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INTRODUCTION 
 

In the clinical practices of obstetrics, postpartum 

hemorrhage is one common complication [1–3], causing 

moderate to severe ischemic injuries to human 

endometrium [1–3]. Endometrium ischemia is often 

followed by reperfusion, leading to significant oxidative 

injury to human endometrial cells [1–3]. At the molecular 

 

level, ischemia-reperfusion will cause reactive oxygen 

species (ROS) production and excessive oxidative 

injury to endometrial cells [4–6], leading to production 

of circulating lipid peroxides, but reduction of various 

antioxidants [4–6]. These events will cause further 

DNA breaks, protein damages and mitochondrial dys-

function [4–6], eventually leading to death of 

endometrial cells and tissues [1–3]. In experimental 
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ABSTRACT 
 

Oxygen and glucose deprivation (OGD)-re-oxygenation (OGDR) stimulation to the human endometrial cells mimics 
ischemia-reperfusion injury. Cyclophilin D (CypD)-dependent programmed necrosis pathway mediates OGDR-
induced cytotoxicity to human endometrial cells. We here identified a novel CypD-targeting miRNA, microRNA-
1203 (miR-1203). In T-HESC and primary human endometrial cells, ectopic overexpression of miR-1203, using a 
lentiviral construct, potently downregulated the CypD 3’-untranslated region (3’-UTR) activity and its expression. 
Both were however upregulated in endometrial cells with forced miR-1203 inhibition by its anti-sense sequence. 
Functional studies demonstrated that ectopic miR-1203 overexpression in endometrial cells alleviated OGDR-
induced programmed necrosis, inhibiting mitochondrial CypD-p53-adenine nucleotide translocator 1 association, 
mitochondrial depolarization, reactive oxygen species production, and medium lactate dehydrogenase release. 
Contrarily OGDR-induced programmed necrosis and cytotoxicity were intensified with forced miR-1203 inhibition 
in endometrial cells. Significantly, ectopic miR-1203 overexpression or inhibition failed to change OGDR-induced 
cytotoxicity in CypD-knockout T-HESC cells. Furthermore, ectopic miR-1203 overexpression was unable to protect T-
HESC endometrial cells from OGDR when CypD was restored by an UTR-depleted CypD construct. Collectively, 
these results show that miR-1203 targets and silences CypD to protect human endometrial cells from OGDR 
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settings, oxygen and glucose deprivation (OGD) and 

subsequent re-oxygenation (OGDR) is applied to 

cultured endometrial cells, mimicking ischemia-

reperfusion and oxidative injuries [7–10]. 

 

Our previous studies have demonstrated that OGDR 

primarily induced programmed necrosis (a 

mitochondria-dependent activate necrosis form [11–

13]), but not apoptosis, in endometrial cells [14, 15]. 

The active necrosis pathway was evidenced by 

mitochondrial association of cyclophilin D (CypD)-p53-

adenine nucleotide translocator 1 (ANT1), followed by 

mitochondrial depolarization, ROS production, and 

lactate dehydrogenase (LDH) release to the conditional 

medium [14, 15]. Importantly, CypD inhibition (by its 

inhibitor cyclosporine A/CsA [16]) or silencing (by 

targeted shRNAs) efficiently protected endometrial 

cells from OGDR. Reversely, ectopic overexpression of 

CypD intensified OGDR-induced endometrial cell 

necrosis [15]. Interestingly, ginseng Rh2 (GRh2), a 

converted ginsenoside, inhibited OGDR-induced 

programmed necrosis pathway and protected endo-

metrial cells from OGDR [15]. Furthermore, activation 

of Akt-Nrf2 cascade by keratinocyte growth factor 

(KGF) inhibited OGDR-induced death in endometrial 

cells through shutting down the programmed necrosis 

pathway [14]. Therefore, our results suggest that 

inhibition of CypD-dependent programmed necrosis 

pathway is an efficient strategy to protect endometrial 

cells from OGDR [14, 15].  
 

microRNAs (miRNAs) are endogenous noncoding 

RNAs (ncRNAs) about ~22 nucleotide (nt) long [17, 

18]. miRNAs can inhibit translation and/or expression 

of the target mRNAs through directly binding to the 3’-

untranslated region (3′-UTR) [17, 18]. One novel way 

to silence CypD and possibly shut down the 

programmed necrosis pathway is though miRNA-

induced silencing of CypD. Wang et al., have shown 

that microRNA-30b (miR-30b) selectively silenced 

CypD, thus protecting heart from ischemia/reperfusion 

injury and necrotic cell death [19]. We here identified a 

novel CypD-targeting miRNA, microRNA-1203 (miR-

1203). Our results further show that miR-1203 targets 

and silences CypD to protect human endometrial cells 

from OGDR-induced programmed necrosis.  

