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INTRODUCTION 
 

Hormesis, a biphasic dose-response characterized by 

low-dose stimulation and high-dose inhibition, is now 

considered as a significant toxicological concept to 

account for the beneficial effects of mild stress [1, 2]. 

The concept of hormesis arouses great interest, because it 

is a near-universal and reproducible phenomenon with 

profound implications for the clinical trial, drug 

discovery and risk assessment [3]. As a beneficial 

compensatory response triggered by mild stress, hormetic 

individuals generally exhibit better performance than the 

untreated controls, and the potential anti-aging effect of 

hormesis has attracted more attention [4, 5]. It seems 

promising to apply hormesis in aging intervention, which 

is evidenced by multiple studies, like the beneficial 

effects of moderate exercise-induced hormesis on body 

function and aging-related diseases [6]. However, there 

are still considerable debates regarding the origin and 

mechanisms of aging and hormesis, such as the 

conflicting evidence related to the role of ROS in aging 

[7, 8], and the hormetic effect manifested by stress-
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ABSTRACT 
 

Mild stress-induced hormesis, as a promising strategy to improve longevity and healthy aging, meets both 
praise and criticism. To comprehensively assess the applicability of hormesis in aging intervention, this meta-
analysis was conducted focusing on the effect of hormesis on Caenorhabditis elegans. Twenty-six papers 
involving 198 effect size estimates met the inclusion criteria. Meta-analytic results indicated that hormesis 
could significantly extend the mean lifespan of C. elegans by 16.7% and 25.1% under normal and stress culture 
conditions (p < 0.05), respectively. The healthspan assays showed that hormesis remarkably enhanced the 
bending frequency and pumping rate of worms by 28.9% and 7.0% (p < 0.05), respectively, while effectively 
reduced the lipofuscin level by 15.9% (p < 0.05). The obviously increased expression of dauer formation protein-
16 (1.66-fold) and its transcriptional targets, including superoxide dismutase-3 (2.46-fold), catalase-1 (2.32-fold) 
and small heat shock protein-16.2 (2.88-fold) (p < 0.05), was one of the molecular mechanisms underlying these 
positive effects of hormesis. This meta-analysis provided strong evidence for the anti-aging role of hormesis, 
highlighting its lifespan-prolonging, healthspan-enhancing and resistance-increasing effects on C. elegans. 
Given that dauer formation protein-16 was highly conservative, hormesis offered the theoretical possibility of 
delaying intrinsic aging through exogenous intervention among humans. 
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induced cost-free benefits or trade-offers with other 

fitness traits [9, 10]. More importantly, the application of 

hormesis in aging therapy and interventions is in its 

infancy, and there are limited investigations in this field 

[11]. Therefore, the anti-aging effect of hormesis remains 

controversial [4]. 

 

Some researchers indicated the anti-aging effect of 

hormesis, and considered it as an overcompensation 

response to the disruption in homeostasis [12]. 

According to the investigations, hormesis could not only 

contribute to homeostasis re-establishment, but also 

strengthen the defense system and immune function by 

inducing expression of molecular chaperones and 

immunologic factors with potential anti-aging effect [13, 

14]. However, others argued that hormesis might 

accelerate aging rather than delay it. They proposed that 

the appearance of hormesis was often accompanied by 

mild or severe cell damages [15]. Because hormesis 

could significantly promote the rate of cell proliferation, 

the occurrence of damages could not be recognized and 

repaired by the immune system timely and exactly, 

thereby resulting in damage accumulation and aging 

acceleration [16, 17]. There is an antinomy between 

hormesis and anti-aging: hormesis is considered to delay 

aging, but also accelerate it [18]. Hence, further 

explorations are needed to determine whether hormesis 

can delay aging. 

 

At present, most researchers take a wait-and-see attitude 

to hormetic treatment for human health, due to the 

contradictory evidence. It is meaningful to conduct a 

systematic assessment on the existed evidences in the 

absence of large-scale empirical research on the 

correlation between hormesis and aging/anti-aging. 

