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INTRODUCTION 
 

Risky behavior or risk-taking behavior has been defined 

as either a socially unacceptable volitional behavior 

with a potentially negative outcome in which pre-

cautions are not taken (e.g. speeding, drinking and 

driving), or a socially accepted behavior in which the 

danger is r ecognized  (e.g. competitive sports  and  sky- 

 

diving) [1]. It is well reported that risky behaviors were 

associated with high prevalence, low productivity and 

more generally with a decline of individual and 

collective well-being in the short, medium and long run 

[2], as well as high premature death and increased 

health care spending [3], leading to huge economic and 

health losses of society, especially automobile speeding, 

drinking, smoking, and multiple sexual partners. For 
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ABSTRACT 
 

Background: Risky behaviors can lead to huge economic and health losses. However, limited efforts are paid to 
explore the genetic mechanisms of risky behaviors. 
Result: MASH analysis identified a group of target genes for risky behaviors, such as APBB2, MAPT and DCC. For 
GO enrichment analysis, FUMA detected multiple risky behaviors related GO terms and brain related diseases, 
such as regulation of neuron differentiation (adjusted P value = 2.84×10-5), autism spectrum disorder (adjusted 
P value =1.81×10-27) and intelligence (adjusted P value =5.89×10-15).  
Conclusion: We reported multiple candidate genes and GO terms shared by the four risky behaviors, providing 
novel clues for understanding the genetic mechanism of risky behaviors. 
Methods: Multivariate Adaptive Shrinkage (MASH) analysis was first applied to the GWAS data of four specific 
risky behaviors (automobile speeding, drinks per week, ever-smoker, number of sexual partners) to detect the 
common genetic variants shared by the four risky behaviors. Utilizing genomic functional annotation data of 
SNPs, the SNPs detected by MASH were then mapped to target genes. Finally, gene set enrichment analysis of 
the identified candidate genes were conducted by the FUMA platform to obtain risky behaviors related gene 
ontology (GO) terms as well as diseases and traits, respectively.  
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example, a large US representative cohort over a period 

of 15 years follow-up shown a significant linear 

relationship for females and males under 60 years of 

age at baseline relationship between alcohol consump-

tion and all-cause mortality [4]. 

 

Risky behaviors are a multifactorial disease with severe 

health and social consequences. Interestingly, past 

studies showed that risky behaviors were clinically 

recognized as a feature of several psychiatric disorders, 

including Attention deficit and hyperactivity disorder 

(ADHD) [5], Novelty seeking (NS) [6]. Moreover, the 

relationship between brain disorders and risky behaviors 

can also be explained from the genetic domain. Multiple 

studies pointed out gene expression in the brain region, 

especially in the prefrontal cortex, basal ganglia and 

midbrain, was associated with risky behaviors [7]. 

Therefore, clarifying the genetic mechanism of risky 

behaviors has the potential to inform the biology of 

complex psychiatric disorders.  

 

Apart from the environmental effects, there are indeed 

genetic factors affecting the risky behaviors. It is worth 

emphasizing that a latest research found that genetic 

correlations for risky behaviors were significantly 

higher than other phenotypes, and that many lead SNPs 

were shared among their phenotypes [8]. Overlapping 

genetic factors usually imply a sharing of possible 

etiological mechanisms, so integrating multiple risk 

traits could offer new insights for us. Cortes et al. 

clustered the genetic risk profiles of 3,025 genome-wide 

independent loci of 19,155 disease classification codes 

from 320,644 participants in the UK Biobank, and 

identified 339 distinct disease association profiles, and 

used multiple methods to association the clusters to 

potential biological pathways [9]. In addition, limited 

efforts were paid to explore the common genetic factors 

shared by various risky behaviors. Therefore, joint 

analysis of multiple risky behaviors has the potential to 

provide insight into the biological mechanism of risky 

behaviors.  

 
In recent years, GWAS has identified many genetic 

variants associated with complex diseases and traits [10, 

11]. A large part of significant loci identified by GWAS 

were in non-coding chromosomal regions [12]. 