 

RESULTS 
 

miR-1203 targets and silences CypD in human 

endometrial cells 
 

The current study aims to silence CypD though its 

targeting miRNA. The possible CypD-targeting 

miRNAs, binding to its 3’-UTR, were searched from the 

microRNA database TargetScan (V7.2) [20]. The 

identified CypD-targeting miRNAs were further 

verified from other microRNA databases, including 

miRbase (v21.0) and miRDB. From these bioinformatic 

analyses we indentified that microRNA-1203 (miR-

1203) putatively targets CypD’s 3′-UTR (at position 

806-813, see Figure 1A), with the miR-1203-CypD 3′-

UTR binding context score percentage of 99% and the 

context++ score at -0.7 (from TargetScan V7.2 [20], 

Figure 1A). These results indicated that there is a high 

possibility and specificity for the two to bind [20]. 

 

To test if miR-1203 could target and alter the expression 

of CypD, the pre-miR-1203-encoding lentivirus (“lv-pre-

miR-1203”) was transduced to T-HESC human 

endometrial cells (an established human cell line) [14, 

15]. Following selection by puromycin-containing 

complete medium, three stable cell lines were established: 

“sL1/sL2/sL3”. In Figure 1B qPCR results demonstrated 

that mature miR-1203 levels increased over 12 folds in 

the stable T-HESC cell lines. Importantly, the Cyp-D 3′-

UTR luciferase reporter activity was largely decreased in 

the lv-pre-miR-1203-expressing stable T-HESC cells 

(Figure 1C). Furthermore, CypD mRNA levels reduced 

over 75% in the stable T-HESC cells with forced miR-

1203 overexpression (vs. vector control cells, Figure 1D). 

Examining CypD protein expression, by Western blotting, 

confirmed that ectopic miR-1203 overexpression 

downregulated CypD protein expression in T-HESC cells 

(Figure 1E).  

 

The results above indicated that miR-1203 selectively 

targets and silences CypD in T-HESC cells. To further 

support our hypothesis, T-HESC cells were transfected 

with either wild type (“WT-”) or two mutant (“Mut1/2”) 

miR-1203 mimics (Figure 1A). The mutants contain 

nucleotide mutations at the miR-1203’s binding sites to 

Cyp-D 3′-UTR (Figure 1A). As shown, only the WT miR-

1203 mimic induced downregulation of the Cyp-D 3′-UTR 

luciferase reporter activity (Figure 1F) and CypD 

mRNA/protein expression (Figure 1G and 1H). While the 

two mutant miR-1203 mimics were completely ineffective 

(Figure 1F–1H). In the primary human endometrial cells, 

lv-pre-miR-1203 infection led to significant elevation of 

mature miR-1203 expression (Figure 1I), resulting in 

reductions in CypD mRNA (Figure 1J) and protein (Figure 

1K) expression. The microRNA control (“miRC”) had no 

significant effect on miR-1203 and CypD expression in 

human endometrial cells (Figure 1B–1K). Collectively, 

these results show that miR-1203 targets and silences 

CypD in human endometrial cells. 

 

miR-1203 inhibition can elevate CypD expression in 

human endometrial cells 

 

Results in Figure 1 show that miR-1203 targets and 

silences CypD, therefore miR-1203 inhibition could 
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Figure 1. miR-1203 targets and silences CypD in human endometrial cells. The wild-type (WT) microRNA-1203 (miR-1203) targets 

CypD 3’-UTR (3’-untranslated region) at position 806-813 (A). T-HESC endometrial cells were infected with pre-miR-1203-encoding lentivirus 
(“lv-pre-miR-1203”), following puromycin selection three stable cell lines were established: “sL1/sL2/sL3”. Control T-HESC cells were infected 
with microRNA control lentivirus (“lv-miRC”); Expression of mature miR-1203 and CypD mRNA was tested by qPCR assays (B and D); The 
relative CypD 3’-UTR luciferase reporter activity was examined (C), with CypD protein expression tested by Western blotting assays (E). T-
HESC cells were transfected with 500 nM of control microRNA mimic (“miRC”), the wild-type (“WT-”) or the mutant (“Mut1/2”, see 
sequences in A) miR-1203 mimics for 48h, the relative CypD 3’-UTR luciferase reporter activity (F), CypD mRNA (G) and protein (H) levels 
were tested. The primary human endometrial cells (“Endometrial cells”, same for all Figures) were infected with lv-pre-miR-1203 or lv-miRC 
lentivirus for 48h, expression of mature miR-1203 (I), CypD mRNA (J) and protein (K) was shown. CypD protein expression was quantified and 
normalized to the loading control (E, H and K). “MW” stands for molecular weight (same for all Figures). “Vec” stands for the empty vector 
control (same for all Figures). Data were presented as mean ± SD (n=5). * P <0.05 vs. “Vec”/“miRC”/“lv-miRC” cells. Experiments in this figure 
were repeated three times with similar results obtained.  
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lead to CypD elevation in human endometrial cells. T-