Meta-analysis is a powerful tool to synthesize multiple 

or even conflicting evidence to get a clear and reliable 

final-evidence, achieving the purpose of quantitative 

review [19]. The application of meta-analytic method 

contributed a lot to clarifying whether a treatment had 

anti-aging effect. For example, Liu et al [20] combined 

18 studies regarding the effect of growth hormone 

supplementation on aging, indicating that growth 

hormone was not only an invalid anti-aging therapy, but 

also associated with high rates of adverse events. 

Peterson et al [21] pooled 47 studies about the 

relationship between resistance exercise and muscular 

strength, identifying their positive correlation, thereby 

resistance exercise was a viable strategy to prevent 

aging-related muscular weakness. On these grounds, in 

order to thoroughly assess the effect of hormesis on 

aging, in this work, 26 papers documenting the changes 

of aging-related indicators induced by hormesis in 

Caenorhabditis elegans (a significant model organism in 

aging research due to its unique biological features like 

short life cycle, strong reproductive ability and clear 

genetic background [22]) were meta-analyzed. This 

study highlighted the positive effects of hormesis on 

lifespan, healthspan and stress resistance in C. elegans. 

These findings may be discrepant with human clinical 

experiments. However, it is predictable that low-level 

stress treatment, as a potential aging intervention 

strategy, has a bright future. 

 

RESULTS 
 

Overview of included studies 

 

The combinations of relevant effect size estimates were 

summarized in Figure 1. Substantial heterogeneities were 

observed among included studies (p < 0.01), due to the 

exploratory nature of animal studies (Figures 2–7). 

Further sensitivity analysis showed that the meta-analytic 

results were stable and unchanged (Supplementary Figure 

1). Moreover, Egger’s test indicated that there was no 

obvious publication bias except the indicator of bend 

frequency (Supplementary Figure 2). 

 

Hormesis and mean lifespan 

 

This meta-analysis indicated that hormetic effect could 

significantly extend the mean lifespan of wild-type 

worms, with an increase of 16.7% (Random-effect 

model; SMD = 1.24, 95% CIs = 0.77, 1.70; p < 0.05) 

(Figures 1A and 2) under normal culture condition and 

25.1% (Random-effect model; SMD = 1.94, 95% CIs = 

0.93, 2.96; p < 0.05) (Figures 1E and 6) under stress 

culture condition. 

 

Hormesis and healthspan 

 

Compared to untreated controls, hormesis could not 

only remarkably improve the bend frequency by 28.9% 

(Random-effect model; SMD = 1.74, 95% CIs = 1.38, 

2.09; p < 0.05) (Figures 1B and 3) and the pumping rate 

by 7.0% (Random-effect model; SMD = 0.74, 95% CIs 

= 0.24, 1.23; p < 0.05) (Figures 1C and 4), but also 

obviously bring down the lipofuscin level by 15.9% 

(Random-effect model; SMD = -1.80, 95% CIs = -2.73, 

-0.86; p < 0.05) (Figures 1D and 5). 

 

Hormesis and DAF-16-related genes 

 

To further explore the underlying mechanisms of 

hormesis, the mRNA levels of daf-16 and its targeted 

genes were evaluated including superoxide dismutase-

3 (sod-3), catalase-1 (ctl-1) and small heat shock 

protein-16.2 (hsp-16.2). Compared with control 

groups, the transcript levels of these genes were 

increased up to 1.66-, 2.46-, 2.32- and 2.88-folds in 

hormesis groups (Random-effect model; p < 0.05), 

respectively (Figure 7). 
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DISCUSSION 
 