Interestingly, previous studies demonstrated the 

important roles of regulatory genetic variants in the 

pathogenesis of complex diseases and traits, such as the 

expression quantitative trait locus (eQTLs) and 

methylation quantitative trait locus (meQTL) [13–17]. 

For instance, Huan et al. integrated whole blood 

meQTL and GWAS with disease-related variants, and 

illuminated the pathways for cardiovascular disease 

[17]. Through the comprehensive functional annotation 

of schizophrenia susceptibility SNPs identified by 

GWAS, including eQTL and meQTL analysis, Niu et 

al. identified 447 target protein-coding genes [18]. 

Additionally, significant overlap between the SNPs 

identified by GWAS and regulatory genetic regions 

[19], functional SNPs located in protein-coding genes 

and non-coding genes, known as regulatory single 

nucleotide polymorphisms (rSNPs), playing a major and 

indirect role in regulating gene function [20]. 

Integrating GWAS data with rSNP and MeQTL had the 

potential to discover novel susceptibility genetic 

variants for human complex diseases [21, 22].  

 

In this study, our goal was to explore the potential 

genetic factors shared by the four risky behaviors, 

especially those related to mental or psychological 

disorders. Accordingly, we first used MASH analysis to 

detect the common shared variants for the four common 

risky behaviors. Then the identified SNPs were mapped 

to target genes according to the genomic functional 

annotation data of eQTLs, MeQTLs and the SNPs near 

to known genes. Moreover, gene enrichment analysis 

was conducted to identify the significant pathways for 

risky behaviors.  

 

RESULTS 
 

Single gene analysis 
 

For rSNP, we identified 4378 SNPs shared by the four 

risky behaviors, corresponding to 792 target regulatory 

genes, such as PLEKHM1, MAPT, APBB2, TFEC and 

KANSL1-AS1 (Supplementary Table 1). For MeQTL, 

793 significant SNPs were detected, corresponding to 

162 target genes, such as ADH1B, ADH1C, DCC, 

ARHGAP10 and ARHGAP27 (Supplementary Table 2). 

For the SNPs near to known genes, we detected 414 

SNPs, corresponding to 89 target genes, such as PHC2, 

HYI, PTPRF, ELAVL4, and LRP8 (Supplementary 

Table 3). 

 

Functional gene sets enrichment analysis  
 

For rSNP, we detected 56 candidate GO terms, such as 

Gene silencing (adjusted P value=5.73×10-12), 

Negative regulation of gene expression (adjusted 

P=5.73×10-12) and Chromatin silencing (adjusted 

P=1.13×10-11). For MeQTL, we identified 79 candidate 

GO terms, such as Neurogenesis (adjusted P=9.84×10-

3), Subpallium development (adjusted P=9.84×10-3) 

and Striatum development (adjusted P=2.17×10-2). For 

the SNPs mapping to known genes, 215 candidate GO 

terms were identified, such as Regulation of collateral 

sprouting (adjusted P=2.84×10-5), Regulation of extent 

of cell growth (adjusted P=2.84×10-5) and Regulation 

of neuron differentiation (adjusted P=2.84×10-5). 

Moreover, FUMA analysis also detected multiple 
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Table 1. Gene set enrichment analysis results of rSNP related genes associated with the four risky behaviors. 

