Endocrine Surgery, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
*Equal contribution and co-first authors

Correspondence to: Jie Li, Haiqing Ma, Ruilei Liu; email: lijie78@mail.sysu.edu.cn, mahaiqing@mail.sysu.edu.cn, liuruileipaper@163.com

Original article: Aging (Albany NY) 2019; 11: 10203-10219.
PMID: 31740625 PMCID: PMC6914410 doi: 10.18632/aging. 102442
This article has been corrected: The authors requested to replace Figure 3 and Figure 6. The mistakes of these figures are described below:
Figure 3: the Westernblot of SDHB in Figure3B of MCF-7 flipped horizontally.
Figure 6: the Westernblot of Cytc in Figure6B of MDA-231 was identical to Uqcrfs1 due to the layout mistakes.
These corrections do not change any of the conclusions of the publication. The corrected Figure 3 and Figure 6 are provided below.

Figure 3. MTFR promotes the glycolysis of BC. (A) The relative activities of the CICII and CIII of different cell lines (Student's two onetailed paired test * $\mathrm{p}<0.05$). (B) Western blot of OXPHOS markers of different cell lines. (C) The relative viability of different cell lines treated with different inhibitors (Student's two one-tailed paired test * p<0.05). (D) The relative ATP level of different cell lines (Student's two one-tailed paired test * $p<0.05$). (E) Western blot of glycolysis markers of different cell lines. (F) The relative lactic acid level of different cell lines (Student's two one-tailed paired test * $p<0.05$).

Figure 6. MTFR promotes the glycolysis of BC in a HIF1 α - and HIF2 α-dependent manner. (A) The relative activities of the Cl CII and CIII of different cell lines (Student's two one-tailed paired test * $\mathbf{p}<0.05$). (B) Western blot of OXPHOS markers of different cell lines. (C) The relative viability of different cell lines treated with different inhibitors (Student's two one-tailed paired test * $p<0.05$). (D) The relative ATP level of different cell lines (Student's two one-tailed paired test * $p<0.05$). (\mathbf{E}) Western blot of glycolysis markers of different cell lines. (F) The relative lactic acid level of different cell line (Student's two one-tailed paired test * $p<0.05$).