Lifespan, as a precisely calculable and highly credible 

parameter, has proven to be an excellent proxy for 

measuring the rate of aging [23, 24]. In this study, the 

lifespan-prolonging effect of hormesis under normal 

culture condition directly reflected the anti-aging effect of 

hormesis at the individual level. Consistently, the 

lifespan-prolonging effect of hormesis was also identified 

in other model organisms. Yu et al [25] reported that 

hyperbaric normoxia-induced (2 atm absolute pressure 

with 10% O2) hormesis could extend the mean lifespan in 

Drosophila melanogaster by 12% to 14%. Musa et al [26] 

denoted that hormetic effect triggered by heat shock (34 

°C for 3 h) elongated the median replicative lifespan of 

budding yeast by 50%. More importantly, in mammalian 

rats, moderate exercise-induced hormesis prolonged the 

median lifespan by 9% to 19% [27]. However, it was 

worthy to note that the lifespan extension effect of 

hormesis was tightly associated with the genetic 

background in D. melanogaster [28]. In other words, the 

lifespan-prolonging in one line could be lifespan-limiting 

in other lines [28]. In the current study, only wild-type 

nematodes were included, thus effectively preventing the 

influence of genetic background on the meta-analytic 

results. 

 

Healthspan describes the length of health life before 

the age-associated decline, which is species-specific 

and hardly defined [23, 29]. Based on the 

characteristics of C. elegans, three quantified 

indicators, including bend frequency, pumping rate 

and lipofuscin level, were selected as the 

representations to determine the effect of hormesis on 

healthspan [23]. Specifically, bend frequency was in 

line with neurotoxicity level [30], pumping rate 

suggested food intake ability [31], and lipofuscin level 

reflected intensity of lipid peroxidation [32]. In this 

study, sufficient evidence for the healthspan-

enhancing effect of hormesis was observed, in which 

hormesis not only significantly improved the bend 

frequency and the pumping rate of C. elegans, but 

also obviously reduced the lipofuscin level. The 

positive role of hormesis in healthspan indicated the 

possibility of applying hormesis in improving healthy 

aging in C. elegans. 

 

Stress resistance is an integral component of aging 

studies, and the ability of C. elegans to resist the 

external and internal perils is generally correlated 

with the length of lifespan [23]. In this study,  

the stress resistance is corresponding to the mean 

lifespan of C. elegans under stress (e.g. oxidation, 

heat, cold or UV-irradiation) culture condition.  

Some aging theories constructed a framework, 

proposing that the enhanced stress resistance  

was a direct cause of lifespan extension, like the free 

radical theory of aging [23, 33, 34]. The positive 

 

 
 

Figure 1. Relative changes of involved indicators. (A–E) denoted the relative changes of mean lifespan, bend frequency, pumping rate, 

lipofuscin level and stress resistance of Caenorhabditis elegans in hormesis groups compared to control groups, while (F) represented the 
combined relative change of each indicator based on random-effect model. The number of worms included in each indicator was shown in its 
corresponding graph. Data were presented by mean with 95% CIs. 
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connection between stress resistance and lifespan was 

vividly manifested in this study. The significant 

prolongation of mean lifespan of C. elegans in hormesis 

group under stress culture condition suggested the 

resistance-increasing effect of hormesis. Consistently, 

the improvement in resilience of hormesis has also been 

identified in some clinical trials. For example, the low-

dose radiation was effective for the treatment of 

inflammations [35], and repeated moderate exercise 

strengthened anti-oxidative defense [36]. As 

commented by Gems et al [37], hormesis does not kill 

us, just makes us stronger. 

 

In C. elegans, DAF-16 is the major downstream target 

of the insulin/IGF-1 signaling pathway (IIS) that acts 

as the forkhead Box O (FoxO) transcription factor 

regulating lifespan and resistance [38, 39]. In this 

study, the mRNA levels of daf-16 and its targeted 

genes were evaluated including sod-3, ctl-1 that both 

conduced to the oxidative stress response, and hsp-

16.2 that contributed to heat shock response [38, 40–

42]. The obviously increased expressions of these 

genes were highly corresponding to longer lifespan 

and higher resistance among hormetic nematodes, 

suggesting that the lifespan-prolonging and 

resistance-increasing effects of hormesis were 

mediated through daf-16 activation. Moreover, 

Blagosklonny [18] proposed that aging was driven by 

over-activated signal-transduction pathways (e.g. 