 
Gene Set adjusted P 

GO_GENE_SILENCING 5.73×10-12 

GO_NEGATIVE_REGULATION_OF_GENE_EXPRESSION_EPIGENETIC 5.73×10-12 

GO_CHROMATIN_SILENCING 1.13×10-11 

GO_CHROMATIN_ORGANIZATION 1.69×10-08 

GO_REGULATION_OF_GENE_EXPRESSION_EPIGENETIC 1.75×10-08 

GO_CHROMOSOME_ORGANIZATION 5.07×10-08 

GO_CHROMATIN_ASSEMBLY_OR_DISASSEMBLY 7.10×10-07 

GO_DNA_PACKAGING 7.10×10-07 

GO_PROTEIN_DNA_COMPLEX_SUBUNIT_ORGANIZATION 3.81×10-06 

GO_CHROMATIN_SILENCING_AT_RDNA 1.13×10-04 

Autism spectrum disorder or schizophrenia 1.81×10-27 

Alcohol use disorder (total score) 1.44×10-12 

Neuroticism 2.47×10-12 

General cognitive ability 2.47×10-12 

Intelligence (MTAG) 8.93×10-09 

Tacrolimus trough concentration in kidney transplant patients 1.22×10-08 

Facial emotion recognition (sad faces) 4.90×10-07 

Squamous cell lung carcinoma 3.10×10-06 

Cannabis use 3.28×10-06 

Lung cancer in ever smokers 4.03×10-06 

 

Table 2. Gene set enrichment analysis results of MeQTL related genes associated with the four risky behaviors. 

 
Gene Set adjusted P 

GO_NEUROGENESIS 9.84×10-03 

GO_SUBPALLIUM_DEVELOPMENT 9.84×10-03 

GO_HEAD_DEVELOPMENT 9.84×10-03 

GO_CENTRAL_NERVOUS_SYSTEM_NEURON_DIFFERENTIATION 9.84×10-03 

GO_NEURON_DIFFERENTIATION 9.84×10-03 

GO_REGULATION_OF_NEURON_DIFFERENTIATION 9.84×10-03 

GO_ENDOCRINE_SYSTEM_DEVELOPMENT 9.84×10-03 

GO_REGULATION_OF_VOLTAGE_GATED_CALCIUM_CHANNEL_ACTIVITY 1.06×10-02 

GO_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT 1.13×10-02 

GO_DEVELOPMENTAL_INDUCTION 1.13×10-02 

General cognitive ability 2.23×10-18 

Intelligence (MTAG) 5.89×10-15 

Self-reported risk-taking behaviour 8.24×10-13 

Alcohol use disorder (total score) 5.11×10-11 

Hand grip strength 2.58×10-10 

Educational attainment 1.01×10-08 

Alcohol consumption in current drinkers 4.72×10-08 

Body mass index 1.24×10-07 

Cognitive ability (MTAG) 1.50×10-07 

Alcohol use disorder (consumption score) 1.96×10-07 

 

brain related diseases or traits enriched in the 

identified target genes of the four risky behaviors, 

such as Autism spectrum disorder (adjusted P 

value=1.81×10-27), Neuroticism (adjusted 

P=2.47×10-12) and Intelligence (adjusted P=5.89×10-

15). More additional details were provided in Tables 

1–3 and Supplementary Tables 4–6. 

DISCUSSION 
 

Keller and Cannon’s watershed analogy of the 

genotype–phenotype relationship that “the more 

upstream the phenotype is, the closer its relationship to 

the genetic variants that affect it [23, 24]. Thereby, we 

conducted a large-scale genome-wide multiphenotypic 
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Table 3. Gene set enrichment analysis results of genes with SNPs showing association with the four risky behaviors. 

 
Gene Set adjusted P 

GO_REGULATION_OF_COLLATERAL_SPROUTING 2.84×10-05 

GO_REGULATION_OF_EXTENT_OF_CELL_GROWTH 2.84×10-05 

GO_REGULATION_OF_NEURON_DIFFERENTIATION 2.84×10-05 

GO_NEGATIVE_REGULATION_OF_NITROGEN_COMPOUND_METABOLIC_PROCESS 2.84×10-05 

GO_REGULATION_OF_NERVOUS_SYSTEM_DEVELOPMENT 2.84×10-05 

GO_REGULATION_OF_CELL_DEVELOPMENT 1.03×10-04 

GO_NEUROGENESIS 1.03×10-04 

GO_NEGATIVE_REGULATION_OF_PROTEIN_OLIGOMERIZATION 1.03×10-04 

GO_REGULATION_OF_NEURON_PROJECTION_DEVELOPMENT 1.19×10-04 

GO_ETHANOL_METABOLIC_PROCESS 1.19×10-04 

Alcohol use disorder (total score) 2.77×10-08 

Cognitive ability (MTAG) 2.77×10-08 

General cognitive ability 2.77×10-08 

Alcohol use disorder (consumption score) 7.78×10-08 

Intelligence (MTAG) 3.27×10-07 

Alzheimer's disease in APOE e4- carriers 3.11×10-06 

Cognitive ability 3.17×10-06 

Hand grip strength 4.46×10-06 

Parental longevity (father's attained age) 5.35×10-06 

Autism spectrum disorder or schizophrenia 1.35×10-05 

 

integrative analysis for four common risky behaviors. 