HESC cells were then infected with the lentivirus 

encoding the anti-sense of pre-miR-1203 (“lv-

antagomiR-1203”). Puromycin was added again to 

establish the two stable cell lines, “L1/L2”. qPCR 

results, Figure 2A, show that the mature miR-1203 

levels decreased over 70% in the lv-antagomiR-1203-

expressing stable T-HESC cells. As a result, the Cyp-D 

3′-UTR luciferase reporter activity was significantly 

increased (3-4 folds of control cells, Figure 2B). In T-

HESC cells miR-1203 inhibition by lv-antagomiR-1203 

boosted CypD mRNA (Figure 2C) and protein (Figure 

2D) expression. Notably, the microRNA anti-sense 

control sequence (“antaC”) was ineffective on 

expression of miR-1203 (Figure 2A) and CypD (Figure 

2C and 2D). In the primary human endometrial cells, lv-

antagomiR-1203 infection similarly resulted in reduced 

expression of miR-1203 (Figure 2E), leading to 

increased CypD mRNA (Figure 2F) and protein (Figure 

2G) expression (vs. antaC control cells). Collectively, 

these results show that forced miR-1203 inhibition 

elevated CypD expression in human endometrial cells. 

 

Forced miR-1203 overexpression protects human 

endometrial cells from OGDR-induced programmed 

necrosis 

 

Our previous studies have demonstrated that OGDR 

mainly induced programmed necrosis in endometrial 

cells [14, 15], leading to mitochondrial CypD-p53-

ANT1 association, mitochondrial depolarization, ROS 

production, and medium LDH release [14, 15], and 

eventually causing cell necrosis (but not apoptosis). On 

the contrary, CypD silencing or inhibition largely 

attenuated OGDR-induced endometrial cell necrosis 

[14, 15]. Since miR-1203 targets and silences CypD in 

human endometrial cells, we tested its activity on 

OGDR-induced cytotoxicity in human endometrial 

cells. As shown, in control T-HESC cells, OGDR 

stimulation induced significant ROS production 

(H2DCF-DA fluorescence intensity increase, Figure 

3A), which was largely inhibited in the stable lines with 

ectopic miR-1203 overexpression (lv-pre-miR-1203-

sL1/2/3, Figure 3A). Furthermore, experimental miR-

1203 overexpression potently inhibited OGDR-induced 

mitochondrial depolarization, evidenced by JC-1 green 

fluorescence accumulation (Figure 3B). Additionally, 

the cytochrome C release to cytosol by OGDR was 

significantly attenuated by forced miR-1203 over-

expression as well (Figure 3C). Consequently, OGDR-

induced viability (CCK-8 OD) reduction (Figure 3D) 

and cell necrosis (medium LDH release, Figure 3E) 

were largely suppressed in lv-pre-miR-1203-expressing 

cells. These results suggest that ectopic overexpression 

of miR-1203 attenuated OGDR-induced programmed 

necrosis in T-HESC endometrial cells. Notably, the 

ROS scavenger N-acetylcysteine (NAC) largely 

ameliorated OGDR-induced cell viability reduction 

(Supplementary Figure 1A) and necrosis (medium LDH 

release, Supplementary Figure 1B) in T-HESC 

endometrial cells. Interestingly, OGDR treatment by 

itself failed to significantly change miR-1203 (Figure 

3F) and CypD (Figure 3G) expression in T-HESC endo-

metrial cells.  

 

In the primary human endometrial cells, lv-pre-miR-

1203-induced miR-1203 overexpression (see Figure 1) 

similarly inhibited OGDR-induced ROS production 

(Figure 3H), mitochondrial depolarization (Figure 3I) 

and cytochrome C release to cytosol (Figure 3J). 

Further studies demonstrated that OGDR-induced 

endometrial cell necrosis, or medium LDH release, was 

inhibited with ectopic miR-1203 overexpression (Figure 

3K). These results further support that forced miR-1203 

overexpression protected human endometrial cells from 

OGDR. Ectopic overexpression of miR-1203 had no 

cytotoxic effects on endometrial cells grown in normal 

oxygen (Figure 3A–3E, 3H–3K).  

 

miR-1203 inhibition can exacerbate OGDR-induced 

cytotoxicity in human endometrial cells 

 

Based on the results in Figure 3, we hypothesized that 

experimental miR-1203 inhibition could possibly 

intensify OGDR-induced cytotoxicity in human 

endometrial cells, as it resulted in CypD upregulation 

(see Figure 2). The stable T-HESC cells with lv-

antagomiR-1203 (see Figure 2) were subjected to 

OGDR procedure. As shown, as compared to control 

cells with anta-C (see Figure 2), lv-antagomiR-1203-

expressing T-HESC cells showed increased ROS 

production (Figure 4A). OGDR-induced mitochondrial 

depolarization, or JC-1 green fluorescence accu-

mulation, was intensified with forced miR-1203 

inhibition (Figure 4B). Furthermore, after miR-1203 

inhibition, cytosol cytochrome c release was 

significantly augmented (Figure 4C). The lv-

antagomiR-1203-expressing T-HESC cells were more 

vulnerable to OGDR, presented with enhanced cell 

viability reduction (Figure 4D, the left panel) and 

necrosis (LDH assay, Figure 4D, the right panel), when 

compared to the control cells. Additional experimental 

results show that OGDR-induced profound cytotoxicity 

and necrosis in lv-antagomiR-1203-expressing T-HESC 

cells (“L1”) were largely attenuated by CsA, the CypD 

blocker [21, 22] (Figure 4E). These results indicate that 

forced miR-1203 inhibition induced CypD elevation, 

therefore aggravating OGDR’s cytotoxicity in 

endometrial cells.  