Target of Rapamycin (TOR)) instead of the 

accumulation of molecular damage. If so, the anti-

aging effect of hormesis could be perfectly explained. 

 

Overall, in C. elegans, strong evidence for the anti-

aging effect of hormesis was identified. The lifespan-

prolonging, healthspan-enhancing and resistance-

increasing effects of hormesis revealed the anti-aging 

role of hormesis at individual level, while the activated 

expression of DAF-16-related genes reflected the anti-

aging role of hormesis at molecular level.  

 

 
 

Figure 2. Association of hormesis and mean lifespan. The diamond represented the combined effect size of mean lifespan. The red-

dotted-line was invalid, and if the diamond did not intersect with it, meaning that hormesis could significantly extend (on the right) or limit 
(on the left) the mean lifespan of C. elegans (p < 0.05). 
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Figure 3. Association of hormesis and bend frequency. The pooled effect size of bend frequency was shown by the diamond. The 

diamond did not intersect with the red-dotted-line, indicating that hormesis could remarkably improve (on the right) or reduce (on the left) 
the bend frequency of C. elegans (p < 0.05). 
 

 
 

Figure 4. Association of hormesis and pumping rate. The diamond was the pooled effect size of pumping rate. The diamond did not 

intersect with the red-dotted-line, suggesting that hormesis could obviously enhance (on the right) or reduce (on the left) the pumping rate 
of C. elegans (p < 0.05). 
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Figure 5. Association of hormesis and lipofuscin level. The combined effect size of lipofuscin level was shown by the diamond. The 

diamond did not intersect with red-dotted-line, indicating that hormesis could significantly increase (on the right) or decrease (on the left) 
the lipofuscin level of C. elegans (p < 0.05). 

 

 
 

Figure 6. Association of hormesis and stress resistance. The diamond showed the pooled effect size of stress resistance, which did not 

intersect with the red-dotted-line, indicating hormesis could obviously increase (on the right) or decrease (on the left) the stress resistance of 
C. elegans (p < 0.05). 
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Apparently, all of these involved indicators supported 

the application of hormesis in aging intervention in C. 

elegans. It is still unclear to what extent the 

applicability can be transferred from model organisms 

to humans [4, 11]. However, given that daf-16 was 

highly conservative [43, 44], hormesis provided the 

theoretical possibility of delaying intrinsic aging 

through exogenous intervention among humans. 

CONCLUSIONS 
 

The lifespan-prolonging, healthspan-enhancing and 

resistance-increasing effects of hormesis were identified 

in C. elegans. The consistently positive findings across 

different aging indicators demonstrated that hormesis was 

a promising modulator of aging. The significant activation 

of daf-16 and its target genes, including sod-3, ctl-1 and 

 

 
 

Figure 7. Relative expression levels of Dauer formation protein-16-related genes. The diamond indicated the combined effect size 

of DAF-16-related genes, which did not intersect with the red-dotted-line, indicating hormesis could obviously increase (on the right) or 
decrease (on the left) the expression of these genes (p < 0.05). Abbreviation: daf-16, dauer formation protein-16; sod-3, superoxide 
dismutase-3; ctl-1, catalase-1; hsp-16.2, small heat shock protein-16.2. 
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hsp-16.2, was one of the potential molecular mechanisms 

driving these beneficial effects of hormesis 

 

MATERIALS AND METHODS 
 

Proposal registration and searching strategy  

 

The review protocol was registered in the International 

Prospective Register of Systematic Reviews 

(PROSPERO) with the reference number of 

CRD42019117838. 