We reported multiple candidate genes and GO terms 

shared by the four risky behaviors. Our study had the 

potential to explore the genetic mechanism underlying 

risky behaviors and further elucidate the biological 

mechanisms of the development of mental disorders. 

 

Multiphenotypic analysis identified several common 

genes associated with four risky behaviors, such as 

APBB2, MAPT and DCC. APBB2, the protein encoded 

by this gene interacts with the cytoplasmic domains of 

amyloid beta (A4) precursor protein and amyloid beta 

(A4) precursor-like protein 2. This protein contains two 

phosphotyrosine binding (PTB) domains that are thought 

to play a role in signal transduction [25]. Polymorphisms 

in this gene have been associated with Alzheimer's 

disease [26]. Another interesting new finding was that 

they used PCR-RFLP to analyze the substitution of 

hCV1558625 (rs13133980) and rs13133980, and 

discovered that hcv1558625-rs13133980 AG haplotype 

increased the relative risk of severe cognitive impair-

ment in centenarians [27]. In addition, the APBB2 

rs13133980 G allele was more highly expressed in 

centenarians with severe cognitive impairment than in 

the individuals without cognitive impairment [27]. 

 

MAPT, a microtubule-related protein, whose transcript 

undergoes complex, regulated selective splicing, 

producing a variety of mRNA species. MAPT trans-

cription products are expressed differently in the 

nervous system, depending on the stage of neuron 

maturation and the type of neuron [25]. Mutations in the 

MAPT gene are associated with a variety of neuro-

degenerative diseases, such as Alzheimer's disease [26], 

frontotemporal dementia, and cortical basal cell 

degeneration [25]. By analyzing MAPT region 

expression, splicing and regulation in 2011 brain 

samples from 439 individuals, a survey found that 

regional differences in MAPT mRNA expression and 

splicing in human brain were highly correlated with the 

total expression level of tau protein [28]. Furthermore, 

they hypothesized that genetic risk factors for 

neurodegenerative disease at the MAPT site may play a 

role by altering mRNA splicing in different areas of the 

brain, rather than by the overall expression of the 

MAPT gene [28]. 

 

DCC encodes the netrin 1 receptor. Transmembrane 

proteins are members of the immunoglobulin super-

family of cell adhesion molecules that mediate neuronal 

growth cones and are the source of axon-directed netrin 

1 ligands [25]. Variations in DCC may determine 

differential predisposition to mPFC disorders in 

humans, clarified by Manitt et al. [29] Their results 

found that DCC expression was elevated in the brains of 

antidepressant-free subjects who committed suicide. 
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Horn K et al. [30] found that the dendritic spines of the 

pyramidal neurons of wild-type mice were rich in DCC, 

and then demonstrated that selective deletion of DCC in 

the brain neurons in the adult forebrain resulted in long-

term potential loss (LTP), complete long-term de-

pression, short dendritic spines, and impaired spatial 

and recognition memory, through the DCC knockout 

mice experiment. 

 

GO enrichment analysis identified multiple significant 

GO terms, which were involved in the development of 

the brain and mental, such as neurogenesis, regulation 

of neuron differentiation and striatum development. 

Neurogenesis, or called neural cell differentiation, a 

process of producing functional neurons from adult 

neural precursors throughout life in a limited number 

of mammalian brain regions [31]. Deng et al. 

suggested that an important role for adult hippo-

campal neurogenes is learning and memory [32]. 