 

In the primary human endometrial cells, lv-antagomiR-

1203 similarly augmented OGDR-induced ROS 
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production (Figure 4F), mitochondrial depolarization 

(Figure 4G) and cytochrome C release to cytosol 

(Figure 4H). As a result, cell necrosis was enhanced as 

well (Figure 4I). These results confirmed that miR-1203 

inhibition exacerbated OGDR-induced cytotoxicity in 

human endometrial cells. 

Forced miR-1203 overexpression protects human 

endometrial cells from OGDR via silencing CypD 

 

If miR-1203 overexpression-induced endometrial cell 

protection against OGDR is through silencing CypD, it 

should then be ineffective in the CypD-depleted cells.

 

 
 

Figure 2. miR-1203 inhibition can elevate CypD expression in human endometrial cells. T-HESC endometrial cells were infected 

with pre-miR-1203 anti-sense lentivirus (“lv-antagomiR-1203”), following puromycin selection two stable cell lines were established: “L1/L2”. 
Control T-HESC cells were infected with microRNA anti-sense control lentivirus (“antaC”); Expression of mature miR-1203 and CypD mRNA 
was tested by qPCR assays (A and C); The relative CypD 3’-UTR luciferase reporter activity was examined (B), with CypD protein expression 
tested by Western blotting (D). The primary human endometrial cells were infected with lv-antagomiR-1203 or antaC for 48h, expression of 
mature miR-1203 (E), CypD mRNA (F) and protein (G) was shown. CypD protein expression was quantified and normalized to the loading 
control (D and G). Data were presented as mean ± SD (n=5), and results were normalized. * P <0.05 vs. “Vec”/“antaC” cells. Experiments in 
this figure were repeated five times with similar results obtained. 
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To test this hypothesis, we utilized the CRISPR/Cas9 

method to completely knockout (KO) CypD in T-HESC 

endometrial cells. As shown, the CypD-KO T-HESC 

cells were protected from OGDR-induced cytotoxicity, 

showing decreased viability reduction (Figure 5A) and 

cell necrosis (Figure 5B) after OGDR treatment (vs. 

Cas9 vector control cells, Figure 5A and 5B). 

Importantly, experimentally altering miR-1203 

expression, by lv-antagomiR-1203 or lv-pre-miR-1203 

(Figure 5C), failed to change OGDR-induced 

cytotoxicity in the CypD-KO T-HESC cells (Figure 5A 

and 5B). Western blotting assay results, Figure 5D, 

confirmed CypD depletion in the CypD-KO T-HESC 

cells. These results show that forced miR-1203 

overexpression/inhibition was ineffective against 

OGDR in CypD-KO cells.  

 

To further support our hypothesis, an UTR-depleted 

CypD construct (“UTR-null CypD”) was transduced to 

miR-1203-overexpressed T-HESC endometrial cells, 

that completely restored CypD mRNA and protein 

expression (Figure 5E). Importantly lv-pre-miR-1203-

induced T-HESC cell protection against OGDR was 

reversed with re-expression of the UTR-null CypD

 

 
 

Figure 3. Forced miR-1203 overexpression protects human endometrial cells from OGDR-induced programmed necrosis. The 

stable T-HESC cells, with the pre-miR-1203-encoding lentivirus (“lv-pre-miR-1203-sL1/2/3”) or the control T-HESC cells with microRNA control 
lentivirus (“lv-miRC”), were subjected to OGD exposure for 4h, followed by re-oxygenation (“OGDR”) for applied time periods, ROS 
production (DCF-DA intensity, (A) mitochondrial depolarization (JC-1 green fluorescence accumulation, (B) cytochrome C release (C) testing 
cytosol proteins) were tested by the assays mentioned in the text; Cell survival and necrosis were tested by CCK-8 (D) and LDH release (E) 
assays, respectively. The parental control T-HESC cells were treated with the OGDR procedure for applied time periods, expression of mature 
miR-1203 (F) and CypD mRNA (G) was tested by qPCR assays. The primary human endometrial cells were infected with lv-pre-miR-1203 or lv-
miRC lentivirus for 48h, followed by OGDR procedure for the applied time periods, ROS production (H), mitochondrial depolarization (I), 
cytochrome C release (J, testing cytosol proteins) and cell necrosis (K) were tested similarly. For the cytochrome C release assay, relative 
cytosol cytochrome C level (vs. Tubulin) was quantified (C and J). Data were presented as mean ± SD (n=5). “Mock” stands for non-OGDR 
treatment (same for all Figures). * P <0.05 vs. “Mock” treatment in “lv-miRC” cells. # P <0.05 vs. OGDR treatment in “lv-miRC” cells. 
Experiments in this figure were repeated three times with similar results obtained. Bar= 50 μm (B and I). 
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(Figure 5F and 5G). Therefore, ectopic overexpression 