 

Three electronic databases were searched, including 

Medline, Embase and the Cochrane Library, using the 

combination keywords: (“hormesis” OR “hormetic” OR 

“biphasic” OR “preconditioning” OR “conditioning” 

OR “adaptive response” OR “acclimation response” OR 

“stress response” OR “dose response” OR “dose-

response”) AND (“anti-ageing” OR “antiageing” OR 

“anti-aging” OR “antiaging” OR “ageing” OR “aging” 

OR “life” OR “lifespan” OR “extend” OR “extending” 

OR “extension” OR “prolong” OR “prolonging” OR 

“prolongation” OR “longevity” OR “survival” OR 

“resistance” OR “healthspan” OR “health span” OR 

“bend” OR “bending” OR “pump” OR “pumping” OR 

“lipofuscin” OR “pigment”) AND (“Caenorhabditis 

elegans” OR “C. elegans” OR “worm” OR 

“nematode”), publishing in English or Chinese. 

Additionally, gray literatures such as conference papers 

and references listed were also searched using the above 

keywords via Index to Scientific and Technical 

Proceedings, Web of Science and Baidu Scholar. 

 

Inclusion criteria 

 

The titles, abstracts and keywords of all retrieved papers 

were preliminarily separately screened by two researchers 

(T. Sun and J. Zhan). Then, the full texts of potentially 

qualified papers were downloaded and independently 

reviewed for inclusion according to the following criteria: 

(i) original research paper; (ii) designed at least one 

control group and one hormesis group; (iii) the 

experimental animals were healthy C. elegans; (iv) 

reported at least one outcome induced by hormesis about 

aging/anti-aging in wild-type worms; (v) the sample size 

of each study and the mean value with standard deviation 

(SD)/standard error (SE) of each outcome were available. 

If a paper involving missing data, an inquiry email was 

sent to the correspondence author for the raw data. 

However, if the data were not available within one month, 

the paper would be excluded. Then cross-checking was 

conducted, with disagreements settled by discussion, or 

consultation with the third researchers. After the final 

selection, 198 effect size estimates (including 33 and 15 

for mean lifespan under normal condition and stress 

condition respectively, 36 for bend frequency, 32 for 

pumping rate, 24 for lipofuscin level, and 58 for mRNA 

expression level of dauer formation protein-16 (daf-16) 

and its target genes) involving 26 papers met the inclusion 

criteria, and were retained in this meta-analysis (see 

Supplementary Table 1). 

 

Data analysis 

 

This meta-analysis was performed using the STATA 

v12.0 software (Stata Corporation, College Station, TX, 

USA). Chi-squared-based I2 test was conducted to 

evaluate the heterogeneity among studies, with the values 

I2 of 25%, 50% and 75% representing low, moderate and 

high degrees, respectively [45]. If the value of I2 was 

greater than 50%, the random-effect model based on the 

method proposed by DerSimonian and Laird would be 

adopted to account for the high heterogeneity among 

studies [46], followed by “leave-one-out” sensitivity 

analysis to test the robustness of meta-analytic results, or 

else, the fixed-effect model based on inverse variance 

method would be used [47]. Egger’s linear regression test 

would be used for quantitatively estimating the risk of 

publication bias [45]. The unbiased estimate of effect size 

was in accordance to Cohen’s standardized mean 

difference (SMD) with 95% confidence intervals (CIs) 

[45]. The significance level was set at p < 0.05. 
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Supplementary Figure 1. “Leave-one-out” sensitivity analyses. (A–E) denoted the “leave-one-out” sensitivity analyses of mean 

lifespan, bend frequency, pumping rate, lipofuscin level and stress resistance, respectively. (F) was the summary of the significant re-test 
after omitting one study. As shown in (F), the meta-analytic results of all indicators were stable. 
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Supplementary Figure 2. Publication bias assessments. (A–E) showed the publication bias assessments of mean lifespan, bend 

frequency, pumping rate, lipofuscin level and stress resistance, respectively, while (F) summarized the risk of publication bias of each 
indicator. The sub-graph (I) was the funnel plots that directly exhibited the risk of publication bias. The sub-group (II) was the Egger’s test 
expressed by line form that could quantitatively evaluate the risk of publication bias. Statistically significant publication bias was considered 
when the value of p was less than 0.05. *represented the appearance of significant publication bias (p < 0.05). 
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