According to Kang et al.’s research, dysregulation in 

adult neurogenesis are implicated in psychiatric 

diseases in humans, such as affective disorders, 

schizophrenia, and drug addiction [33]. 

 

Regulation of neuron differentiation, which is defined 

as any process, modulates the frequency, rate or 

extent of neuron differentiation. A previous study 

combined the genome-wide disease risk profile of 

GWAS with the longitudinal in vitro gene expression 

profile of human neuronal differentiation using an 

analytical framework they developed to demonstrate 

that the cumulative impact of risk loci for specific 

psychiatric disorders is significantly correlated with 

genes that are differentially expressed during neuronal 

differentiation [34].  

 

Striatum development refers to the process from initial 

formation to maturation of the striatum. The striatum is 

a region of the forebrain that consists of the caudate 

nucleus, putamen nucleus, and striatum base. Similarly, 

studies linked striatum development to mental illness, 

such as delayed development of the ventral striatum 

during adolescence reflects emotional neglect and 

predicts depressive symptoms [35].  

 

Additionally, we detected multiple brain related 

diseases or traits enriched in the identified target genes 

of the four risky behaviors, such as SCZ and 

intelligence. SCZ is an idiopathic mental disorder with 

high heritability. Previous studies showed that 

schizophrenia is associated with neural calcium 

channels, which are one of the pathogenesis of bipolar 

disorder and autism [36]. Sullivan et al.'s study 

described the strong effects of eight rare copy number 

variants on schizophrenia, and these associations might 

also be associated with autism, mental retardation or 

epilepsy, which are usually not disease-specific [37]. In 

addition, analysis of the genetic characteristics found a 

significant relationship between intelligence and 

changes in the expression of the brain and pituitary 

gland. It also suggested that neurogenesis was the 

process by which new neurons are created, a process 

previously associated with human intelligence using 

GWAS data [38]. Interestingly, combined with our 

findings and previous research, it seemed that many 

psychiatric disorders also have codependent biological 

mechanisms that rely on similar gene regulation or 

expression, or are partly due to common genetic 

influence. Our study confirmed this finding and 

provided some assistance in further elucidating the 

biological mechanism of risky behavior. 

 

One strengths of this study is the combination of 

multiple risky behaviors and integrating it with genomic 

functional annotation of regulatory genetic variants. 

Complex disorders or traits are usually regulated by 

gene expression, methylation, microRNAs, and epige-

nomics as a whole. Due to some limitation of GWAS 

method [12] and the important role of regulatory genetic 

variants [13–17, 19], integrating GWAS and regulatory 

genetic variants data can discover novel candidate genes 

for mental disorders in this study. Meanwhile, GWAS 

of common diseases have revealed a wide range of 

pleiotropic, resulting in significant genetic correlations 

among different traits [9]. For instance, Cross-disorder 

Group of the Psychiatric Genomics Consortium 

observed the genetic correlation among five mental 

disorders based on genome-wide SNPs data [39]. 

Overlapping genetic risks imply a sharing of possible 

etiological mechanisms. Ellinghaus et al. 's analysis of 

five chronic inflammatory diseases identified 27 new 

associations and highlighted disease-specific patterns in 

shared loci [40]. Furthermore, previous studies provided 

evidence that different risky behaviors occurred 

simultaneously with the same mental disease [5–7]. 

Therefore, joint analysis of multiple risky behaviors has 

the potential to provide insight into the biological 

mechanism of risky behaviors. Our study identified 

multiple risk behaviors associated genes, which have 

been suggested to be involved in the development of 

mental disorders, such as APBB2 [26] and DCC [30]. 

Further GO analysis identified multiple risk behavior 

related GO terms, functionally involved in brain 

development and mental disorders, such as neuro-

genesis, regulation of neuron differentiation and 

striatum development.  