of miR-1203 was unable to protect T-HESC cells from 

OGDR when CypD expression was restored (Figure 5F 

and 5G). Re-expression of CypD, as expected, did not 

change miR-1203 expression by lv-pre-miR-1203 

(Figure 5H). In the primary human endometrial cells, 

pretreatment with CypD inhibitor CsA largely attenuated 

OGDR-induced cell death (Figure 5I). Importantly, 

experimentally altering miR-1203 expression, by lv-pre-

miR-1203 or lv-antagomiR-1203 (Figure 5J), failed to 

change OGDR-induced cytotoxicity when CypD was 

blocked by CsA (Figure 5I).  
 

DISCUSSION 
 

OGDR stimulation to cultured human cells mimics 

ischemia-reperfusion injuries [14, 15, 23–25]. Sustained 

OGD and following re-oxygenation will interrupt 

mitochondrial functions, causing significant ROS 

production, and profound oxidative injuries, eventually 

 

 

 

Figure 4. miR-1203 inhibition can exacerbate OGDR-induced cytotoxicity in human endometrial cells. Stable T-HESC cells with 

the pre-miR-1203 anti-sense lentivirus (“lv-antagomiR-1203-L1/L2”, two lines) or the microRNA anti-sense control lentivirus (“anta-C”) were 
subjected to OGDR for applied time periods, ROS production (DCF-DA intensity, (A) mitochondrial depolarization (JC-1 green fluorescence 
accumulation, (B) cytochrome C release (C) testing cytosol proteins) were tested by the assays mentioned in the text; Cell survival and 
necrosis were tested by CCK-8 and medium LDH release assays (D). Stable T-HESC cells with the pre-miR-1203 anti-sense lentivirus (“lv-
antagomiR-1203-L1”) were pretreated with cyclosporin A (CsA, 10 μM) for 1h, followed by the OGDR stimulation for 24h, cell viability and 
necrosis were tested similarly (E). The primary human endometrial cells were infected with lv-antagomiR-1203 or anta-C lentivirus for 48h, 
followed by OGDR procedure for the applied time periods, ROS production (F), mitochondrial depolarization (G), cytochrome C release (H, 
testing cytosol proteins) and cell necrosis (I) were tested. For the cytochrome C release assay, relative cytosol cytochrome C level (vs. 
Tubulin) was quantified (C and H). Data were presented as mean ± SD (n=5). * P <0.05 vs. “Mock” treatment in “anta-C” cells. # P <0.05 vs. 
OGDR treatment in “anta-C” cells. $ P <0.05 (E). Experiments in this figure were repeated five times with similar results obtained. Bar= 50 
μm (B and G).  
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leading to cell death [14, 15, 23–25]. Interestingly, 

recent studies have indicated that OGDR mainly 

induces programmed necrosis, but not apoptosis, in 

human cells. For example, Liu et al., have shown that 

OGDR exposure to neuronal cells induced programmed 

necrosis, which was largely attenuated by K6PC-5, a 

novel sphingosine kinase 1 (SphK1) activator [25]. 

Wang et al., demonstrated that NKILA (NF-kappaB 

Interacting LncRNA) inhibition protected neuronal cells 

from OGDR-induced programmed necrosis [24]. Zheng 

et al., have shown that OGDR triggered programmed 

necrosis in myocardial cells, which was inhibited by 

ciliary neurotrophic factor (CNTF) [23].  

 

Our previous studies have shown that CypD-dependent 

programmed necrosis, but not apoptosis, is the main 

form of cell death in endometrial cells when facing 

OGDR [14, 15]. CypD inhibition, by its inhibitor CsA,

 

 
 

Figure 5. Forced miR-1203 protects human endometrial cells from OGDR via silencing CypD. The stable T-HESC cells with the 