 

In our study, we used MASH analysis to explore the 

common genetic factors shared by the four common risky 

behaviors. MASH was developed based on recent 

methods [41, 42], and it combines the advantages of 

existing methods while overcomes the major limitations 
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of them. MASH gained more power compared to a tissue-

by-tissue analysis and ANOVA or simple linear 

regression. The most important feature of MASH is that it 

facilitates more estimation and assessment of effect-size 

heterogeneity than simple “shared/condition-specific” 

assessments [41]. In particular, MASH is generic and 

adaptive. It is generic in that it can take as input any 

matrix of Z scores (or, better, a matrix of effect estimates 

and their corresponding standard errors) testing many 

effects in many conditions. And MASH is adaptive in that 

it learns patterns of sharing of multivariate effects from 

the data, allowing it to maximize power and precision for 

each setting. Urbut et al. [41] conducted a detailed 

analysis of locally-acting (“cis”) eQTLs in 44 human 

tissues through MASH, and compared the performance of 

MASH with that of ASH (a univariate shrinkage 

procedure) [43] and BMATILE (a multivariate model) 

[42]. It turns out that MASH outperformed other methods, 

particularly in the shared and structured effects scenario. 

However, it should be noted that MASH does not 

distinguish the causal associations and those caused by 

linkage disequilibrium (LD). When jointly analyzing 

GWAS and eQTLs data, a SNP identified by GWAS may 

be a significant eQTL simply because it is in LD with 

another causal SNP.  

 

Additionally, there are some limitations of this study. 

First, due to the inclusion criteria of risky behaviors from 

our GAWS data sources [8], we analyzed four common 

risk behaviors in this study. The four risky behaviors have 

been proved to be related to psychological or mental 

disorders [5–7, 44–46]. Furthermore, they have been 

demonstrated to be a powerful predictor for injury, risk 

tolerance and other problems [1, 3]. However, it is worthy 

to jointly analyze more risky behaviors in future studies. 

Second, our analysis only included the genetically 

regulated portion of gene expression. Therefore, it could 

not capture or interpret the variance of expression caused 

by environment factors, which may also contribute to 

development of psychiatric disorders. Third, we analyzed 

the genetic data from European cohorts in this study. 

Therefore, it should be carefully to apply our results to 

other populations. 

 

In conclusion, multiple genes and GO terms shared by 

the four risky behaviors were reported in our study. 

And the results supported the functional relevance of 

brain development with risky behaviors from the 

genetic domain, which can offer some help to further 

elucidate the biological mechanisms of the 

relationship. Due to many mental disorders also had 

mutual biological mechanism reliant on the similar 

genetic regulation or expression, our results may do a 

lot help to construct better multi-gene scores to 

measure environmental, demographic, and genetic 

factors interacting or building neurological scores. 

MATERIALS AND METHODS 
 

GWAS data of risky behaviors 

 

In this study, we analyzed four common risky 

behaviors, including automobile speeding, alcohol 

drinking, smoking, and multiple sexual partners. 

Automobile speeding, alcohol drinking, smoking, and 

multiple sexual partners are major common risky 

behaviors, which have been demonstrated to be a 

powerful predictor for injury, risk tolerance and other 

problems [2, 3]. The GAWS data of the four risky 

behaviors were obtained from the published study [8]. 

It consisted of over 1 million European-ancestry 

participants for the four risky behaviors, including 

404,291 for automobile speeding propensity, 414,343 

for drinks per week, 370,711 for number of sexual 

partners and 518,633 for smoker, respectively. 

Genotyping was performed by using a range of 

commercially available genotyping arrays, such as the 

UK BiLEVE array [47] and the UK Biobank Axiom 

array [48]. Extensive quality-control procedures were 

applied to the cohort-level summary statistics, 

including the EasyQC software developed by the 

GIANT consortium [49], and only SNPs with minor 

allele frequency (MAF) greater than 0.001 were 

analyzed. IMPUTE4 was applied for genotype 

imputation [48]. The top ten (or more) principal 

components of the genetic relatedness matrix, sex and 

birth year were controlled during the GWAS. At last, 

each behavior consisted of approximately 11,515,000 

SNPs in this study. More detailed information about 

cohorts, inclusion criteria for risky behaviors, 

genotyping and imputation can be found in the 

published study [8].  

 

Multiple traits integrative analysis 
 

The MASH analysis was applied to the GWAS 

datasets of the four risky behaviors to detect the SNPs 

associated with all of the four risky behaviors. MASH 

(https://github.com/stephenslab/mashr) can estimate 

and test multiple effects under multiple conditions. 

The approach improves on existing methods to allow 

arbitrary correlation of effect size between conditions 

and improves effect size assessment, which is helpful 

for more quantitative assessment of effect size 

heterogeneity [41]. The SNPs associated with the four 

risky behaviors were detected by MASH and then 

mapped to target genes according to the genomic 

annotation data of rSNP-target genes, MeQTL-target 

genes and the SNPs near to known genes, 

respectively. We used “canonical” type to set up 

covariance matrix and then to fit the model. The 

sharing important signals between each pair of 

conditions were selected. And the default definition 

https://github.com/stephenslab/mashr
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for sharing from MASH software is "the same sign 

and within a factor 0.5 of each other”.  

 

Annotation data of regulatory SNPs, MeQTL and 

the SNPs mapping to near genes 

 

The genomic annotation data of rSNPs was obtained 

from the rSNPBase 3.1 database (http://rsnp3.psych. 

ac.cn/). rSNPBase provides genomic annotation of 

SNP-related regulatory element-target gene pairs [50]. 

Currently, rSNPBase database contains nearly 

119,630,196 rSNP annotation entries on SNP 

regulatory information. Genomic similarities or widely 

used reference databases were used to analyze 

functional associations between regulatory elements 

and target genes [51]. The MeQTLs–target gene 

annotation data were collected from published studies 

[52]. In short, about 4.5 million loci were measured in 

697 subjects. SNPs were genotyped using Affymetrix 

genome-wide SNP Arrays 5.0 or 6.0 or Illumina 

OmniExpress. The Minimac method was used to input 

1000 genomic reference versions of v3 with the lower 

MAF>0.05 and r2 >0.5 as thresholds. 4,761,800 SNPs 

were identified for MeQTL correlation after quality 

control. For mapping SNPs to near genes, a physical 

short of 500 kb was to link a SNP and a gene, because 

most enhancers and repressors are < 500 kb away from 

genes, and most linkage disequilibrium blocks are < 

500 kb.  

 

Functional gene sets enrichment analysis 

 

The identified candidate genes shared by the four 

risky behaviors were subjected to gene set enrichment 

analysis, implemented by the GENE2FUNC of the 

FUMA tool [20]. FUMA [20] is a platform for 

annotating, sorting, visualizing, and interpreting 

GWAS results. For every input gene, GENE2FUNC 

provides information about tissue specificity, the 

enrichment of publicly available gene sets, and the 

expression of different tissue types. The genes were 

tested for representation in different functional gene 

sets, including GO terms and various diseases or traits 

related gene sets. The Benjamini-Hochberg false 

discovery rate (FDR) was recommended by the 

FUMA software [20], and used for controlling the 

potential impact of multiple testing problem in this 

study. The adjusted P value cut-off was 0.05 and 

minimum overlapping genes with gene-sets was 

assigned 2 during the FUMA analysis. Additionally, 

the ensemble version v92 and GTEx v8 were chosen 

for FUMA analysis. 
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SUPPLEMENTARY MATERIALS 
 

Please browse the Full text version to see the data of Supplementary Tables 1-6. 

 

Supplementary Table 1. List of the four risky behaviors associated rSNPs and corresponding genes. 

Supplementary Table 2. List of the four risky behaviors associated MeQTL SNPs and corresponding genes. 

Supplementary Table 3. List of the four risky behaviors associated SNPs and adjacent genes. 

Supplementary Table 4. Gene set enrichment analysis results of rSNP related genes associated with the four risky 
behaviors. 

Supplementary Table 5. Gene set enrichment analysis results of MeQTL related genes associated with the four risky 
behaviors. 

Supplementary Table 6. Gene set enrichment analysis results of genes with SNPs showing association with the four 
risky behaviors. 

 