CRISPR/Cas9-CypD-KO construct (“CypD-KO” cells) were infected with microRNA control lentivirus (“lv-miRC”), pre-miR-1203-encoding 
lentivirus (“lv-pre-miR-1203”), or the pre-miR-1203 anti-sense lentivirus (“lv-antagomiR-1203”), with puromycin selection the stable cells 
established. These cells and the CRISPR/Cas9 vector control cells (“Cas9-C”) were subjected to OGDR for 24h, cell survival and necrosis were 
tested by CCK-8 assay (A) and LDH release assay (B), respectively, with miR-1203 (C) and CypD protein (D) expression respectively examined 
by qPCR and Western blotting assays. The lv-pre-miR-1203-expression stable T-HESC cells were further transfected with or without the UTR-
depleted CypD construct (“+UTR-null CypD”), after 48h CypD mRNA and protein expression in these cells and also in lv-miRC-expressing 
control cells was shown (E); Cells were subjected to OGDR for 24h, cell survival and necrosis were respectively tested by CCK-8 (F) and LDH 
release (G) assays, with miR-1203 (H) expression examined by qPCR. The primary human endometrial cells, with/without cyclosporin A (CsA, 
10 μM) pre-treatment, were infected with lv-miRC, lv-pre-miR-1203, or lv-antagomiR-1203. After 48h cells were treated with OGDR for 
indicated time periods, cell necrosis and miR-1203 expression were tested by LDH (I) and qPCR (J) assays, respectively. Data were presented 
as mean ± SD (n=5), and results were normalized. * P <0.05 vs. OGDR treatment in “Cas9-C” cells (A–C). * P <0.05 vs. “lv-miRC” cells (E). # P 
<0.05 (F and G). * P <0.05 vs. “Mock” treatment (H). * P <0.05 vs. OGDR treatment with DMSO (vehicle control) pretreatment (I and J). 
Experiments in this figure were repeated four times with similar results obtained.  
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or shRNA-induced CypD silencing potently inhibited 

OGDR-induced programmed necrosis and endometrial 

cell death [15]. Ginsenoside Rh2 protected endometrial 

cells from OGDR-induced cell death by inhibiting 

CypD-dependent programmed necrosis pathway [15]. 

Conversely, forced overexpression of CypD in endo-

metrial cells intensified OGDR-induced cell death [15]. 

Additionally, KGF activated Akt-Nrf2 signaling to 

inhibit CypD-dependent programmed necrosis pathway, 

thus protecting endometrial cells from OGDR [14]. 

Therefore targeting the CypD-dependent programmed 

necrosis pathway is a novel and efficient strategy to 

protect endometrial cells, and possible other cells [23–

25], from OGDR.  
 

miR-1203 is a relatively less-studied miRNA with 

unknown functions. Hu et al., have shown that 

circulating miR-1203 levels are downregulated in 

children with combined pituitary hormone deficiency 

(CPHD) when compared with the healthy controls [26]. 

Furthermore, serum miR-1203 is downregulated in 

certain prostate cancer patients [27]. He et al., have 

demonstrated that miR-1203 binds directly to 

Methylene Tetrahydrofolate Reductase (MTHFR) 

rs868014 TC or CC genotypes, resulting in their 

downregulation [28]. The results of this study show that 

miR-1203 is novel CypD-targeting miRNA. Forced 

overexpression of miR-1203, by lv-pre-miR-1203, 

decreased CypD 3′-UTR luciferase reporter activity and 

its expression in T-HESC cells and primary human 

endometrial cells. The mutant miR-1203 in the CypD 

3′-UTR-binding sites failed to change CypD 3′-UTR 

luciferase reporter activity and expression in human 

endometrial cells. Conversely, CypD 3′-UTR luciferase 

reporter activity and expression were elavated with 

forced miR-1203 inhibition in endometrial cells. 

Therefore our results indentified miR-1203 as a novel 

and specific CypD-targeting miRNA in human 

endometrial cells. 
 

Our studies show that miR-1203 can offer 

cytoprotective functions in OGDR-treated human 

endometrial cells. In T-HESC and primary human 

endometrial cells, ectopic miR-1203 overexpression 

attenuated OGDR-induced programmed necrosis, 

suppressing CypD-p53-ANT1 mitochondrial associa-

tion, mitochondrial depolarization, ROS production, and 

medium LDH release. Conversely, OGDR-induced 

programmed necrosis and cytotoxicity in human 

endometrial cells were intensified by forced miR-1203 

inhibition. Importantly, CypD silencing is absolutely 

required for miR-1203 overexpression-induced 

endometrial cell protection against OGDR. This is 

supported by the fact that in CypD-KO T-HESC cells 

ectopic miR-1203 overexpression or inhibition failed to 

change OGDR-induced cytotoxicity. Additionally, miR-

1203 inhibition-induced aggravation on OGDR’s 

cytotoxicity was reversed by CypD inhibitor CsA in T-

HESC cells. Furthermore, ectopic miR-1203 over-

expression was unable to protect T-HESC cells from 

OGDR when CypD expression was restored by an 

UTR-depleted CypD construct. In the primary human 

endometrial cells, miR-1203 was also ineffective when 

CypD is pre-blocked by CsA. 

 

Based on the results of this study we suggest that 

exogenous targeting miR-1203-CypD cascade could be 

a novel strategy to protect human endometrial cells 

from OGDR. miR-1203, and possible other CypD-

targeting miRNAs, could have translational potential for 

the treatment of endometrium ischemia. Furthermore, 

considering that ischemic cardiomyopathy and ischemic 

stroke could share the similar CypD-dependent cell 

necrosis pathway in myocardiocytes [16, 19, 29, 30] 

and neuronal cells [31–33], Cyp-D-targeting miR-1203 

might have important therapeutic value for aging 

patients with the two diseases. 

 

MATERIALS AND METHODS 
 

Chemical and reagents  

 

Cyclosporine A (CsA) and puromycin were provided by 

Sigma-Aldrich Chemicals (St. Louis, Mo). From Gibco 

Co. (Suzhou, China) the cell culture reagents, including 

fetal bovine serum (FBS) and PBS, were purchased. 

The antibodies utilized in this study were obtained from 

Santa Cruz Biotechnology (Santa Cruz, CA) and Cell 

Signaling Tech (Suzhou, China). All the primers, 

sequences and viral constructs were designed, 

sequence-verified and generated by Shanghai 

Genechem Co. (Shanghai, China). Lipofectamine 2000 

and other transfection reagents were provided by 

Invitrogen Thermo-Fisher (Shanghai, China). 

 

T-HESC cell culture 

 

The human endometrial cell line T-HESC cells [34], 

from the Cell Bank of Shanghai Institute of Biological 

Science of CAS (Shanghai, China), were cultured under 

the previously-described protocol [14, 15, 34]. 
 

Culture of primary human endometrial cells 
 

The surgery-acquired human endometrial tissues 

(female, 31-year old, administrated at Changzhou 

Second People's Hospital, with the written-informed 

consent) were first digested with 0.15% trypsin-EDTA 

plus Collagenase I (Sigma-Aldrich) for 60 min at room 

temperature. The endometrial tissues were then 

transferred to DMEM/Hams F-12 nutrient plus FBS. 

Tissues were then dissolved in cold PBS and vortexed. 
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Blood vessel cells and immune cells were abandoned 

using gravity sedimentation. Afterwards, the remaining 

primary human endometrial cells were pelleted and 

resuspended in the complete DMEM medium as 

described [15]. Primary human cells at passage 3-10 

were utilized. The protocols of using human tissues and 

cells were approved by the Ethics Review Board of 

Soochow University (Suzhou, China).  

 

Cell viability assay 

 

Endometrial cells were initially seeded into 96-well 

tissue culture plates at 5000 cells per well. The cell 

counting kit-8 (CCK-8) kit (Dojindo Laboratories, 

Kumamoto, Japan) was utilized to quantitatively 

measure cell viability. CCK-8 optic density (OD) was 

recorded at the test-wavelength of 450 nm. 

 

Lactate dehydrogenase (LDH) assay of cell necrosis 

 

LDH release to the conditional medium is a quantitative 

measurement of cell necrosis in vitro [35]. A two-step 

LDH detection kit (Promega) was carried out to 

measure LDH levels in the medium, always normalized 

to total LDH contents [15].  

 

OGD/re-oxygenation (OGDR) 

 

The OGDR procedure was described previously [14, 15, 

32]. Briefly, human endometrial cells were first placed 

into an airtight chamber with continuous flux of gas 

(95% N2/5% CO2). The chamber was sealed and placed 

in an incubator for 4h, mimicking oxygen glucose 

deprivation/OGD. Cells were then returned back to the 

complete medium and re-oxygenated (OGDR) for 

applied time periods. Control cells were placed in norm-

oxygenated complete medium (labeled as “Mock”). 

 

Western blotting 

 

Human endometrial cells with the applied treatments 

were incubated with the RIPA lysis buffer with 

proteasome inhibitors combo (Biyuntian, Wuxi, China). 

The quantified protein lysate samples (40 μg per 

treatment in each lane) were separated by SDS-PAGE 

gels, transferred to PVDF blots [36]. The detailed 

protocol of Western blotting and data quantification 

(using the ImageJ software) were described in detail in 

our studies [14, 15].  

 

Mitochondrial depolarization 

 

In the stressed cells with mitochondrial depolarization 

(“∆Ψ”) the red JC-1 dye shall aggregate in mitochondria 

to form green monomers [37]. Following the applied 

treatments human endometrial cells were incubated with 

JC-1 (5 μg/mL) for 15 min (under the dark). JC-1 green 

fluorescence intensity was measured under a 

fluorescence spectrofluorometer at 530 nm (Titertek 

Fluoroscan, Germany). The representative JC-1 images, 

integrating both green and red fluorescence images, 

were also presented.  

 

ROS detection 

 

As reported early [14, 15], the fluorescent dye DCFH-

DA (2′,7′-dichlorofluorescein diacetate) assay was 

applied to examine ROS levels [38–40]. The human 

endometrial cells were initially seeded into 96-well 

tissue culture plates at 5000 cells per well. Following 

the applied treatments, cells were incubated with 

DCFH-DA (50 μM) for 30 min. The DCF fluorescence, 

reflecting cellular ROS intensity, was detected by the 

above-described fluorescence reader. 

 

Quantitative real-time PCR (qPCR) 

 

After treatment, cellular RNA was extracted and 

complementary DNA (cDNA) was synthesized as 

described [14, 15]. We utilized the the ABI Prism 7600 

Fast Real-Time PCR system for qPCR assay. The product 

melting temperatures were calculated by the melt curve 

analyses. Glyceraldehyde-3-phosphatedehydrogenase 

(GAPDH) mRNA was tested as the reference gene and 

the internal control, using the 2−∆∆Ct method for 

quantification. The mRNA primers of human CypD and 

GAPDH were described previously [41]. miR-1203 was 

normalized to U6. miR-1203 and U6 primers were 

obtained from OriGene (Beijing, China). 

 

Forced overexpression or inhibition of miR-1203 

 

The pre-miR-1203 nucleotide sequence (UCCUCCC 

CGGAGCCAGGAUGCAGCUCAAGCCACAGCAGG

GUGUUUAGCGCUCUUCAGUGGCUCCAGAUUG

UGGCGCUGGUGCAGG) and the anti-sense sequence 

(UGCUGUGGCUUGAGCUGCAUCCUGGCUCCGG

GGAG) were synthesized and verified by Shanghai 

Genechem Co. (Shanghai, China). Each was inserted 

into a GV248 lentiviral construct (Shanghai Genechem 

Co.). The construct and the lentivirus-packing plasmids 

(psPAX2 and pMD2.G, from Dr. Jiang [42]) were 

transfected together to HEK-293T cells, establishing 

pre-miR-1203-expressing lentivirus (“lv-pre-miR-

1203”) or pre-miR-1203 anti-sense lentivirus (“lv-

antagomiR-1203”). Viruses were enriched, filtered, and 

added to cultured human endometrial cells, and cultured 

in the polybrene-containing complete medium. For T-

HESC cells puromycin (5.0 μg/mL) was added to select 

the stable cells. The mature miR-1203 (with sequence 

CCCGGAGCCAGGAUGCAGCUC) levels were 

always tested by qPCR.  
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The assaying of CypD 3'-UTR luciferase reporter 

activity 

 

The CypD 3'-UTR reporter plasmid (pMIR-REPORT 

plasmid, containing the miR-1203-binding sites, at 

position 806-813, generated by Shanghai Genechem 

Co) was transfected to endometrial cells by 

Lipofectamine 2000. Afterwards, cells were subjected 

to the applied genetic manipulations, CypD  

3'-UTR luciferase activities examined by a Promega 

kit [43]. 

 

Transfection of miR-1203 mimic 

 

T-HESC cells were seeded onto the six-well tissue-

culturing plates (1 × 105 cells/well). Transfection of 500 

nM of the wild-type (“WT-”) or the two mutant (“Mut-

”) miR-1203 mimics (both provided by Shanghai 

Genechem Co.) was carried out by the Lipofectamine 

2000 protocol for 48h. 

 

CypD over-expression 

 

The CypD pSuper-puro-Flag vector, without 3’-UTR, 

was reported early [44]. The CypD construct was 

transfected to T-HESC cells through Lipofectamine 

2000. After 24h, cells were selected by puromycin 

(5.0 μg/mL) for another 2 days. CypD overexpression 

in the resulting cells was verified by qPCR and 

Western blotting assays.  

 

CypD KO 

 

At 1×105 cells per well T-HESC cells were seeded 

into 6-well plates. The small guide RNA (sgRNA) 

targeting human Nrf2 (targeted DNA sequence, 

GGCGACTTCACCAACCACAA) was inserted into 

the lentiCRISPR-GFP plasmid (provided by Dr. Cao 

[45]). The plasmid was transfected to T-HESC cells. 

After 48h, the transfected cells were subjected to 

GFP-sorting, and single cell line was established. GFP 

KO in the stable cells was verified by qPCR and 

Western blotting assays.  

 

Statistical analysis 

 

Data in this study were presented as mean ± standard 

deviation (SD). Repeated-measures analysis of 

variance (RMANOVA) followed by Dunnett’s post 

hoc test for multiple comparisons (SPSS 16.0) were 

applied to evaluate statistical significance of 

observed differences, using SPSS21.0 (SPSS Co. 

Chicago, CA). To determine significance between 

two treatment groups, the two-tailed t tests were 

carried out (Excel 2007). Significance was chosen as 

P < 0.05. 
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SUPPLEMENTARY MATERIALS 
 

 

 

 

 

 
 

 

Supplementary Figure 1. T-HESC cells were pretreated with anti-oxidant N-acetylcysteine (NAC, 500 μM) for 1h, followed by OGDR 

stimulation for 24h, cell survival and necrosis were tested by CCK-8 (A) and LDH release (B) assays, respectively. Data were presented as 
mean ± SD (n=5).* P <0.05 vs. PBS pretreatment in “Mock” cells. # P <0.05 vs. PBS pretreatment in “OGDR” cells. Experiments in this figure 
were repeated three times with similar results obtained. 
 

 


